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Abstract. The planetary boundary layer (PBL) height (PBLH) is an important parameter for various meteoro-
logical and climate studies. This study presents a multi-structure deep neural network (DNN) model, which can
estimate PBLH by integrating the morning temperature profiles and surface meteorological observations. The
DNN model is developed by leveraging a rich dataset of PBLH derived from long-standing radiosonde records
augmented with high-resolution micro-pulse lidar and Doppler lidar observations. We access the performance
of the DNN with an ensemble of 10 members, each featuring distinct hidden-layer structures, which collectively
yield a robust 27-year PBLH dataset over the southern Great Plains from 1994 to 2020. The influence of various
meteorological factors on PBLH is rigorously analyzed through the importance test. Moreover, the DNN model’s
accuracy is evaluated against radiosonde observations and juxtaposed with conventional remote sensing method-
ologies, including Doppler lidar, ceilometer, Raman lidar, and micro-pulse lidar. The DNN model exhibits reli-
able performance across diverse conditions and demonstrates lower biases relative to remote sensing methods.
In addition, the DNN model, originally trained over a plain region, demonstrates remarkable adaptability when
applied to the heterogeneous terrains and climates encountered during the GoAmazon (Green Ocean Amazon;
tropical rainforest) and CACTI (Cloud, Aerosol, and Complex Terrain Interactions; middle-latitude mountain)
campaigns. These findings demonstrate the effectiveness of deep learning models in estimating PBLH, enhanc-
ing our understanding of boundary layer processes with implications for improving the representation of PBL in
weather forecasting and climate modeling.

1 Introduction

The planetary boundary layer (PBL) is the atmosphere’s
lowest part, where Earth’s surface directly influences me-
teorological variables, impacting the climate system (Gar-
ratt, 1994; Kaimal and Finnigan, 1994). The PBL height
(PBLH) is a meteorological factor that strongly influences
surface–atmosphere exchanges of heat, moisture, and energy
(Stull, 1988; Caughey, 1984; Holtslag and Nieuwstadt, 1986;
Mahrt, 1999; Helbig et al., 2021; Guo et al., 2024; Beames-
derfer et al., 2022). In addition, PBLH is a crucial variable for
monitoring and simulating surface pollutant behaviors since
it determines the volume available for near-surface pollutant
dispersion (Li et al., 2017; Su et al., 2024a; Tucker et al.,
2009; Wang et al., 2020). Due to its impact on cloud evo-
lution and the development of convective systems, PBLH

is also a key parameter in numerical weather forecasts and
climate projections (Deardorff, 1970; Kaimal et al., 1976;
Menut et al., 1999; Park et al., 2001; Emanuel, 1994; Guo
et al., 2017, 2019; Lilly, 1968; Matsui et al., 2004).

Radiosonde (SONDE) measurements remain the standard
method for estimating PBLH, yet they are hampered by limi-
tations in temporal frequency, restricting its ability to capture
the whole diurnal cycle of PBL development (Stull, 1988;
Seidel et al., 2010; Guo et al., 2021; Liu and Liang, 2010).
To overcome these challenges, there has been an increasing
dependence on remote sensing techniques, especially lidar
systems. These techniques capture atmospheric vertical in-
formation (e.g., aerosols, temperature, humidity, and wind)
at high temporal and vertical resolutions, leading to remote-
sensing-based retrievals of PBLH (Menut et al., 1999; Kot-
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thaus et al., 2023; Sawyer and Li, 2013; Wang et al., 2023).
The remote sensing systems, including Doppler lidar (Bar-
low et al., 2011), ceilometer (Zhang et al., 2022), Raman li-
dar (Summa et al., 2013), and micro-pulse lidar (Melfi et al.,
1985), utilize laser-based technology to track PBLH diurnal
evolutions, helping us understand the PBL evolutions (Cohn
and Angevine, 2000; Davis et al., 2000). In addition, wind
profilers can estimate PBLH using algorithms that analyze
the signal-to-noise ratio from wind profiler data (Molod et
al., 2015; Solanki et al., 2022; B. Liu et al., 2019; Salmun
et al., 2023; Bianco and Wilczak, 2002; Bianco et al., 2008;
Tao et al., 2021).

However, despite the advancement in remote sensing for
the estimation of PBLH, challenges still remain in bridg-
ing the results obtained by different remote sensing instru-
ments with those obtained from the SONDE measurements
(Zhang et al., 2022; Chu et al., 2019). Specifically, interpret-
ing aerosol, turbulence, and moisture profiles derived from
remote sensing techniques to determine PBLH bears inher-
ent limitations due to the unstable signal-to-noise ratio (Kot-
thaus et al., 2023; Krishnamurthy et al., 2021). This issue
is compounded by the different measurement methodologies
and definitions employed by various remote sensing tools,
leading to uncertainties when comparing their PBLH esti-
mates to the retrievals derived from SONDE measurements
(Zhang et al., 2022; Sawyer and Li, 2013).

As machine learning (ML) has shown potential in atmo-
spheric science (McGovern et al., 2017; Gagne et al., 2019;
Su et al., 2020a; Vassallo et al., 2020; Cadeddu et al., 2009;
Molero et al., 2022), this technique presents a promising
tool for refining the estimation of PBLH to resolve the in-
herent complexity and variability in PBL. For example, sev-
eral studies use ML to identify PBLH using thermodynamic
profiles of the Atmospheric Emitted Radiance Interferometer
(AERI) or using backscatter profiles from lidar, highlighting
ML’s superiority over conventional techniques under differ-
ent scenarios (Sleeman et al., 2020; Rieutord et al., 2021; Liu
et al., 2022; Ye et al., 2021). For example, Li et al. (2023) ap-
plied an ML algorithm for retrieving PBLH under complex
atmospheric conditions accounting for the vertical distribu-
tion of aerosols. Krishnamurthy et al. (2021) incorporated a
random forest model, along with machine learning, to use
Doppler lidar data for the extraction of PBLH with better re-
sults compared to the results retrieved by traditional methods.

