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Abstract. Brown carbon (BrC) is an absorbing organic aerosol (OA), primarily emitted through biomass burn-
ing (BB), which exhibits light absorption unique to both black carbon (BC) and other organic aerosols. Despite
many field and laboratory studies seeking to constrain BrC properties, the radiative forcing (RF) of BrC is
still highly uncertain. To better understand its climate impact, we introduced BrC to the One-Moment Aerosol
(OMA) module of the GISS ModelE Earth system model (ESM). We assessed ModelE sensitivity to primary
BrC processed through a novel chemical aging scheme and to secondary BrC formed from biogenic volatile
organic compounds (BVOCs). Initial results show that BrC typically contributes a top-of-the-atmosphere (TOA)
radiative effect of 0.04 Wm−2. Sensitivity tests indicate that explicitly simulating BrC (separating it from other
OAs), including secondary BrC, and simulating chemical bleaching of BrC contribute distinguishable radiative
effects and should be accounted for in BrC schemes. This addition of prognostic BrC to ModelE allows greater
physical and chemical complexity in OA representation with no apparent trade-off in model performance, as the
evaluation of ModelE aerosol optical depth against Aerosol Robotic Network (AERONET) and Moderate Res-
olution Imaging Spectroradiometer (MODIS) retrieval data, with and without the BrC scheme, reveals similar
skill in both cases. Thus, BrC should be explicitly simulated to allow more physically based chemical compo-
sition, which is crucial for more detailed OA studies like comparisons to in situ measurement campaigns. We
include a summary of best practices for BrC representation within ModelE at the end of this paper.

1 Introduction

Carbonaceous aerosols are important, short-lived climate
forcers. Black carbon (BC), a strongly absorbing carbona-
ceous aerosol produced from fuel and biomass burning (BB),
contributes a significant positive radiative forcing (RF) to
the atmosphere (Hansen et al., 1997; Jacobson, 2001; Ra-
manathan and Carmichael, 2008; Bond et al., 2013). The
Sixth Assessment Report (AR6) of the Intergovernmental
Panel on Climate Change (IPCC, 2023) estimates a BC ef-
fective RF of 0.11 Wm−2 (Szopa et al., 2021). BB also emits
organic aerosols (OAs) (Ito and Penner, 2005), another type

of carbonaceous aerosol, which cool the atmosphere at an
estimated RF of −0.21 Wm−2 (Szopa et al., 2021). Beyond
BB, secondary production is a key source of OAs: isoprene
and other biogenic or anthropogenic volatile organic com-
pounds (VOCs) partition and react in the atmosphere to form
secondary organic aerosols (SOAs; Shrivastava et al., 2017;
Mahilang et al., 2021).

As warming temperatures and changes in precipitation
drive increases in wildfire frequency and intensity (Flanni-
gan et al., 2009; Keywood et al., 2013), and emission con-
trols and cleaner technologies lead to a further reduction
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in other aerosol sources (Bauer et al., 2022), carbonaceous
aerosols, including OAs, could possibly become more promi-
nent. Observations at Whiteface Mountain, downwind of the
US West Coast BB region, have already shown an increase
in OAs found in cloud water over the last 10 years, sug-
gesting a growing influence of wildfire smoke (Lawrence et
al., 2023). SOAs from biogenic VOCs (BVOCs) are also ex-
pected to grow in importance; the SOA burden could pos-
sibly be greater than that of sulfate aerosols by 2100 (Tsi-
garidis and Kanakidou, 2007). Despite their growing impor-
tance, OAs still pose a large gap in aerosol modeling: the
IPCC Sixth Assessment Report estimated an OA RF uncer-
tainty of 0.23 Wm−2, about the same magnitude as the cool-
ing effect itself (Szopa et al., 2021). Improving the physical
and chemical parameterization of OAs in climate models can
allow better calculation of OA forcing. To make such an im-
provement, light absorption of brown carbon aerosols must
be accounted for.

Brown carbon (BrC) refers to the subset of OAs that ab-
sorb light (Andreae and Gelencsér, 2006). Since the chemi-
cal composition, and therefore absorptivity, of these aerosols
vary greatly, BrC can be best thought of as a classification of
aerosols, rather than a specific compound or compound class.
Typically, BrC contains absorbing organic chromophores
such as nitroaromatics, polyaromatic hydrocarbons (PAHs),
or lignin-derived compounds (Samburova et al., 2016; Lin et
al., 2018; Fleming et al., 2020). It is emitted by smoldering
fires and other incomplete combustion (McMeeking et al.,
2009; Chakrabarty et al., 2010). Though its main source is
BB, secondary BrC can form through gaseous and aqueous
reactions as SOAs (Lee et al., 2014).

BrC has a spectrally dependent absorption in the UV-to-
visible wavelength range, strongly absorbing in the UV and
near-UV but much less in the rest of the visible spectrum,
hence its color and name (Andreae and Gelencsér, 2006;
Laskin et al., 2015). It is this absorption pattern that distin-
guishes BrC from BC, which is co-emitted by fires (Lack et
al., 2012; Saleh et al., 2014; Pokhrel et al., 2016), as BC is a
stronger absorber across all visible wavelengths and into the
near-IR (Bond and Bergstrom, 2006). There are recent labo-
ratory and field studies that have observed “dark BrC”, sug-
gesting a distinct class of refractory, highly absorbing BrC
(Hoffer et al., 2017; Saleh et al., 2018; Corbin et al., 2019;
Chakrabarty et al., 2023), also co-emitted with BC, that can
be best described as resembling tar balls (Pósfai et al., 2004;
Alexander et al., 2008). Because there is limited observation
and characterization of these aerosols, we have no way of
knowing how to include their emissions as a portion of or-
ganics in ModelE. Additionally, initial work by Chakrabarty
et al. (2023) suggests its single-scattering albedo (SSA) and
absorption Ångström exponent (AAE) are indistinguishable
from that of BC. Given we have no knowledge of how to treat
these aerosols, beyond the same as BC, we did not explicitly
represent this subset of BrC.

Like most aerosols, BrC undergoes processing, or aging, in
the atmosphere. Heterogenous oxidation by hydroxyl (OH)
and nitrate (NO3) radicals can lead to functionalization of
BrC compounds (Cheng et al., 2020; Schnitzler et al., 2020),
while aqueous oxidation can form oligomeric BrC (Hems
et al., 2020). These processes cause an increase in absorp-
tion, known as browning. Further oxidation by OH, photoly-
sis, or ozonolysis results in fragmentation of BrC compounds
and subsequent decreases in absorption, known as bleaching
(Hems et al., 2021). Laboratory studies have shown that pri-
mary BrC undergoes browning followed by bleaching, while
secondary BrC only bleaches (Zhao et al., 2015). Other prop-
erties of BrC can also change with chemical aging. Volatil-
ity typically decreases with functionalization (browning) and
increases with fragmentation (bleaching). As a direct re-
sult of this chemical processing, molecular weight typically
increases with browning and decreases with bleaching (Di
Lorenzo and Young, 2016; Di Lorenzo et al., 2017).

Most literature on BrC properties, such as composition,
absorption, size, and atmospheric processing, has come from
laboratory studies of BrC proxies or lab burns (Saleh et al.,
2014; Di Lorenzo and Young, 2016; Liu et al., 2016; Tang et
al., 2016; Lin et al., 2018; Al Nimer et al., 2019; Shetty et
al., 2019; Wong et al., 2019; C. Li et al., 2020). In situ BrC
absorption, mass, and size distribution have been measured
during flight campaigns like DC3 and SEAC4RS (Zhang et
al., 2017), ATom (Zeng et al., 2020), WE-CAN (Zeng et al.,
2021), and FIREX-AQ (Washenfelder et al., 2022; Zeng et
al., 2022), in or downwind of fires. There have also been sev-
eral studies that have retrieved BrC aerosol properties from
observations outside of laboratories and flight campaigns.
These studies utilized retrieval data from the Aerosol Robotic
Network (AERONET; Arola et al., 2011, 2015; Schuster et
al., 2016) or IMPROVE (Chow et al., 2018) ground-based
networks, as well as satellite retrievals (L. Li et al., 2020,
2022), relying on the differences in optical properties, or op-
tical properties and size, between BrC and other absorbing
aerosols, like BC and dust.