While existing ML methodologies have made great
progress in estimating PBLH, these studies mainly focus
on refining retrievals from remote sensing data, particularly
lidar-based technologies. Thus, there is an inherent limita-
tion to the applicability due to a reliance on specific re-
mote sensing instruments. To address this issue, we aim to
leverage and integrate the comprehensive field observations
(i.e., radiosonde and remote sensing techniques) to develop
a deep learning model for direct PBLH estimation from con-
ventional meteorological data. This strategy circumvents the
limitations of relying on particular remote sensing technolo-

gies. Furthermore, our model employs an advanced deep
neural network (DNN) approach (Sze et al., 2017; Schmidhu-
ber, 2015; Nielsen, 2015; Pang et al., 2020), diverging from
traditional ML methods like random forest. This deep learn-
ing model utilizes ensemble techniques, constructing arrays
of various structures and using their average for the final esti-
mation. This approach provides particular advantages in the
context of complex and nonlinear processes (Ganaie et al.,
2022; Mohammed and Kora, 2023). The ensemble DNN with
multi-structure design shows very strong flexibility and ro-
bustness, so it performs relatively better and has high stabil-
ity across a wide range of conditions (Xue et al., 2020; Dong
et al., 2020). This facilitates the adaptability of the DNN as
a tool for PBLH estimation, which can be utilized under dif-
ferent scenarios and locations.

By focusing on the interaction between surface meteorol-
ogy and the PBL, this study introduces a DNN-based method
to estimate the daytime evolution of PBLH from morning
temperature profiles and surface meteorology. We evaluate
the model’s performance using extensive datasets over the
southern Great Plains (SGP) for a period spanning 27 years
(1994–2020) and include comparisons with PBLH estima-
tions obtained from measurements of Doppler lidar, ceilome-
ter, Raman lidar, and micro-pulse lidar. Furthermore, we
explore the generalizability of the model to different geo-
graphic regions and climates, as tested during the field cam-
paigns, e.g., Green Ocean Amazon (GoAmazon) and Cloud,
Aerosol, and Complex Terrain Interactions (CACTI).

2 Data and instruments

2.1 ARM sites

The Atmospheric Radiation Measurement (ARM) program,
funded by the U.S. Department of Energy, has been em-
ployed at the southern Great Plains (SGP) site in Okla-
homa (36.607° N, 97.488° W), situated 314 m above mean
sea level. This study use comprehensive field observations at
the SGP site during 1994 to 2020. In addition to the SGP site,
this study utilizes data from the ARM GoAmazon (3.213° S,
60.598° W) and ARM CACTI (32.126° S, 64.728° W) field
campaigns to carry out independent tests for the deep learn-
ing model. Specifically, the GoAmazon campaign is located
in the Amazon tropical forests and provides rich field obser-
vation data during 2014–2015 (Martin et al., 2016). Mean-
while, the CACTI central site, at an elevation of 1141 m
within the Sierras de Córdoba mountain range in north-
central Argentina, offers the observations during the 2018–
2019 period (Varble et al., 2021). Utilizing these comprehen-
sive ARM datasets, our study includes thermodynamic pro-
files derived from radiosondes, data from the Active Remote
Sensing of Clouds dataset (ARSCL; Clothiaux et al., 2000,
2001; Kollias et al., 2020), in situ surface flux measurements,
and standard meteorological observations at the surface, as
documented by Cook (2018) and Xie et al. (2010).
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SONDE measurements at the ARM sites routinely launch
several times a day and provide detailed information on the
thermodynamic conditions of the atmosphere. The techni-
cal details of the ARM SONDE data are documented in
Holdridge et al. (2011). Moreover, we use the surface mete-
orological parameters at the standard meteorological station.
In situ measurements at 2 m above ground level provide data
on temperature, relative humidity, and vapor pressure. In ad-
dition, this study obtains the surface sensible and latent heat
fluxes from the surface instruments (Wesely et al., 1995). In
the SGP, we use the best-estimate surface fluxes in the bulk
aerodynamic energy balance Bowen ratio (BAEBBR) prod-
uct, which is derived from the measurements by the energy
balance Bowen ratio (EBBR). Due to the availability, we uti-
lize the surface fluxes from Quality Controlled Eddy Correla-
tion Flux Measurement (QCECOR) datasets from the CACTI
and GoAmazon sites (Tang et al., 2019).

2.2 Existing PBLH datasets over the ARM sites

For analyzing PBLH, we have utilized a variety of datasets to
get a full picture of PBLH derived from different instruments.
These datasets are developed using different methodologies
and instruments and jointly offer detailed information about
PBLH under various meteorological conditions. Among
these datasets, SONDE- and ceilometer-derived PBLH is
available for all three sites; other datasets are only available
over the SGP. The technical details for these datasets can be
found in the corresponding publications or technical reports.

1. SONDE-derived PBLH by Liu and Liang (2010).
PBLHs are retrieved using a method developed by Liu
and Liang (2010), based on potential temperature gradi-
ents from SONDE measurements. We focus on daytime
data during 05:00–18:00 local time (LT), with a resam-
pled vertical resolution of 5 hPa. The SONDE dataset is
available at https://doi.org/10.5439/1595321.

2. Doppler-lidar-derived PBLH by Sivaraman and
Zhang (2021). Doppler lidar PBLH estimates are de-
rived using a vertical velocity variance method during
2010–2019 (Tucker et al., 2009; Lareau et al., 2018;
Sivaraman and Zhang, 2021). The dataset is available
at https://doi.org/10.5439/1726254.

3. Combined MPL–SONDE (micro-pulse lidar) PBLH by
Su et al. (2020b). We utilize a PBLH dataset that merges
lidar and SONDE measurements during 1998–2023, en-
suring vertical coherence and temporal continuity (Su et
al., 2020b). An additional method for handling cloudy
conditions is detailed in Su et al. (2022). The dataset is
available at https://doi.org/10.5439/2007149.

4. Ceilometer-derived PBLH by Zhang et al. (2022). The
Vaisala CL31 ceilometer, with a 7.7 km vertical range,
provides detailed backscatter profiles used for PBLH

estimation via gradient methods during 2011–2023
(Zhang et al., 2022). Enhanced algorithms ensure robust
estimations under all weather conditions. The dataset is
available at https://doi.org/10.5439/1095593.

5. MPL-derived PBLH by Sawyer and Li (2013). Micro-
pulse lidar (MPL) is utilized for its high temporal res-
olution to retrieve PBLH during 2009–2020. MPL-
derived PBLH, validated against SONDE and AERI
data, improves understanding of boundary layer pro-
cesses (Sawyer and Li, 2013). The dataset is available
at https://doi.org/10.5439/1637942.