There have been several studies that have modeled BrC in
chemical transport models, all of which either use GEOS-
Chem (Park et al., 2010; Wang et al., 2014, 2018; Saleh et
al., 2015; Jo et al., 2016; Tuccella et al., 2020; Carter et al.,
2021; Zhu et al., 2021) or IMPACT (Feng et al., 2013; Lin
et al., 2014). Only three studies have shown implementa-
tions of BrC in Earth system/climate models (Brown et al.,
2018; Zhang et al., 2020; Drugé et al., 2022). Both Brown et
al. (2018) and Zhang et al. (2020) simulated BrC using the
Community Atmosphere Model within the Community Earth
System Model (CESM), while Drugé et al. (2022) used the
Centre National de Recherches Météorologiques (CNRM)
climate model. Zhang and Drugé separately simulated BrC
from other OAs. Zhang treated a prescribed portion of OAs
as brown, and Drugé assumed BB OAs are brown and fos-
sil fuel OAs are non-absorbing. In contrast, Brown regarded
BrC and OAs as all one species. All three studies included a
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bleaching parameterization for BrC, though none included a
browning parameterization.

In this study, we present the first implementation of BrC
aerosols in the GISS ModelE Earth system model (Kelley et
al., 2020; Bauer et al., 2020). We introduced BrC into the
One-Moment Aerosol (OMA) module of ModelE by defin-
ing four key properties or processes: BB emissions of pri-
mary BrC, formation of secondary BrC, optical properties of
BrC tracers, and chemical aging of primary BrC. This consti-
tutes an improvement in simulating OA absorption in Mod-
elE, as BrC was previously not explicitly represented, and
all OAs were assumed to be slightly absorbing (Koch, 2001),
consistent with other treatments of OAs (Chin et al., 2002;
Kinne, 2019). The chemical aging scheme developed in this
study (see Sect. 2.2.4) is the first to simulate aging through
oxidant-driven mass transfer between tracers of different op-
tical properties, rather than the typical approach of parame-
terizing optical properties as a function of time in the atmo-
sphere, allowing the formation of more complex, realistic OA
mixtures. This is also the first study to account for browning,
in addition to bleaching, in a chemical aging scheme. We es-
timated the radiative effect of BrC aerosols and performed
sensitivity tests to determine the extent each defined BrC pa-
rameter changes this. Instead of a direct evaluation of BrC,
which requires comparison to flight campaign and retrieval
data, extensive work that will be presented in a future study,
we evaluated general model performance with BrC aerosols.
To do this, we compared simulated total aerosol optical depth
and absorbing aerosol optical depth to ground-based data
from the Aerosol Robotic Network (AERONET) and satel-
lite data from the Moderate Resolution Imaging Spectrora-
diometer (MODIS) instruments.

2 Model description and experiments

2.1 The GISS ModelE Earth System Model

This study used version 2.1 of the GISS ModelE Earth sys-
tem model, ModelE2.1. The horizontal and vertical resolu-
tion of the atmosphere in ModelE2.1 is 2° in latitude by
2.5° in longitude with 40 vertical layers from the surface to
0.1 hPa. ModelE includes multiple aerosol schemes (Bauer et
al., 2020). We used the One-Moment Aerosol (OMA) mod-
ule because it includes more detailed OA chemistry. OMA is
fully interactive within ModelE in terms of emissions, chem-
istry, transport, removal, and climate. Aerosol–radiation in-
teractions (ARIs) and aerosol–cloud interactions (ACIs) are
calculated within the radiation and cloud schemes, where the
size-dependent scattering properties of clouds and aerosols
are computed from Mie scattering. To account for aerosol
swelling with water vapor, dry aerosol size, relative humid-
ity, aerosol hygroscopicity, and the refractive index of wa-
ter are used, with Köhler theory as a base for calculation, to
obtain the wet aerosol radius and complex refractive index.
Apart from swelling with water, there is no internal mixing

in OMA radiative calculations – all aerosols are regarded as
externally mixed. Wet aerosol size and the real and imagi-
nary refractive indices are then used to find corresponding
aerosol scattering, asymmetry, and light extinction values in
pre-calculated Mie look-up tables. These optical properties,
computed for 6 wavelength bands in the shortwave (SW) and
33 in the longwave (LW), are used to calculate ARIs (Bauer
et al., 2010). With regard to ACIs, OMA only includes the
first indirect effect (Bauer et al., 2020).

OMA is a mass-based scheme in which aerosols are as-
sumed to have prescribed and constant size distributions.
Aerosol components represented are sulfate, nitrate, ammo-
nium, dust, sea salt, and carbonaceous aerosols. Carbona-
ceous aerosols include BC and OAs, which are each sep-
arated into aerosols from non-BB anthropogenic and BB
sources. OMA also simulates the formation of biogenic
SOAs, discussed further in Sect. 2.2.2. Within the original
ModelE radiation, anthropogenic and BB OAs, as well as
SOAs, are regarded as having the same optical properties,
with all organics treated as slightly absorbing in the UV–
visible (UV–VIS) wavelength band using an imaginary re-
fractive index (kOA) of 0.014. Sea salt, dimethyl sulfide (lead-
ing to methanesulfonic acid), isoprene (leading to SOAs),
and dust emission fluxes are calculated interactively, while
all remaining anthropogenic and BB fluxes are prescribed by
the Community Emissions Data System (CEDS; Hoesly et
al., 2018).

This study made use of both climatological and nudged
transient simulations. Climatological simulations were used
to assess model sensitivity to BrC representation (see
Sect. 2.3.1) and utilized CEDS emissions for aerosols from
BB, as used in CMIP6 (Hoesly et al., 2018). CEDS BB emis-
sions are identical to the Global Fire Emissions Database
(GFED) version 4 (van der Werf et al., 2017; McDuffie et
al., 2020) for the years 1997–2014. Nudged transient sim-
ulations were used to compare model output to AERONET
and MODIS retrieval data (see Sect. 2.3.2) and utilized the
Global Fire Assimilation System version 1.2 (GFAS1.2) for
BB aerosol emissions (Kaiser et al., 2012). GFAS1.2 was
used, rather than other fire emission inventories, as it allows
the implementation of plume injection height in each grid
cell, rather than the ModelE default of all BB emissions in-
jected uniformly in the boundary layer, and also has daily
emissions, instead of the monthly emissions in CEDS (Fre-
itas et al., 2007; Sofiev et al., 2012). It should be noted that,
on average, globally, GFED4 OA emissions have been shown
to be lower than those of GFAS1.2. Regionally, GFAS1.2
showed higher emissions in the Temperate North America
(TENA), Southern-Hemisphere South America (SHSA), Bo-
real Asia (BOAS), southeast Asia (SEAS), and Equatorial
Asia (EQAS) BB regions (Pan et al., 2020). This resulted
in higher OA emissions in our transient simulations com-
pared to in our climatological simulations (approximately
25.9 vs. 24.6 Tgyr−1, on average). Transient simulations
were nudged towards 3-hourly winds prescribed by Modern-
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Era Retrospective Analysis for Research and Applications,
version 2 (MERRA-2; Gelaro et al., 2017).

2.2 Brown carbon scheme

To simulate BrC, we defined emissions, formation of sec-
ondary BrC, its optical properties, and its chemical aging
in the atmosphere. In this scheme, we regard total OAs as
consisting of non-absorbing OAs and BrC; any organic ab-
sorption is attributed to BrC. The following sections dis-
cuss our methodology for estimating parameters in each of
these scheme components. Since BrC is a broad classifi-
cation of aerosols, there is a large degree of variability in
observed properties. As a result, the parameters we present
here, though based on laboratory and field studies of BrC,
are inherently uncertain.

2.2.1 Emissions

BrC was introduced as a new set of aerosol tracers into the
OMA module of ModelE2.1. Primary BrC aerosols are emit-
ted by attributing a proportion of BB emissions from OAs to
BrC. This is equivalent to assuming a certain proportion of
BB OAs are absorbing, rather than non-absorbing and com-
pletely scattering. This study used prescribed BB emissions
from the CEDS fire emission inventory for sensitivity tests
and GFAS1.2 for evaluation against AERONET and MODIS
retrieval data. CEDS was employed in sensitivity tests for
consistency with CMIP6, while GFAS was used for better
accuracy of OA spatiotemporal variability (due to injection
height and daily data, as previously mentioned) and there-
fore a better comparison with retrieval data. Though the cur-
rent ModelE implementations of both emission inventories
do not differentiate BB fuel types, the mass ratio of ab-
sorbing to non-absorbing, or BrC-to-OA, emissions will vary
globally with different vegetation biomes. For instance, Jo et
al. (2016) estimated that croplands have the highest BrC-to-
OA mass ratio, between 0.4 and 0.946 depending on assumed
aerosol AAE, and woody savannahs and shrublands have the
lowest, between 0.046 and 0.123, with forests falling some-
where in the middle (0.093–0.135 boreal, 0.088–0.211 tem-
perate, and 0.128–0.312 tropical). To find a representative
global value, we looked to emission ratios used by other BrC
modeling studies in addition to estimating a ratio from CEDS
emissions used in ModelE. Literature values of global aver-
age BrC-to-OA mass ratios vary between 0.15–0.92, with an
approximate average of 0.35 (Feng et al., 2013; Wang et al.,
2014; Jo et al., 2016; Zhang et al., 2020).

To determine our own value of BrC-to-OA mass ratio, BrC
emissions (EBrC) were parameterized as a function of the
global mean BC-to-OA BB emissions ratio from the CEDS
inventory, following Eq. (1) (Saleh et al., 2014) and Eq. (2)
(Zhang et al., 2020):

kBrC, 550 nm = 0.016log10

(
EBC

EOA

)
+ 0.03925 , (1)

EBrC =
4π · [kBrC, 550 nm] ·EOA

ρ · 550nm ·MAEBrC(550nm)
, (2)

where EOA and EBC are OA and BC emissions in kg C;
kBrC, 550 nm is the imaginary refractive index (RI) of BrC
at 550 nm; ρ is the aerosol density in gm−3; and MAE is
the mass absorption efficiency of BrC in m2 g−1, for which
we use a value of 1 m2 g−1 (McMeeking, 2008; Jo et al.,
2016; Zhang et al., 2020). Since all organic absorption in our
scheme is attributed to BrC, we use kBrC in place of the kOA
specified by Saleh et al. (2014) for Eq. (1). It is also impor-
tant to note that emission inputs for organic aerosols are in
units of mass of carbon, while the ModelE output, and most
of this discussion, uses total organic aerosol mass. To con-
vert between these, ModelE uses an organic carbon (OC)-
to-OA ratio of 1 : 1.4 (Tsigaridis et al., 2014). Equation (1)
expresses the BrC imaginary RI as a function of the EBC
to EOA ratio because fires with higher modified combustion
efficiency (MCE), and therefore greater BC emissions, have
been shown to produce more-absorbing OAs (Saleh et al.,
2014; Liu et al., 2020). As all organic absorption is from BrC,
Eq. (2) uses the imaginary RI from Eq. (1), which indicates
the extent of OA absorption, and a BrC MAE value to deter-
mine how many BrC emissions would be needed to account
for this absorption. Using this, we calculated area-weighted
global mean BrC emissions of 3.98× 10−13 kgCm−2 s−1.
Given total BB OA emissions of 1.09× 10−12 kgCm−2 s−1,
we got an average BrC-to-OA emitted mass ratio of 0.366.
Since this is close to the average mass ratio used in other BrC
modeling studies, we chose 0.35 as the proportion of BB OA
emissions attributed to BrC, making up approximately 10 %
of total OA mass (0.11 Tg burden) in ModelE. This value
served as a starting point from which we conducted model
sensitivity tests, as described in Sect. 2.3.1. We also ap-
plied the parameterization described in Eqs. (1) and (2) glob-
ally (see Fig. A1), looking at the BrC-to-OA emissions ratio
in each grid cell rather than the global average, and found
that 0.15–0.55 (15 %–55 % BB organic emissions are brown)
captures the entire range of estimated ratios and should be
explored in these sensitivity tests.

2.2.2 Secondary biogenic brown carbon

The formation of SOAs from biogenic VOCs (BVOCs) was
already represented in ModelE prior to this work. Briefly,
BVOCs such as isoprene and terpenes are oxidized by hy-
droxyl and nitrate radicals and by ozone. A two-product
model is utilized to account for VOC and reactive-nitrate
(NOx) conditions in SOA formation. This results in two
aerosol species from each biogenic precursor: isoprene and
α-pinene (representing terpenes). The yield within a model
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grid cell of the two products changes with the NOx-to-VOC
ratio (Tsigaridis and Kanakidou, 2007).

To account for secondary BrC, the model radiation scheme
was modified to consider the four biogenic SOA products
separately from other OAs. This ensured a distinct, non-zero
imaginary RI could be assigned to each tracer, allowing them
to be absorbing. The actual values of these RIs will be dis-
cussed in Sect. 2.2.3. With this configuration, brown SOAs
make up approximately 50 % of total OA mass (0.57 Tg bur-
den). SOAs formed from anthropogenic, aromatic precursors
have also been shown to be absorbing in the atmosphere (Liu
et al., 2016). Aromatic SOAs are not yet represented in Mod-
elE, since they are small contributors to the global OA budget
(Tsigaridis and Kanakidou, 2003). Despite their smaller bur-
den, aromatic SOAs are typically more absorbing than bio-
genic SOAs (Liu et al., 2016), creating a potentially low bias
in secondary BrC absorption.

2.2.3 Brown carbon optical properties

The imaginary RI in the visible wavelength band was the key
property used to distinguish BrC from other OAs in Mod-
elE radiative transfer calculations. The imaginary RI deter-
mines to what extent our BrC tracers are absorbing. Given
the primary purpose of this study is to improve the represen-
tation of aerosol absorption, the real RI of BrC, which drives
aerosol scattering, was kept the same as that of OAs (nOA) in
all ModelE radiation bands. Additionally, since BrC demon-
strates limited absorption past 800 nm (Laskin et al., 2015),
only the imaginary RI for BrC in the UV–visible (UV–VIS)
radiation band (300–770 nm) was modified; the optical prop-
erties of BrC in all other radiation bands are the same as
those of OAs. The use of wide radiation bands, rather than
distinct wavelengths, in radiation calculations poses a limi-
tation for BrC representation: in the current implementation,
ModelE is not able to capture the spectral dependence of BrC
absorption in UV–VIS wavelengths, so a direct comparison
of aerosol optical depth (AOD) and absorbing aerosol opti-
cal depth (AAOD) values from the literature at UV/near-UV
wavelengths, where BrC absorption is maximized, is not pos-
sible without assuming an AAE. Instead, ModelE simulates
one spectrally weighted average value in the UV–VIS band,
indicative of λ= 550 nm. In terms of radiative flux and forc-
ing, using a spectrally weighted average for the BrC RI and
calculating mean forcing across the wider UV–VIS band is
approximately equivalent to defining BrC optical properties
in narrower wavelength bins, within the band, and summing
bin-forcing contributions. This is because, while BrC absorp-
tion increases into the UV, solar irradiance is much lower at
shorter wavelengths, so resolving BrC radiative flux in the
UV has limited impact on that of the total band. Thus, the
use of one spectrally weighted RI should not pose a limita-
tion for estimating the net BrC radiative effect.