6. Combined Raman lidar–AERI PBLH by Ferrare (2012).
PBLH is calculated using merged potential tempera-
ture profiles from Raman lidar and AERI, with crite-
ria established for the SGP site. PBL heights are com-
puted hourly for 2009–2011. The dataset is available at
https://doi.org/10.5439/1996909.

In those above, datasets 1–3 serve as the foundation
for training. Concurrently, considering radiosonde as the
benchmark standard, we utilized dataset 1 for validating
PBLH retrievals obtained from various sources. Meanwhile,
datasets 4–6 are used for the intercomparisons between
PBLH derived from DNN and remote sensing techniques.

3 Deep learning model to estimate PBLH

3.1 The multi-structure deep learning model

Our deep learning model for estimating PBLH leverages
the robustness of ensemble learning using a multi-structure
DNN (Sze et al., 2017; Schmidhuber, 2015; Nielsen, 2015;
Pang et al., 2020). This model used the TensorFlow pack-
age, developed by Google (Abadi et al., 2016; https://www.
tensorflow.org/, last access: 11 January 2024). By employ-
ing an array of varied network architectures, we capitalize
on the unique strengths of each structure to synthesize a more
accurate and reliable estimation of PBLH. Figure 1 outlines
the DNN’s comprehensive design, beginning with the input
layer that ingests a suite of morning meteorological features.
The DNN model derives PBLH from surface meteorological
parameters. We also incorporate boundary layer heights de-
rived from sensible heat and parcel methods (BLHParcel and
BLHSH) as inputs. Specifically, BLHParcel is calculated based
on the morning profile of potential temperature (Holzworth,
1964), while BLHSH is determined using the surface tem-
perature combined with surface sensible heat, following the
methodologies of Stull (1988) and Su et al. (2023). We first
present a preliminary run for the model to obtain the impor-
tance of each input feature. Then, these inputs undergo a fil-
tration process based on their importance (Date and Kikuchi,
2018; Altmann et al., 2010), ensuring that only the impactful
data guide the model (detailed in Sect. 3.3). Subsequently,
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Figure 1. Schematic of the multi-structure deep neural networks
(DNNs) used for estimating the planetary boundary layer height
(PBLH). Input features, including morning potential temperature
profiles, surface air temperature, wind, humidity, surface fluxes,
seasonality, and time, are filtered based on importance and fed into
the network. The system comprises 10 distinct hidden-layer struc-
tures, each processing the inputs to model PBLH. The outputs from
these structures are then synthesized to determine the final PBLH
value, leveraging the diverse representations of atmospheric proper-
ties captured by each neural network configuration. Neuron biases
are applied at the output and hidden layers to fine-tune the model’s
performance.

the filtered inputs traverse through an ensemble of 10 struc-
tures with distinct hidden layers. Each structure here repre-
sents an ensemble member and contributes to the prediction
of PBLH in its unique way (Ganaie et al., 2022). The en-
semble employs a three-layer base structure of [52, 28, 16]
for neural networks, from which 10 unique configurations
are derived by applying random perturbations to the default
settings of the base structure. These different structures for
ensembles 1–10 are presented in Table 1.

At the final stage, the model uses the PBLH estimations
from different ensembles to get a mean value as the final
PBLH retrieval. This process allows the model to leverage
the different results of all structures and enhance the gen-
eralizability of results. In the DNN model, neuron biases in
the output and hidden layers are important for the network’s
architecture (Battaglia et al., 2018). These biases serve as
fine-tuning parameters for adjusting the activation thresh-
olds of neurons in different layers and further refining the
model’s predictive capabilities. Neuron biases are initialized
with small random values at the start of the training pro-
cess and then iteratively adjusted according to the network
weights during the training. Normalization is a preprocessing
technique that often leads to improvements in model train-

ing by scaling the input features and target values to a stan-
dard range (Raju et al., 2020). The normalization process was
applied to each input data to ensure that they have a mean
of 0 and a standard deviation of 1, as well as the target data.
This standardization scales the different input data to a sim-
ilar range and, thus, contributes a more stable and efficient
training process.

The hidden layers of the DNN model incorporate L2
(level 2) regularization to curtail overfitting, while batch nor-
malization aids in stabilizing learning. Moreover, a dropout
rate of 0.2 helps the model to generalize better by reducing
reliance on any specific neurons during training. We chose
the Adam optimizer and mean squared error as the loss func-
tion, which aligns with one of the best practices for regres-
sion models (Zhang, 2018). The mean absolute error is se-
lected as a metric to evaluate the model’s accuracy during
the training. We incorporate the early stopping and learning
rate reduction callbacks in the model’s training for regular-
ization and fine tuning (L. Liu et al., 2019). Such measures
ensure optimal performance by terminating training at the
right juncture and avoid the overfitting in the final results.

3.2 Training the DNN model

The training of the DNN model was conducted using a PBLH
dataset enriched by SONDE and lidar measurements dur-
ing 1994 to 2016 over the SGP. Table 2 presents the dis-
tribution of dataset samples at different hours in local time
(defined here as local standard time, UTC−6), which were
important for both the training and validation processes of
the DNN model. The primary dataset (i.e., PBLH derived
from SONDE measurements) is listed in the first column and
is available routinely for 05:00, 11:00, and 17:00 LT. The
training dataset was augmented with the combined MPL–
SONDE PBLH dataset (Su et al., 2020b) and Doppler-lidar-
derived PBLH (Sivaraman and Zhang, 2021) to address the
gaps where SONDE measurements were not available. In
instances where radiosonde data are unavailable, the lidar
datasets are used for training, contingent upon their agree-
ment with radiosonde measurements within a margin of
0.2 km over a 3 h window. Specifically, out of the total com-
parisons during the study period, 40.2 % of the lidar mea-
surements do not agree within the 0.2 km threshold with the
SONDE results. The cases with relatively larger inconsisten-
cies stem from various factors, including instrumental errors,
rainy conditions, stable PBL conditions, differing definitions,
and lidar signal attenuation, as discussed in previous studies
(Su et al., 2020b; Kotthaus et al., 2023). These cases were ex-
cluded from the DNN model training to maintain the quality
of the process.

For the purpose of training the DNN model, 70 % of the
hourly data from both SONDE measurements and the lidar
combined dataset were randomly selected. The dataset of the
remaining 30 % comprises the portion of SONDE measure-
ments set aside for validation purposes, including a separate
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Table 1. This table lists the varying structures of hidden layers used by each ensemble member for PBLH estimation. Each configuration is
expressed as an array, with the number of elements indicating the number of layers and each value specifying the number of neurons activated
in the corresponding layer. For instance, a structure denoted as [52, 28, 16] comprises three hidden layers containing 52, 28, and 16 neurons,
respectively.

Ensemble Different structures Ensemble Different structures
member in hidden layer member in hidden layer

Member 1 [52, 28, 16] Member 6 [57, 44, 19]
Member 2 [61, 43, 20] Member 7 [55, 43, 19]
Member 3 [59, 45, 19] Member 8 [57, 43, 15]
Member 4 [60, 45, 23] Member 9 [59, 41, 20, 10]
Member 5 [57, 45, 23] Member 10 [57, 43, 18, 9]

Table 2. Distribution of dataset samples for deep neural network
(DNN) training and validation. This table details the sample data
at different hours in local time used for the development and vali-
dation of the DNN to estimate the planetary boundary layer height
(PBLH). The first column lists the available PBLH values derived
from a radiosonde (SONDE; Liu and Liang, 2010) during vari-
ous hours in local time from 1994 to 2016. The second column
supplements the dataset with a combined MPL–SONDE approach
(Su et al., 2020b) and Doppler-lidar-derived PBLH (Sivaraman and
Zhang, 2021) used in the absence of SONDE measurements; 70 %
of the combined dataset from the first and second columns was ran-
domly selected for the model’s training. The third column provides
the number of SONDE measurements available for validation pur-
poses. Morning SONDE data serve as the input and boundary con-
dition.

Local Supplement SONDE for
time SONDE lidar dataset validation

05:00 7163 0 0
06:00 22 1181 0
07:00 3 1186 0
08:00 1225 2541 453
09:00 16 2629 8
10:00 9 2732 3
11:00 6513 13 3307
12:00 26 2797 9
13:00 14 2694 47
14:00 2131 2334 728
15:00 28 2555 9
16:00 3 2730 1
17:00 6503 2 3348

subset from the years 2017 to 2020, to test the model’s pre-
dictive capabilities on independent data. This training and
validation scheme ensures that the DNN model is not only
well-trained but also thoroughly evaluated, reinforcing its re-
liability in accurately estimating PBLH. As morning SONDE
data constitute the primary input and boundary conditions for
the model, the validation of PBLH retrievals is consequently
confined to 08:00 to 18:00 LT.

3.3 Feature importance score

In the DNN model, we quantified the significance of each in-
put parameter using the permutation importance technique,
which is a widely used method for deep learning (Date and
Kikuchi, 2018; Altmann et al., 2010; Breiman, 2001). Ini-
tially, we carried out a test run to determine a baseline perfor-
mance by calculating the mean absolute error (MAE) on the
validation set. Then, each feature within this set was individ-
ually shuffled, severing its correlation with the target PBLH,
and the MAE was recalculated. Compared to the baseline
performance, the increase in MAE from this shuffled state in-
dicates the feature’s predictive value: the greater the increase,
the more significant the feature. We repeat this shuffling and
evaluation 15 times, each with a unique random seed to en-
sure statistical robustness. Furthermore, we calculated the
average MAE increase across these iterations as the impor-
tance score. These scores are expressed as percentages, with
each feature’s importance score normalized to sum to 100 %.
Each score quantitatively represents how much the shuffling
of a feature increases the MAE, indicating the relative signif-
icance of that feature in the model’s predictive accuracy and
facilitating a straightforward comparison of the influence of
each feature within the model. Therefore, we derived a com-
posite importance metric for feature groups to represent their
significance as the cumulative sum of related inputs.

Figure 2 presents the importance scores to demonstrate
the relative influence of different feature groups on the
model’s performance. Prominently, BLHParcel, morning po-
tential temperature profiles (θ profile), and surface relative
humidity are identified as the most important three features,
with their substantial impact on the accuracy of PBLH esti-
mation being highlighted. BLHParcel is defined as the height
where the morning potential temperature first exceeds the
current surface potential temperature by more than 1.5 K
(Holzworth, 1964; Chu et al., 2019). Among these features,
BLHParcel captures the response of the PBL to surface heat-
ing, which can drastically affect local convection and thus
serves as one of the key parameters in the DNN model. In-
corporating this parameter and its association with PBL de-
velopment better simulates diurnal variations in PBLH in the
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Figure 2. Feature importance with the permutation method in the
deep learning model. This table presents the importance scores of
each input feature used in the deep learning model to estimate
PBLH. The features include the local time (LT), month, relative hu-
midity (RH), surfaceU and V wind components, pressure at the sur-
face (pressure), precipitation (PREC), surface temperature (temp),
sensible and latent heat (SH and LH), surface-derived lifting con-
densation level (LCL), boundary layer height derived from sensible
heat and parcel methods (BLHParcel and BLHSH), and morning pro-
files of potential temperature (θ profile). The importance scores are
presented as percentages, representing each feature’s relative con-
tribution to the model’s predictive accuracy, normalized to sum to
100 %.

DNN model. Meanwhile, the morning θ profile represents
the vertical stratification of thermodynamics and is essential
for understanding stability and mixing processes within the
PBL. Thus, θ profile serves as the initial boundary condi-
tion for the PBLH estimation with a significant importance
score. Surface relative humidity also emerges as a key influ-
encer, affecting the model’s performance significantly. Hu-
midity levels influence the condensation and evaporation pro-
cesses within the PBL, which are important in determining
its vertical extent layer and structure. Fair-weather and dry
conditions are typically associated with a more turbulent and
higher PBL. Conversely, high surface humidity often con-
tributes to the formation of boundary layer clouds, which in-
troduces complex interactions with PBL thermodynamics.

In this analysis, each feature, such as θ profile, comprises
several different inputs, and the relative importance scores
presented in Fig. 2 are calculated as the cumulative sum of
these inputs. Complementing this, Table 3 offers an exhaus-
tive breakdown of importance scores for all considered in-
put features within the deep learning model. In refining the
model, features contributing a negligible or negative effect
on performance (i.e., importance scores less than 0) are ex-

Figure 3. Performance metrics of individual ensemble members
and the ensemble mean in estimating the planetary boundary layer
height (PBLH). Panel (a) displays the mean absolute error (MAE),
panel (b) displays the root mean square error (RMSE), and panel
(c) displays the correlation coefficient (R) for each of the 10 en-
semble members (represented by dots) and the ensemble mean
(indicated by the horizontal dashed line). The ensemble approach
demonstrates improved accuracy and reliability in PBLH estimation
as evidenced by the aggregation of individual model predictions into
a robust ensemble mean.

cluded. As a result, this selection criterion has led to the in-
clusion of 58 out of the original 64 features. This process
ensures we only use inputs with a proven positive influence
in the DNN model.