Just as differing biomes produce different BrC-to-OA
emission ratios, the imaginary RI of primary BrC varies with

combustion conditions and fuel type (Fleming et al., 2020).
In ModelE, however, only one imaginary RI can be defined
for each wavelength band of a tracer for AOD and forcing
calculations. We used two parameterizations to estimate a
range of the representative imaginary RI for BB BrC. The
first parameterization consisted of two steps. Firstly, it used
the Kramers–Kronig (KK) relations for a damped harmonic
(Moosmüller et al., 2011) to compute spectra of the real RI
(n) and imaginary RI (k) for absorbing matter at each wave-
length in the UV–VIS between 350 and 770 nm. These rela-
tions are given by

n= 1+ a
ν2

0 − ν
2(

ν2
0 − ν

2
)2
+ (γ ν)2

, (3)

k = a
γ ν(

ν2
0 − ν

2
)2
+ (γ ν)2

, (4)

where a is a constant, γ is a line width parameter, ν is the fre-
quency of incident light (c/λ), and ν0 (c/λ0) is the resonance
frequency of the oscillator. Sumlin et al. (2018) show that
these relations can reproduce measurements for the imagi-
nary RI of BrC peat smoke (kBrC). Figure 1 provides such
a fit for measurements of smoke emitted from smoldering
combustion of Alaskan peatland (sample AK 4-8” 5 % MC
from their study, a = 4.554×1029 s−2, γ = 2.605×1013 s−1,
λ0 = 308 nm). Also shown in Fig. 1 is the solar spectral
irradiance of the UV–VIS band, for reference. Taking the
solar-spectrum-weighted average of these kBrC values gave
an imaginary RI value of approximately 0.003 for the UV–
VIS band.

Sumlin et al. (2018) also show that the KK relations alone
underestimate the real RI, nBrC, of BrC peat smoke. This
problem can be solved by volume-mixing the KK results for
the RI of smoldering peat smoke with the RI (nHM) of a non-
absorbing host matter (HM) – the second step in this param-
eterization. Choosing nHM = 1.50 with a volume-mixing ra-
tio of fHM = 89% for our HM led to a good fit with nBrC
spectra and maintained the fit of kBrC spectra in the UV–VIS
part of the spectrum. Furthermore, taking the solar-spectrum-
weighted average of these nBrC spectra, which ranged from
nBrC, 350 nm = 1.84 to nBrC, 700 nm = 1.49, led to a UV–VIS
averaged nBrC ≈ 1.53, equal to the ModelE default nOA This
supports our assumption stated above that the real RI of BrC
is kept the same as that of OAs in all radiation bands of Mod-
elE.

The second parameterization is the same as that used to de-
termine BrC emissions, where the imaginary RI is a function
of the BC-to-OA emissions, in kg C, ratio from the CEDS in-
ventory (Eq. 1). We calculated a spectral absorption exponent
(Lyapustin et al., 2021; Go et al., 2022), expressed below as
w, according to Eq. (5) (Saleh et al., 2015):

w =
0.21

EBC
EOA
+ 0.7

. (5)

https://doi.org/10.5194/acp-24-6275-2024 Atmos. Chem. Phys., 24, 6275–6304, 2024



6280 M. A. DeLessio et al.: Modeling atmospheric brown carbon in the GISS ModelE Earth system model

Figure 1. Imaginary refractive indices (RIs) across the 300 to
770 nm range for the Kramers–Kronig (KK) parameterization
(blue) and BC-to-OA ratio parameterization (orange) used to es-
timate the primary BrC UV–VIS-band imaginary RI. Note that
data for the first parameterization are only provided from 350 to
700 nm. KK parameters used here are a = 4.554× 1029 s−2, γ =
2.605× 1013 s−1, λ0 = 308 nm, and a BrC to non-absorbing host
volume mixing ratio of 11 %. These are applied to sample AK 4-8”
5 % MC from Sumlin et al. (2018), shown as points along the blue
line with data uncertainty displayed in error bars. The solar spectral
irradiance of the UV–VIS band is also shown here (gray) for refer-
ence. The derived imaginary RI of secondary BrC is not displayed
here, as the MAE data used were not continuous across this wave-
length range and resulting RI values are much lower than those of
primary BrC (< 0.002).

Our estimate of w, which defines the spectral dependence of
BrC absorption, was 1.15. This is close to the average value
in Saleh et al. (2014) of 1.6 and lower than other reported val-
ues of 3.9 (Kirchstetter et al., 2004) and 5.4–5.7 (Mok et al.,
2016). Lower spectral dependence, using this parameteriza-
tion, is correlated with higher BC-to-OA ratios and therefore
a higher imaginary RI (Saleh et al., 2014). This w value was
then used to determine the RI across all UV–VIS wavelengths
(Eq. 6; Saleh et al., 2015):

kBrC(λ)= kBrC, 550 nm ·

(
550
λ

)w
. (6)

The resulting imaginary RI can also be seen in Fig. 1. A
solar-spectrum-weighted average of values from this calcu-
lation, following Eq. (5), gave an imaginary RI of approxi-
mately 0.03. Imaginary RIs of both 0.003 and 0.03 are con-
sistent with the range of values used by other BrC model-
ing studies, with kBrC = 0.003 representing weakly absorb-
ing BrC at the bottom of the range and kBrC = 0.03 repre-
senting strongly absorbing BrC at the top of the range, as
expected with a low w value (Feng et al., 2013; Lin et al.,
2014). A moderately absorbing case was also defined at the
midpoint of this range, with kBrC = 0.0165.

For biogenic SOAs, we used values of MAE for isoprene
and α-pinene SOAs measured under both high- and low-NOx

Table 1. BrC physical properties used in ModelE. Each property
is the same as other OAs originally in ModelE (Koch, 2001). These
values are consistent with estimates of BrC properties from previous
laboratory studies and BrC reviews (Zhang et al., 2013; Lin et al.,
2014; Laskin et al., 2015; Froyd et al., 2019).

Aerosol property BrC value

Density 1.5 gcm−3

Radius 0.2 µm
Solubility (fraction of aerosol that dissolves) 0.8
Hygroscopicity (κ factor) 0.15

conditions from Liu et al. (2016) to calculate the imaginary
RI. The two SOA tracers for each BVOC in ModelE do not
directly correlate with high and low NOx . Rather, each tracer
has a specified mass yield given NOx conditions at the time
and the location of formation. We converted these tracer mass
yields to molar yields and then solved a system of equations
to determine the MAE of each tracer: for either isoprene or
α-pinene, the MAE of a low- or high-NOx SOA (from Liu
et al., 2016) was set to equal the sum of the two tracers’
low- or high-NOx molar yields multiplied by the respective
tracer MAEs (solved for). The resulting MAE values were
converted to the imaginary RI according to Eq. (7) (Zhang et
al., 2020):

kSOA(λ)=
MAESOA(λ) · ρ · λ

4π
. (7)

Solar-spectrum-weighted averages across all UV–VIS wave-
lengths were taken, and the resulting imaginary RIs can be
seen in Fig. 2, along with RIs for primary BrC and other
aerosol tracers, and are listed in Table A1, for reference.
Other BrC properties defined in ModelE are listed in Table 1.