4 Evaluation of the deep learning model

4.1 Comparative analysis of biases among different
datasets

A critical component of evaluating our deep learning model’s
efficacy is analyzing the biases of individual ensemble mem-
bers and their collective output. Figure 3 offers a visual
assessment of the mean absolute error (MAE), root mean
square error (RMSE), and correlation coefficient (R) for each
ensemble member, alongside a comparison with the ensem-
ble mean (average of all individual ensemble members). The
plotted data points reveal the variation in performance across
different model architectures, while the ensemble mean, rep-
resented by the horizontal dashed lines, indicates the collec-
tive accuracy of the ensemble approach. The structures of
different hidden-layer configurations are listed in the Table 1.

This methodological consolidation results in a more reli-
able and accurate PBLH estimation, leveraging the strengths
and mitigating the weaknesses of individual models. By inte-
grating multiple neural network configurations, we revealed
that an ensemble prediction consistently outperforms the in-
dividual models. This strategy can improve the MAE by up
to 4.4 %, rendering the model less dependent on any specific
structural configuration.

An in-depth comparative analysis of biases among various
PBLH estimation methods is essential for validating the re-
liability and accuracy of the DNN developed in this study.
Figure 4 illustrates the MAE trends for several methods over
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Table 3. The relative importance scores (%) of each input feature used in the deep learning model to estimate the planetary boundary layer
height. The features include the local time, month, relative humidity, U and V wind components, surface pressure, precipitation, temperature,
lifting condensation level (LCL), boundary layer height derived from sensible heat and parcel methods (BLHSH and BLHParcel), sensible
and latent heat, and profiles of potential temperature (θ ) at different heights. The importance scores are expressed as percentages, indicating
each feature’s relative contribution to the model’s predictive accuracy, normalized to sum to 100 %.

Feature Importance (%) Feature Importance (%)

Local time 0.385238096 θ0.45 km 0.589744268
Month 3.589829217 θ0.5 km 0.537731259
RH (i− 1) 1.525447612 θ0.55 km 0.534610382
RH (i) 16.25123402 θ0.6 km 0.552997086
U wind (i− 1) 0.385834048 θ0.65 km 0.431060615
U wind (i) 2.076794013 θ0.7 km 0.342764903
V wind (i− 1) 2.537910928 θ0.75 km 0.310147803
V wind (i) 2.405275378 θ0.8 km 0.380120894
Surface pressure (i− 1) 0.187890954 θ0.85 km 0.468503984
Surface pressure (i) 1.016443163 θ0.9 km 0.413498983
Rain rate (i− 1) 0.077638613 θ0.95 km 0.263411835
Rain rate (i) 0.10979265 θ1 km 0.132168034
Temperature (i− 1) 1.028603672 θ1.1 km 0.163035362
Temperature (i) 1.382663171 θ1.2 km 0.042643843
LCL (i− 1) 0.330188472 θ1.3 km −0.020619871
LCL (i) 2.92117154 θ1.4 km −0.117425464
BLHSH (i− 1) 1.071904572 θ1.5 km −0.020003889
BLHSH (i) 2.650567178 θ1.6 km 0.10811159
BLHParcel (i− 1) 8.796298485 θ1.7 km 0.211953821
BLHParcel (i) 22.15513884 θ1.8 km 0.092761568
Sensible heat (i− 1) 1.09273529 θ1.9 km 0.134436502
Sensible heat (i) 0.344360459 θ2 km 0.109195516
Latent heat (i− 1) 1.240177933 θ2.2 km −0.10805866
Latent heat (i) 1.705848738 θ2.4 km −0.217483536
θ0.05 km 13.55861389 θ2.6 km −0.178324068
θ0.1 km 1.19646809 θ2.8 km 0.08071272
θ0.15 km 0.025100917 θ3 km 0.249503653
θ0.2 km 0.193888217 θ3.2 km 0.143137953
θ0.25 km 0.445161715 θ3.4 km 0.19819078
θ0.3 km 0.572192811 θ3.6 km 0.158828504
θ0.35 km 0.751498918 θ3.8 km 0.185359544
θ0.4 km 0.768690105 θ4 km 1.046682377

a multi-year span, with SONDE-derived PBLH serving as
the benchmark for the ground truth. The analysis reveals
the performance of different methodologies: the DNN ap-
proach, Doppler lidar, ceilometer, MPL, and Raman lidar.
Significantly, the DNN model, depicted in black, maintains a
consistent MAE trend throughout the trained period (1994–
2016) as well as the subsequent untrained period (2017–
2020), demonstrating robust predictive stability. In contrast,
the remote-sensing-based methods show a reduction in bias
from 2010 to 2022, possibly due to the improvement of re-
mote sensing data quality. The discrepancy in PBLH esti-
mates between the DNN and SONDE remains consistently
lower than those observed with conventional remote sensing
techniques.

Figure 5 provides a detailed evaluation of the DNN
model in comparison to ceilometer- and Doppler-lidar-

derived PBLH, as these two methods have demonstrated the
high quality with more than 9 years of datasets. Figure 5a–
b contrast the PBLH predictions from the DNN model for
both the trained period (1994–2016) and untrained period
(2017–2020), respectively, showcasing strong correlations
and low MAEs, indicative of the model’s robust training and
generalization capabilities. Figure 5c–d further this exami-
nation with ceilometer and Doppler lidar comparisons, re-
spectively. Overall, Doppler lidar exhibits a closer alignment
with SONDE-derived PBLH than the ceilometer. However,
the MAE from Doppler-lidar-based estimates is still approx-
imately 48 % higher than that derived from the DNN model.
The correlation coefficient for the DNN-derived PBLH es-
timates has seen a substantial improvement, rising from the
0.5–0.6 range typically observed with remote-sensing-based
PBLH methods to exceeding 0.8 when compared to SONDE-
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Figure 4. Comparative analysis of the mean absolute error (MAE)
in PBLH estimation using different methodologies. PBLH derived
from SONDE is considered the ground truth. The DNN approach
is shown in black, Doppler lidar data (Sivaraman and Zhang, 2021)
are shown in yellow, ceilometer data (Zhang et al., 2022) are shown
in pink, micro-pulse lidar data (MPL; Sawyer and Li, 2013) are
shown in light red, and Raman lidar data (Ferrare, 2012) are shown
in dark red. The DNN model is trained during 1994–2016. Individ-
ual MAE values for the DNN are represented by gray dots, while
the solid lines denote the smoothed MAE for each method with a
2-year smooth window.

derived PBLH measurements. This comparative analysis not
only confirms the DNN model’s accuracy but also offers in-
sights into the relative performance of various contemporary
PBLH estimation methodologies.

4.2 Performances of PBLH retrievals under different
conditions

The performance of PBLH retrievals under varying atmo-
spheric conditions is a crucial aspect of model evaluation.
In Fig. 6, the seasonal diurnal cycles of PBLH estimated by
different methods are presented, offering information into the
diurnal and seasonal evolution of PBLH. As PBLH demon-
strates notable variations for different seasons and hours in
local time with large differences between summer and win-
ter, the DNN and Doppler lidar estimates show good agree-
ment and closely track the variations observed in SONDE
data. Meanwhile, the ceilometer presents an underestimation
of PBLH, especially for the summer afternoon, indicating the
potential bias of ceilometer-derived PBLH under a convec-
tive environment.

Figure 7 illustrates the diurnal variation in the model’s per-
formance by comparing the correlation coefficient, RMSE,
and MAE against SONDE-derived PBLH as the reference.
The bar graphs for each hour in local time offer a compari-
son of the RMSE and MAE, as well as the correlation, show-
casing the model’s precision and consistency relative to re-
mote sensing methods (i.e., ceilometer and Doppler lidar).

Figure 5. Scatterplots comparing the observed radiosonde
(SONDE) PBLH with estimates from the deep learning model and
lidar observations. Panels (a) and (b) show PBLH estimated by
the deep neural network (DNN) during the trained period (1994–
2016) and the untrained period (2017–2020), respectively, with the
corresponding correlation coefficient (R) and mean absolute error
(MAE). Panels (c) and (d) display comparisons of SONDE PBLH
with the ceilometer-derived (CEIL) and Doppler-lidar-derived (DL)
PBLH, respectively. The color gradient indicates the normalized
density of data points, while the solid black line represents the line
of best fit and error bars indicate the mean and standard deviations
for each bin.

Ceilometer-derived PBLH exhibits the greatest variations
during different hours, particularly around noon, suggesting
a time-dependent bias in its measurements. Conversely, both
the DNN and Doppler-lidar-derived PBLH demonstrate sta-
ble performance in terms of MAE and RMSE throughout the
day. Regarding the correlation, remote sensing methods like
the use of ceilometer and Doppler lidar measurements exhibit
a lower correlation with SONDE-derived PBLH, especially
in the early hours (08:00–09:00 LT) with a value of 0.1–
0.3, indicating potential limitations in their reliability during
these times. On the other hand, the DNN model shows a rel-
atively good correlation with SONDE retrievals (above 0.6
under different hours). This comparison shows the efficacy
of the DNN in tracking the diurnal cycle of PBLH.

Continuing our assessment of the DNN model, we ana-
lyze the DNN model’s monthly performance in estimating
PBLH, as shown in Fig. 8. The analysis compares MAE,
RMSE, and correlation coefficients for each month to assess
the model’s precision and dependability. The summer months
(June–July–August) exhibit higher biases, with MAE val-
ues for the DNN, ceilometer, and Doppler lidar at 0.3, 0.56,
and 0.45 km, respectively. In contrast, the winter months
(December–January–February) show reduced biases, with
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Figure 6. Seasonally averaged daytime evolution of the plane-
tary boundary layer height (PBLH) derived from various meth-
ods. The panels represent the mean PBLH values throughout the
day for different seasons: (a) March–April–May (MAM), (b) June–
July–August (JJA), (c) September–October–November (SON), and
(d) December–January–February (DJF). The PBLH values esti-
mated by the deep neural network (DNN) are shown in red,
ceilometer-derived (CEIL) estimates are in blue, Doppler-lidar-
derived (DL) estimates are in green, and observed radiosonde
(SONDE) data are in black. Shaded areas around the lines indicate
the standard deviations within each method.

MAE values of 0.2 km for the DNN, 0.27 km for the ceilome-
ter, and 0.24 km for the Doppler lidar. Specifically, the DNN
model shows a much lower bias during the summer sea-
son. Compared to the remote-sensing-based retrievals, DNN-
derived PBLH shows a much better agreement with SONDE-
derived PBLH, increasing from 0.3–0.6 to approximately 0.8
in terms of correlation coefficients.

Figure 9 presents the biases of PBLH retrievals under
clear-sky and low-cloud conditions. We calculated biases as
the absolute deviation from the mean PBLH for each con-
dition, focusing particularly on the differences between low-
cloud (maximum cloud fraction between 0–4 km exceeding
1 %) and clear-sky (total cloud fraction below 1 %) scenar-
ios. The threshold of 1 % for cloud fraction is also used to
identify the cloud base height (CBH) in the European Cen-
tre for Medium-Range Weather Forecasts’ fifth-generation
global reanalysis (ERA5; Hersbach et al., 2023). The vio-
lin plots in this figure illustrate the data distribution of bi-
ases for each method to demonstrate their variability. For the
DNN model and ceilometer, the relative biases between clear
and cloudy conditions are comparable and the difference is
less than 1 %. This suggests a consistent performance across
these atmospheric states. However, the Doppler lidar exhibits
a larger disparity, showing a 5.5 % bias under cloudy condi-
tions compared to clear skies. Moreover, the spread of biases
(shaded areas and error bars) is notably wider for both the

Figure 7. Diurnal variations in the performance metrics for esti-
mating PBLH using different datasets. Panel (a) shows the correla-
tion coefficient (R), panel (b) represents the root mean square error
(RMSE), and panel (c) depicts the mean absolute error (MAE) at
various local times throughout the day. The deep neural network
(DNN) estimates are in blue, ceilometer-derived (CEIL) estimates
are in pink, and Doppler-lidar-derived (DL) estimates are in green.
Note that these bias metrics are calculated using SONDE PBLH as
the standard. The availability of SONDE data for different hours is
detailed in Table 2.

ceilometer and Doppler lidar. This indicates large variability
in their performance. For all three methods, the mean biases
are notably higher than the median values. Such differences
indicate that the mean values are notably influenced by out-
liers under both clear-sky and cloudy conditions.