These physical properties were kept constant to maintain
consistency with ModelE default OA representation and en-
sure no change in total organic mass burden with the intro-
duction of the BrC scheme. The solubility of BrC, for ex-
ample, is left at 0.8, which is higher than some literature esti-
mates (Laskin et al., 2015) but within reported ranges (Zhang
et al., 2013) because a lower value would result in an in-
crease in BrC, and therefore total OA, burden. An increase
in organic mass, compared to the model default, would result
in an increase in scattering and a substantial cooling effect,
negating the purpose of the BrC scheme, which is to account
for OA absorption and the subsequent warming effect. Thus,
we changed only organic optical properties to represent BrC
– the total organic mass burden was not changed.

2.2.4 Chemical aging scheme

Since the objective of this work is to capture OA absorp-
tion, we focused only on changing BrC optical properties
with aging. As such, all properties in Table 1 are kept con-
stant. To simulate the atmospheric processing of BrC, we
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Figure 2. UV–VIS-band-averaged complex refractive index of ModelE aerosol tracers. All BrC tracers have the same real refractive index
as OAs.

created an oxidant-initiated chemical aging scheme that does
not require us to track the change in the RI, and therefore
absorption, over time. Instead, two aged BrC tracers were
introduced in ModelE, in addition to the emitted one: one
with higher absorption and one with lower absorption in re-
lation to emitted BrC. The “browner” BrC is assumed to
have 150 % emitted BrC absorption efficiency, while the less-
absorbing BrC is assumed to have 20 %. The threshold value
of 20 % relative absorption was based on laboratory studies
of oxidized BrC proxies (Fleming et al., 2020; Hems et al.,
2021) and is close to the threshold value used in other mod-
eling studies (Wang et al., 2018). A relative absorption of
150 % is used as it is near the middle of the range of re-
ported photo enhancement in laboratory studies (Zhong and
Jang, 2014; Hems et al., 2021). Iterative Mie calculations
were used to determine what imaginary RI, varied from that
of emitted BrC, produces the relative absorption efficiencies
(150 % and 20 %) of each aged tracer. This was done for all
three primary BrC cases described earlier: weakly, moder-
ately, and strongly absorbing.

BrC browning is represented as the transfer of emitted (pri-
mary) BrC mass to the more-absorbing BrC tracer. This is
followed by bleaching, with mass transfer from the more-
absorbing to the least-absorbing BrC. Mass transfer between
tracers occurs at a rate determined by a second-order rate
constant for each reaction of BrC with hydroxyl and nitrate
radicals and with ozone (see Table A2). We used first-order
rate constants defined by Hems et al.’s (2021) kinetic model
of BrC processing and their assumed concentrations of ox-
idants to calculate these second-order rate constants. This
chemical aging scheme is illustrated in Fig. 3.

The typical chemical lifetimes of ModelE-simulated emit-
ted and “browner” BrC in this scheme are 9.36 h and
6.79 min, respectively, meaning the entire aging process oc-
curs on average over about 10 h. This is consistent in magni-

Figure 3. Chemical aging scheme of primary BrC in GISS ModelE.
The large arrow represents emission of BrC mass from BB, while
smaller arrows represent mass transfer between BrC types.

tude with atmospheric lifetimes predicted by laboratory stud-
ies, with browning occurring over several hours and rapid
bleaching on the order of 1 h or less (Zhao et al., 2015; Hems
et al., 2021). Because hydroxyl radicals are only promi-
nent during the day and nitrate radicals during the night, the
separate consideration of each of these oxidants allows an
oxidant-based diurnal simulation of BrC aging. Considering
only the reactions occurring at night (nitrate browning and
ozone bleaching), based on first-order rates from Hems et
al. (2021), we would expect emitted BrC to have a chemical
lifetime of about 40 h and “browner” BrC to have a lifetime
of about 18 min, compared to 14.6 h and 17 min, respectively,
for just daytime reactions. This greatly extends the length
of the total aging process, which is consistent with literature

https://doi.org/10.5194/acp-24-6275-2024 Atmos. Chem. Phys., 24, 6275–6304, 2024



6282 M. A. DeLessio et al.: Modeling atmospheric brown carbon in the GISS ModelE Earth system model

that has suggested a slow build-up of more-absorbing BrC
overnight (C. Li et al., 2020).

The total radiative effect of all three BrC tracers, consid-
ered together, represents the effect of BrC that has been emit-
ted and then aged heterogeneously in the atmosphere. The
design of this aging scheme is unique in global BrC mod-
eling; no other studies have simulated browning, and all but
one of those with bleaching parameterized BrC absorption to
decay with time (Zhang et al., 2020), or time and hydroxyl
concentration (Brown et al., 2018; Wang et al., 2018; Tuc-
cella et al., 2020; Carter et al., 2021), rather than simulat-
ing different types of BrC tracers. Drugé et al. (2022) is the
only other BrC modeling study to simulate aging through the
transfer of aerosols between bins with different optical prop-
erties, though they used a set lifetime, while we used local
oxidant concentrations to determine the rate of transfer (ag-
ing).

Our aging scheme is missing two key processes. Firstly,
it only represents heterogenous aging. While there is labo-
ratory evidence that BrC also undergoes in-cloud processing
(Hems et al., 2021), this has not yet been introduced in Mod-
elE. The addition of in-cloud, also referred to as multi-phase,
processing would likely accelerate the overall rate of BrC
aging: according to Hems’ kinetic model, including aque-
ous reactions would shorten browning lifetime to approxi-
mately 3 h and have limited effect on bleaching lifetime. Sec-
ondly, biogenic brown SOAs do not currently undergo aging,
though studies suggest bleaching of absorbing SOAs occurs
in the atmosphere at similar rates to primary BrC (Zhao et
al., 2015; Liu et al., 2016). Our current BrC aging scheme
is incompatible with ModelE’s biogenic SOA parameteriza-
tion: BrC is aged by moving mass from one tracer to another,
but this violates the two-product model that produces SOAs
(Tsigaridis and Kanakidou, 2007). A different approach to
chemical aging, one in which the semi-volatile nature of the
aerosol is considered, must be developed to account for sec-
ondary BrC bleaching. Without this, we may be overestimat-
ing SOA contribution to BrC absorption: laboratory studies
suggest aging reduces SOA absorption by at least 50 % (Liu
et al., 2016). As such, we plan to include SOA aging in future
work.

2.3 Model assessment

This BrC scheme was assessed in two ways. Firstly, an in-
vestigation of the radiative effect of BrC and its uncertain
parameters used in ModelE, defined in the previous sec-
tion, was performed through sensitivity tests. Next, ModelE-
simulated total aerosol properties, with BrC representation
included, were evaluated through comparison to AERONET
and MODIS retrieval data. This latter evaluation serves to
contextualize ModelE BrC-included simulations and broadly
assess the model’s ability to capture aerosol properties. The
purpose of sensitivity tests of parameters and assessment of
model performance for total aerosol properties was to under-

stand the overall impact of BrC on ModelE ARIs. With this
understanding, ModelE with the BrC scheme can be used for
future, more detailed studies of BB aerosols.

2.3.1 ModelE BrC sensitivity tests

We conducted sensitivity tests to quantify the radiative effect
of BrC representation in ModelE as a function of a range
of the uncertain parameters described in Sect. 2.2. The fol-
lowing BrC processes and parameters were investigated: BB
emission fraction, inclusion of brown biogenic SOAs, pri-
mary BrC optical properties, and chemical aging of primary
BrC. We varied these, changing just one property at a time,
from what we consider the base case for representation: 35 %
of BB OA emissions are brown, biogenic SOAs are defined
as brown, primary BrC has moderate absorption, and both
browning and bleaching processes are included. We also ran
two simulations where BrC was not explicitly represented:
one in which all organics are considered non-absorbing (our
control case) and one in which all organics are somewhat
brown with a non-zero imaginary RI, as is the default case
for organics in ModelE. The details of each simulation are
included in Table 2.