The evolution of PBLH under shallow-cumulus conditions
offers insights into the interactions between clouds, PBL,
and land surface (Zhang and Klein, 2010, 2013). Figure 10
demonstrates the variations in PBLH measurements from
different methods during conditions typical of shallow cu-
mulus clouds. Shallow cumulus clouds were identified fol-
lowing Su et al. (2024b). Specifically, these coupled clouds
form post-sunrise, and the sky must not be overcast, char-
acterized by a cloud fraction less than 90 %. This selection
criterion ensures that the observed cloud formations are pri-
marily driven by surface heating and local convection. The
DNN model closely matches SONDE-derived PBLH and the
CBH from ARSCL. This alignment underscores the phys-
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Figure 8. Similar to Fig. 7 but MAE, RMSE, and R for different
months.

ical validity of the DNN approach, confirming its capabil-
ity to replicate traditional measurement techniques to a good
extent of accuracy. Meanwhile, Doppler-lidar-derived PBLH
retrievals also show high consistency with SONDE measure-
ments, whereas ceilometer-derived PBLH generally underes-
timates values under shallow-cumulus conditions.

Figure 10 also demonstrates the general relationship be-
tween the development of shallow cumulus clouds and the
PBL, which is driven by local convection and turbulence.
The formation of these cumulus clouds is linked to rising
thermals and an increase in surface heat fluxes, essential for
driving vertical mixing within the sub-cloud layer. This rela-
tionship is evidenced by the increased occurrence of cumulus
clouds along with an increase in DNN-derived PBLH from
morning to late afternoon. Specifically, during periods with
a high frequency of shallow cumulus clouds, DNN-derived
PBLH often surpasses the CBH. This indicates that rising air
parcels extend beyond the condensation level, facilitating the
formation and development of coupled cumulus clouds.

In this context, these analyses confirm the physical consis-
tency of DNN-derived PBLH with traditional measurement
techniques and highlight its physically reasonable variations
during cloudy conditions. The results presented in this sec-
tion illustrate the effectiveness of the DNN model in captur-
ing the PBLH variations across different hours in local time,
seasons, and cloudy conditions. Compared to traditional re-

Figure 9. Comparative analysis of PBLH estimation bias under
clear-sky and low-cloud conditions for various methods. Bias per-
centages are computed as the absolute bias normalized by the mean
PBLH for each condition, with the number above each method indi-
cating the difference in mean bias between low-cloud and clear-sky
scenarios. The boxplots detail the 10th, 25th, 50th, 75th, and 90th
percentiles, while shaded areas in violin plots illustrate the distri-
bution of dataset biases. The dots indicate the mean value for each
condition.

mote sensing methods, the DNN model exhibits relatively
good accuracy in aligning with SONDE-derived PBLH, in-
dicating its capability and stable performance under different
scenarios.

4.3 Testing the DNN model’s adaptability

The DNN model relies on the incorporation of morning
temperature profiles as inputs, such as detailed in Table 3.
This dependency prompts the question of how to proceed
the DNN model in the absence of SONDE data at spe-
cific locations. As a solution, we suggest employing morn-
ing temperature profiles from the ERA5 (Hersbach et al.,
2020) dataset when radiosonde data are not available to
maintain the model’s operational integrity for the condi-
tions without SONDE data. As one of the most advanced
reanalysis datasets, ERA5 is generated by the Integrated
Forecasting System coupled with a data assimilation system
and offers the meteorological data at a spatial resolution of
0.25°× 0.25°.

Figure 11 assesses the performance of the DNN produced
by multi-source field observations in estimating PBLH us-
ing morning temperature profiles from ERA5 (05:00 LT) and
observed surface meteorological data. The temperature pro-
files in ERA5 have a vertical resolution of 25 hPa in the
lower atmosphere and are interpolated into different levels
described in Table 3. By utilizing ERA5 morning profiles,
the model demonstrates performance similar to those results
achieved with radiosonde inputs, as evidenced by compar-
ing Figs. 11a and 5. Moreover, this alternative approach also
shows enhanced accuracy over the native PBLH model out-
puts from ERA5, increasing the correlation coefficient from
0.74 to 0.86 and reducing the MAE from 0.3 to 0.25 km. In
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Figure 10. Daytime evolution of the planetary boundary layer
height (PBLH) derived from various methods under the shallow-
cumulus condition. PBLH values estimated by the deep neural net-
work (DNN) are shown in red, ceilometer-derived (CEIL) estimates
are in blue, and Doppler-lidar-derived (DL) estimates are in green.
Observed radiosonde (SONDE) data are represented by black stars.
Purple bars show the relative frequency of shallow-cumulus occur-
rences throughout the day, while purple dots mark the correspond-
ing cloud base height (CBH). Shaded areas around each line reflect
the standard deviations for each method.

addition, it is important to acknowledge that the PBLH rep-
resented in ERA5 is indicative of a grid-average value, ap-
proximately 25 km in scale, and therefore inherently differs
from site-specific data.

These findings highlight the alternative DNN model’s ro-
bustness, offering a reliable substitute for radiosonde data
by leveraging reanalysis data with similar performance. This
demonstrates the DNN model’s adaptability and potential as
a practical tool for PBLH estimation across various mete-
orological sites, especially in regions or periods where ra-
diosonde data may be lacking.

We further test the adaptability and generalizability of the
DNN model by applying it across different climatic and geo-
graphic regions. To this end, we extended our model evalua-
tion to include SONDE and surface meteorological data from
the GoAmazon (tropical rainforest) and CACTI (middle-
latitude mountain) field campaigns. Seasonality is accounted
for as an input variable in the DNN model, with months
in the Southern Hemisphere adjusted to reflect their North-
ern Hemisphere seasonal counterparts (e.g., July inputs are
treated as January). The normalization process (Sect. 3.1)
was reapplied for the CACTI campaign data to adjust for no-
table pressure level variations, ensuring input standardization
with a mean of 0 and unit variance.

Figure 11. Scatterplots comparing SONDE PBLH with estimates
from the DNN and ERA5. (a) The comparison between observed
SONDE PBLH and estimates from the DNN model, which utilizes
morning temperature profiles (05:00 LT) from ERA5 (ERA profile)
and observed surface meteorological data (surface OBS) as inputs.
(b) The correlation comparison of observed SONDE PBLH and
PBLH model outputs from the ERA5 datasets. The color gradient in
both panels represents the normalized density of data points, while
the solid black line indicates the linear regression and the error bars
denote the mean and standard deviations for each bin.