The purpose of this testing, in addition to estimating BrC’s
radiative effect, was to understand the relative importance of
each of the BrC processes included in the model and how
sensitive model results are against a plausible range in each
one of them. We should note that, while the relative absorp-
tions of aged BrC tracers are also uncertain parameters, we
did not vary these in sensitivity tests, focusing first on the
impact of simply including or excluding aging processes.

All tests were run using climatological simulations repre-
sentative of a decadal mean centered around the year 2000,
using 3 years for spin-up and 15 years for analysis. Results
are reported as global averages over the 15-year analysis pe-
riod, with standard deviation serving as a metric of the inter-
nal variability in the model. We calculated the direct radia-
tive effect of BrC as the difference between a simulation and
the control, top-of-atmosphere (TOA) radiative forcing (RF).
ModelE RF is the difference between including a tracer in
model radiation calculations and not including one, via dou-
ble calls to model radiation, at every time step. This was done
for each simulation i (see Table 2) other than the control, fol-
lowing Eq. (8):

REBrC,i = RFTOA,ARI,i −RFTOA,ARI,ctrl, (8)

where RE is the direct radiative effect. This definition of ra-
diative effect should be distinguished from effective radia-
tive forcing, also commonly reported in modeling studies,
which is the present-day radiative effect of a tracer compared
to its pre-industrial effect, allowing the atmosphere to adjust
to perturbations from that tracer (Hansen et al., 2005).

We expect BrC aerosols to mainly impact ARIs; ACIs are
likely only impacted marginally through the effect absorbing
aerosols have on atmospheric stability and clouds, referred to
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Table 2. BrC representation parameters for each sensitivity test simulation, where k is the imaginary RI of an aerosol in the ModelE UV–VIS
radiation band (300–770 nm). Simulations 1 and 2 are the two cases in which BrC is not explicitly represented, with 1 being the control case
where no organics are brown and 2 being the current model default where all organics are slightly brown. Note, for this default case, we
have adjusted the value of kOA from 0.014 to 0.00567 to be consistent with OA treatment in other models (Tsigaridis and Kanakidou, 2018).
Simulation 5 is the base case for BrC representation, using parameters established in Sect. 2.2. Simulations 3 and 5 are identical except for
their treatment of secondary BrC: either excluded (simulation 3) or included (simulation 5). Simulations 4 and 6 test the effect of changing
primary BrC optical properties (compared to simulation 5). Simulations 7 and 8 (compared to simulation 5) test the effect of changing the OA
BB emission percentage considered brown. Simulations 9–11 (compared to simulation 5) test the effect of BrC chemical aging processes.

Simulation BrC Brown kOA Primary kemitted BrC k150 % abs BrC k20 % abs BrC % OA BB Aging
biogenic BrC case emissions processes
SOA are brown

1 (control) No No 0.0

2 (default) Implicit 0.00567

3 Explicit 0.0 Moderate 0.0165 0.0293 0.00266 35 % Browning

4 Yes Weak 0.003 0.00463 5.75× 10−4 and

5 (base) Moderate 0.0165 0.0293 0.00266 bleaching

6 Strong 0.03 0.0653 0.00415

7 Moderate 0.0165 0.0293 0.00266 15 %

8 55 %

9 35 % None

10 Bleaching

11 Browning

as semi-direct effects. The interaction of aerosols on clouds
via cloud condensation nuclei (CCN) changes are simulated
in the model, but since BrC maintains the same solubility and
hygroscopicity as other organics, and since we did not add
organic mass to ModelE, we do not expect BrC representa-
tion to change CCN and have an impact on ACIs discernible
from simulation noise. Additionally, only the direct effect of
the UV–VIS radiation band (300–770 nm) was considered, as
BrC refractive indices mainly differ from other organics in
this band, and we would not expect a radiative effect beyond
it.

2.3.2 Evaluation against global aerosol retrieval data

We evaluated the model’s ability to capture total aerosol
extinction and absorption when employing the new BrC
scheme through comparison to retrievals of total aerosol
optical depth (AOD) and absorbing aerosol optical depth
(AAOD). This comparison was performed globally and re-
gionally in BB regions during peak fire months. We chose
to focus on BB as it is a key source of BrC (Chakrabarty et
al., 2010; McMeeking et al., 2009), and initial model results
showed that OAs, including BrC, are concentrated in BB re-
gions (see Fig. 4).

To further determine the effect of BrC in ModelE, beyond
Sect. 2.3.1, this comparison was performed against a control

simulation in addition to a simulation of the base case of BrC
representation, where BrC parameters used were taken from
simulations 1 and 5 in Table 2, respectively. The goal was to
determine if BrC representation changes model performance
against retrieval data. Unlike sensitivity tests which make use
of climatological simulations, this comparison was done with
nudged transient simulations using MERRA2 meteorology,
to allow a better match to the actual observed period, and
GFAS1.2 BB emissions, as stated in Sect. 2.1.

The Aerosol Robotic Network, or AERONET, consists of
several hundred sun- and sky-scanning radiometers. Direct
sun measurements and sky radiances are taken at typical
wavelengths of 0.44, 0.675, 0.87, and 1.02 µm. AOD is a di-
rect measurement product, while almucantar scans allow size
distribution and absorption retrieval products. We made use
of Version 3, Level 2 (L2) inversion product data, which re-
quire, in addition to cloud screening, pairs of measurements
with the same scattering angles to agree within 20 %, at least
14 of these angular pairs to survive, and AOD at 0.44 µm
(440 nm) to be greater than 0.4 for an AAOD retrieval to
be considered. AAOD and AAE are linked to retrieved size
distributions and refractive indices through Mie theory or T-
matrix theory and are reported as column-integrated values
(Sinyuk et al., 2020). The AOD measurements we used are
coincident, meaning they were taken simultaneously with an
almucantar scan.
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Figure 4. Annual average of total OA (a) and BrC aerosol (b) column burden under base case BrC representation, as described in Sect. 2.2.
Both maps demonstrate that organic and BrC aerosols are concentrated in BB regions of the Amazon, central/Southern-Hemisphere Africa,
and southeast and equatorial Asia. As BrC aerosols consist of biogenic SOAs, in addition to BB emissions, high concentrations are also
apparent in regions with high emissions of BVOCs. Similarly, industrial organic emissions contribute to total organic aerosol concentrations
outside of BB regions. This map represents an annual average of a climatological simulation, which is a decadal mean centered around the
year 2000, so seasonal variations and emissions from BB regions that may have been prominent in certain years, like the western United
States and Australia, are not visible.

We compared monthly averages of AERONET L2 AOD
and AAOD over a 10-year period, 2007–2016, to clear-sky,
UV–VIS-band optical depth simulated by ModelE. Since a
solar-spectrum-weighted average of wavelengths in the UV–
VIS band is approximately 550 nm, we used the AE and AAE
provided in L2 data to calculate the AERONET optical depth
values at 550 nm (Schuster et al., 2006). Monthly mean av-
erages of AAOD were computed considering only months
at a site with at least 10 d of daily averaged AOD440 nm >

0.4. Since retrieved AAOD values are highly uncertain with
low-AOD conditions, this method aims to avoid consid-
ering months with too few reliable AAOD measurements
(Dubovik et al., 2000). In addition to AERONET retrieval
data, we compared ModelE-simulated AOD to column AOD
at 550 nm from the Moderate Resolution Imaging Spectro-
radiometer (MODIS) instrument on the Terra satellite over
the same 10-year period of 2007–2016. The benefit of using
MODIS data, in addition to AERONET, is that it takes mea-
surements over 36 spectral channels, allowing better cloud
screening and high accuracy over land and oceans (Levy and
Hsu, 2015). We used the Collection 6 Dark Target and Deep
Blue combined product from the Terra satellite, with a res-
olution of 1° by 1°, for this analysis. The Dark Target AOD
product covers global oceans and dark surfaces of continents,
such as vegetated areas, while the Deep Blue product in-
cludes retrievals over additional brighter land types (Levy et
al., 2013).