Figure 12 presents the model’s performance, in com-
parison to SONDE observations for both the GoAmazon
and CACTI campaigns. The DNN model demonstrates
commendable adaptability, maintaining a strong correlation
(0.86–0.88) with SONDE measurements (Fig. 12a–b). Fur-
ther comparison is provided, which assesses the performance
of ceilometer-derived PBLH against SONDE measurements
for the same campaigns. When assessing the performance of
ceilometer-derived PBLH against SONDE measurements for
the same campaigns, the DNN model exhibited both stronger
correlations and smaller biases, as shown in Fig. 12b–d.

Nevertheless, the analysis highlighted the presence of sys-
tematic biases, with relatively larger MAE at the GoAmazon
and CACTI sites compared to the SGP site. Figure 13 un-
derscores this by presenting a comparative analysis of PBLH
means and standard deviations across the three ARM sites.
The early morning measurements during 05:00–07:00 LT are
excluded. The results, derived from the DNN model and
SONDE, ceilometer, and Doppler lidar data, reveal average
differences in PBLH means relative to SONDE measure-
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Figure 12. Validation of the DNN trained over the SGP for the
GoAmazon (tropical rainforest) and CACTI (middle-latitude moun-
tain) field campaigns. Panels (a) and (c) illustrate the correlation
(R) and mean absolute error (MAE) between DNN predictions
and SONDE observations for GoAmazon and CACTI, respectively.
Panels (b) and (d) show the performance of ceilometer-derived
(CEIL) PBLH compared to SONDE for the same campaigns. The
color gradient indicates the normalized density of data points, while
the solid black line represents the line of best fit and error bars indi-
cates the mean and standard deviations for each bin.

ments. These differences suggest an overestimation (+15 %)
and underestimation (−23 %) by the DNN model for the
GoAmazon and CACTI sites, respectively, compared to the
more consistent PBLH values at the SGP site.

The evident systematic deviations when applying the SGP-
trained DNN model to the diverse environments of GoAma-
zon and CACTI underscore the challenges in generalizing the
model to regions with significantly different meteorological
backgrounds. These findings point to the potential of DNN
models for PBLH estimation while also highlighting the ne-
cessity for region-specific model adjustments.

5 Summary

This study has developed a multi-structure DNN model for
estimating PBLH using conventional meteorological data.
The DNN model is developed by leveraging a long-term
dataset of PBLH derived from radiosonde data and aug-
mented with high-resolution MPL and Doppler lidar obser-
vations. This model produced a PBLH dataset over the SGP
with robust accuracy, consistently yielding lower bias val-
ues across various conditions and datasets. Utilizing conven-
tional meteorological data, this method generates a 27-year
dataset over the SGP, encompassing periods with limited re-

Figure 13. Comparative PBLH mean (dots) and standard deviations
(error bars) across ARM sites (SGP, GoAmazon, and CACTI). The
datasets are derived from radiosonde data (SONDE; in black), the
DNN model (in pink), ceilometer data (CEIL; in blue), and Doppler
lidar data (DL; in green), respectively. Note that DL-derived PBLH
is only available at the SGP. The percentages in various colors de-
note the differences in PBLH means derived from the DNN, CEIL,
and DL methods relative to SONDE observations. To mitigate sam-
pling bias, these mean values and standard deviations are computed
exclusively for intervals where all instruments have concurrently
available data.

mote sensing data availability. In situations where morning
radiosonde data are unavailable, ERA5 data can be effec-
tively employed to initiate the model, offering a practical al-
ternative.

An important aspect of this research involved comparing
DNN models with diverse remote sensing instruments. Al-
though these instruments offer high temporal and vertical
resolution, discrepancies in PBLH estimation remain. Our
DNN model, leveraging a broad range of input features re-
fined by their importance, constructs a representation of PBL
evolutions, frequently demonstrating a closer agreement with
SONDE-derived PBLH. In the absence of remote sensing
data, the DNN model can produce high-quality PBLH esti-
mates from the conventional meteorology data.

The study has shown the DNN model’s ability to synthe-
size complex patterns from meteorological data, reflecting
the versatility of machine learning in simulating the bound-
ary layer processes. Its application to varied geographic ter-
rains and climates during the GoAmazon and CACTI cam-
paigns has further validated its adaptability, demonstrating a
high correlation between DNN-derived PBLH and SONDE-
derived PBLH. Nonetheless, systematic biases in regions
outside the SGP highlight the influence of regional factors

Atmos. Chem. Phys., 24, 6477–6493, 2024 https://doi.org/10.5194/acp-24-6477-2024



T. Su and Y. Zhang: Deep-learning-derived planetary boundary layer height 6489

in PBLH estimation and suggest the need for region-specific
refinements to the model.

In summary, this research introduces a machine learning
framework for PBLH estimation that is able to generate high-
quality PBLH using meteorological data, independent of re-
mote sensing instruments. This methodology, alongside the
datasets derived from the deep learning model, is beneficial
in advancing our understanding of PBL daytime develop-
ment including thermodynamics and dynamics. It also has
implications for improved representation of the PBL pro-
cesses in weather forecasting and climate models, particu-
larly by offering the potential to diagnose PBL in models
through the integration of modeled meteorological data as
input. Future efforts will be directed towards refining this
model to ensure its wide applicability over a global scale.
These developments aim to effectively tackle the challenges
of systematic biases and regional variability in PBLH esti-
mation.
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(https://doi.org/10.5439/2007149, Su and Li, 2023), ceilometer-
derived PBLH (https://doi.org/10.5439/1095593, Zhang et al.,
2022), MPL-derived PBLH (https://doi.org/10.5439/1637942,
Sawyer and Li, 2013), and combined Raman lidar–AERI
PBLH (https://doi.org/10.5439/1996909, Ferrare, 2012).
The Climate Data Store offers the ERA5 reanalysis data
(https://doi.org/10.24381/cds.adbb2d47, Hersbach et al., 2023).
DNN-derived PBLH datasets over the SGP and for CACTI and
GoAmazon are available at https://doi.org/10.5439/2344988 (Su,
2024). The DNN model used in this study is based on TensorFlow
(https://github.com/tensorflow, TensorFlow, 2024) and can be
provided upon request by the leading author (su10@llnl.gov).
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