We focused on optical depth at 550 nm, rather than a
shorter wavelength, because the purpose of this evaluation
was to assess general model ability to capture total aerosol
optical properties, essentially seeing if the BrC scheme im-
proves or impairs overall model performance. For this rea-
son, we worked within the current confines of ModelE ra-

Figure 5. Map showing the eight BB regions used in this study,
following regionalization defined in Pan et al. (2020).

diation, which produces output in broad wavelength bands,
as mentioned in Sects. 2.1 and 2.2.3, indicative of 550 nm
in the UV–VIS band. Analysis at a shorter wavelength would
require assuming an Ångström exponent for ModelE BrC op-
tical depth, introducing further uncertainty to the parameter
space. We will do such analysis in a future study, where BrC
absorption will be evaluated extensively.

When narrowing analysis to peak BB regions and
months, we looked at BrC emission hotspots, Southern-
Hemisphere South America (SHSA), Southern-Hemisphere
Africa (SHAF), southeast Asia (SEAS), and equatorial Asia
(EQAS) (Laskin et al., 2015) – regions prone to BB and in-
creasingly relevant in recent years – Temperate North Amer-
ica (TENA), Boreal North America (BONA), and Australia
(AUST), as well as Boreal Asia (BOAS) to complement the
analysis of BONA (Fig. 5).

The peak fire months for these regions are, broadly, bo-
real spring for BOAS and SEAS; boreal summer for TENA
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and BONA; and austral spring for SHSA, SHAF, EQAS, and
AUST (Pan et al., 2020). The exact months regarded as peak
fire periods for each region of analysis and fire types that
dominate in each region can be found in Table A3. We did not
consider the Northern-Hemisphere Africa region in this fo-
cused analysis, as any AOD comparisons would be strongly
affected by dust, making the interpretation of BB-only results
difficult.

3 Results and discussion

3.1 Changes in aerosol absorption and optical depth
with BrC parameterization

We used global averages of aerosol single-scattering albedo
(SSA) from the model sensitivity tests to assess the effect of
BrC representation on aerosol absorption in ModelE; lower
SSA indicates more-absorbing aerosols. There is almost no
change – a decrease of 0.001 – in the global average total
aerosol SSA with the introduction of BrC aerosols, which is
expected, since global absorption is dominated by BC and
dust. Additionally, there is limited observable change in the
spatial distribution of total SSA, and therein the spatial dis-
tribution of total AOD and total AAOD, across all sensitivity
tests (see Fig. 6).

While BrC has a limited effect on total aerosol absorptiv-
ity, it does influence total OA absorption. In general, total OA
SSA decreases with more-absorbing organics, due to either a
greater amount or more-absorbing BrC simulated. This can
be seen in Fig. 7: compared to the control case where no BrC
is represented and all OAs are regarded as non-absorbing,
SSA decreases when either (a) secondary BrC is included,
(b) primary BrC changes from weakly to strongly absorbing,
(c) the BrC-to-OA BB emissions ratio increases, or (d) pri-
mary BrC aging is excluded.

For the latter case, considering only bleaching leads to
the highest SSA of all aging sensitivities because there is no
“browner” BrC simulated. Additionally, since bleaching is a
much faster process than browning, excluding browning al-
lows primary BrC to move to the bleached state quicker: the
chemical lifetime of primary BrC is reduced from 9.36 h to
just 10.3 min. On the diurnal timescale, this is like BrC just
bleaching in the daytime rather than building up and brown-
ing over several hours during the night.

The model’s default case shows that assuming all OAs are
brown, where we do not separately represent BrC and apply
one non-zero imaginary RI to all OAs, results in the largest
decrease in OA SSA. This default case and the simulations
with only browning as the chemical aging process are not at-
mospherically realistic; only a fraction of OAs, not all, have
been observed to absorb light, and the absorbing portion has
been observed, both in lab and field studies, to bleach (Cubi-
son et al., 2011; Laskin et al., 2015; Junghenn Noyes et al.,
2020, 2022; Hems et al., 2021). We include these cases in our

Figure 6. (a) Total aerosol SSA, in the UV–VIS band, in the Mod-
elE climatology simulation for the base case of BrC representation
(Sim. 5 in Table 2). Global distribution of SSA in the control case,
with no BrC simulated and all organics treated as non-absorbing
(Sim. 1 in Table 2), is not pictured, as it appears identical to that of
the base case. (b) Difference in total SSA between base and con-
trol case simulations. Only data at 95 % confidence level or higher,
with differences attributable to changes in OA treatment rather than
random noise, are shown – remaining data are grayed out. Though
there is no apparent change in spatial distribution of total SSA, there
are small changes in SSA magnitude in regions where BrC and OA
aerosols are highly concentrated (see Fig. 4).

analysis, in addition to all other sensitivity test simulations,
to bound BrC uncertainty.

Figure 8 shows that BrC optical depth follows the same
patterns as total OA SSA: inclusion of secondary BrC, mov-
ing from weakly to strongly absorbing cases, increasing the
BrC-to-OA emissions ratio, and removing bleaching increase
BrC AAOD. BrC AOD only changes when more OA mass is
regarded as brown.

3.2 Evaluation of ModelE optical depth against retrieval
data

Figure 9 shows the comparison of ModelE-simulated aerosol
optical properties, with and without the BrC scheme, against
AERONET retrieval data. As described in Sect. 2.3.2, these
are nudged transient simulations with interannual variability,
rather than climatological, and used GFAS1.2 BB emissions,
rather than CEDS. This scatterplot comparison and the linear
regression analysis accompanying each plot were done in the
log10 space, rather than the linear space, as AOD is known
to be approximately log-normally distributed, and any statis-
tical analysis should reflect that (O’Neill et al., 2000; Sayer
and Knobelspiesse, 2019).
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Figure 7. Global annual average of total OA SSA, in the UV–VIS band, across sensitivity test simulations. The dashed bars show the base
case simulation (this is shown twice for ease of comparison to other simulations). The effect of each varied property can be seen by comparing
the simulated SSA to those of the control case and the base case. Error bars show the standard deviation of OA SSA and can be interpreted as
the variability in each 15 year-long simulation. Gray: two simulations – control and default – where BrC is not explicitly represented. Red:
properties and processes consistent with the base case except secondary BrC is not included. Orange: consistent with base case except for
the primary BrC RI which varies between weakly, moderately, and strongly absorbing cases. Green: BrC-to-OA emissions ratio is varied,
increasing from 15 % to 55 %. Yellow: primary BrC chemical scheme is varied, with no aging, only bleaching, and only browning simulated.

Figure 8. (a) Total BrC UV–VIS AOD across each sensitivity test. (b) Total BrC UV–VIS AAOD. Error bars show the standard deviations
(variability of each simulation across repeated years of simulation); different-colored bars indicate a different BrC property varied; and
dashed bars indicate the base case of BrC representation (shown twice for ease of comparison to other simulations), consistent with Fig. 7.
The ModelE default case is not displayed here as it does not explicitly simulate BrC; therefore no BrC optical depth could be calculated.

Across all six plots, there appears to be limited difference
between the ModelE-simulated control case and base case
optical depth, shown as x’s and o’s, respectively. Linear re-
gression analysis for both AOD and AAOD (their log10 val-
ues), on both global and BB-region scales, shows minimal to
no change in regression slope and r2 value when BrC is ex-

plicitly simulated. This suggests similar model skill against
AERONET, with or without BrC representation. Further-
more, this supports results discussed in Sect. 3.1: total AOD
and AAOD were found to have no apparent change across
all sensitivity tests, including the control case. The lack of
change in total AOD with the addition of BrC is not surpris-
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Figure 9. Simulated ModelE optical depth at 550 nm (spectrally weighted average of the UV–VIS band) plotted in the log10 space against
retrieved AERONET optical depth. Each point corresponds to the optical depth of 1 month, averaged across the 2007–2016 period, at
an AERONET site and in the corresponding grid cell in ModelE. ModelE control case optical depth values are shown as x’s, while base
case values are shown as o’s. The slope and r2 of the linear regression are displayed on the top-right corner of each plot, and regression
lines are included for all AOD plots. All AODs included are coincident. (a) AOD values at all available AERONET sites. (d) AOD in
BB regions during months considered peak for BB, with each color representing a different region. (b) AOD at all available AERONET
sites after AOD440 nm < 0.4 were removed. This is included to show corresponding AOD at the sites available for AAOD analysis. (e)
AOD in BB regions and months with AOD440 nm < 0.4 removed. Note that TENA, BONA, BOAS, EQAS, and AUST regions have been
eliminated because of the AOD440 nm threshold. (c) AAOD values at all available AERONET sites after months with fewer than 10 d of
AOD440 nm > 0.4 were removed. (f) AAOD, with the same filter applied as the top-right plot, in BB regions and months. As in the bottom-
center plot, five BB regions have been eliminated.

ing, as no new aerosol mass was introduced in the model.
Additionally, OAs and BrC have the same real RI; therefore
scattering remains largely the same. Limited change in total
AAOD is also expected as total AAOD is usually dominated
by either BC or dust aerosols, as mentioned in Sect. 3.1 and
demonstrated in Fig. 10.

Of the BB regions that we have focused our analysis on,
AAOD is dominated by BC in most (SHSA, SHAF, TENA,
BONA, BOAS, and EQAS), while dust dominates in AUST,
and both BC and dust dominate in SEAS. BrC seems to ac-
count for the majority of AAOD only over the Antarctic,
where brown SOAs in the remote free troposphere may be
contributing more than dust or BC to the near-zero aerosol

absorption occurring (Hu et al., 2013; Sand et al., 2017). It
bears reminding that this comparison used retrieved AAOD
at 550 nm, as that is the indicative wavelength of the Mod-
elE UV–VIS wavelength band (see start of Sect. 2.2.3). If we
were able to resolve total AAOD within ModelE at shorter
wavelengths, for instance 365 nm, we would likely see BrC
have a much larger relative contribution to total AAOD. This
would particularly be the case over the BB regions currently
dominated by spectrally flat BC absorption. Therefore, it is
possible that model performance between control and base
case simulations would differ if we looked at UV and near-
UV wavelengths, something we are currently unable to do
within the ModelE radiation scheme.
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Figure 10. Average over the 2007–2016 period of ModelE light-absorbing dust (a, c, f), BC (b, d, g), and BrC (e) contribution to total
UV–VIS AAOD in control (a, b) and base (c–e) simulations, with each BB region of interest, identified in Sect. 2.3.2, outlined in black.
(f, g) Difference in dust and BC contributions between base and control cases. Relative contribution of BrC in BB regions appears to come
from a greater reduction in BC, rather than in dust.

Returning to Fig. 9, the left column demonstrates that, on
both a global scale and within BB regions and months, Mod-
elE tends to overestimate AOD relative to AERONET mea-
surement, with greater overestimates at lower AOD values.
The center column of Fig. 9 shows the same AOD data as the
left column with the data coverage filter for AAOD applied:
all AOD values at 440 nm below 0.4 were removed. With this
filter, data from TENA, BONA, BOAS, EQAS, and AUST
are lost, along with the strong linear relationship between
retrieved and simulated data. Despite this, we can still see
the ModelE overestimation of AOD, as most data points fall
above the one-to-one line. Finally, looking at the right col-
umn of Fig. 9, the AERONET and ModelE AAOD compari-
son shows a large spread of AAOD values with no apparent
linear relationship. Though the model appears to underesti-
mate AAOD in the SHAF region and in some sites in SHSA
and SEAS, the limited sites with data make it difficult to draw
any meaningful conclusions. Furthermore, this data scatter is
mostly caused by dust and BC, rather than BrC, which shows
minimal variability in AAOD (see Fig. 8).

Figure 11 shows the global distributions of the ModelE
bias in AOD and AAOD, relative to AERONET, for the
months of March and August. This confirms the findings of
Fig. 9: AOD bias maps show a global pattern of overestima-
tion. While there are a limited number of sites in the AAOD
bias maps, there does appear to be negative bias at some sites
in the SHAF, SHSA, and SEAS BB regions. Again, due to
the sparse data, no definitive conclusions can be drawn from
this.

Evaluation of ModelE optical depth against MODIS re-
trieval data supports the conclusions from that of AERONET.
Firstly, there is no apparent difference between ModelE-
simulated control case and base case AOD when compared to
MODIS, confirming that model skill is unchanged with BrC
representation (see Fig. A2). ModelE also tends to overesti-
mate AOD relative to MODIS, consistent with AERONET
results. A comparison to MODIS data gives a clearer under-
standing of this model bias, as we get a global picture with
better spatial coverage, shown in Fig. 12.

In the bottom row, we can see a positive model bias
over regions heavily influenced by sea salt aerosols, like
the Southern Ocean, and over northern Africa, which is in-
fluenced primarily by dust. Such bias in dust and sea salt
aerosols was not observed in previous CMIP6 model eval-
uation with MODIS comparison (Bauer et al., 2020), but
the ModelE radiation scheme has since been updated with
a change in optical calculation, including a more accurate
treatment of aerosol hydration using Köhler theory. The
ModelE natural emissions have not yet been retuned follow-
ing this change. This suggests that the model AOD overesti-
mation is different from previous results due to a change in
model parameterization, not the BrC scheme presented here.

A strong positive bias can be seen over SEAS in March,
which falls in the BB season of the region. Similarly, a
slightly weaker, though still prominent, positive bias can be
seen over part of SHSA in August. Since this occurs dur-
ing the BB season of each respective region, it may indi-
cate an overestimation of BB emissions. EQAS appears to be
the only BB region in which ModelE underestimates AOD:
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Figure 11. Map of model optical depth bias, where each point corresponds to the difference in ModelE base case and AERONET optical
depth, at 550 nm, at an AERONET site, averaged over the 2007–2016 period, for the months of March (a, b) and August (c, d). March and
August are displayed as, together, they overlap with the BB season of almost all regions of interest.

Figure 12. (a, b) MODIS AOD at 550 nm averaged over the 2007–2016 period. (c, d) Average ModelE base case AOD, re-gridded through
bilinear interpolation to match the 1°-by-1° resolution of MODIS data. Grid cells corresponding to those that do not have MODIS data are
removed (shown in gray). (e, f) Model AOD bias, calculated as the difference between ModelE base case and MODIS. The left column
shows results for the month of March, while the right column shows results for the month of August, consistent with Fig. 11. BB regions of
interest are outlined in black.
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this can be seen as a slightly negative bias over the region in
Fig. 12 and is further supported by Fig. A2. Since this bias
appears stronger in August, during the peak of EQAS BB
activity, this may be due to an underestimation of emissions
from peat burning, which dominates BB in the region (van
der Werf et al., 2017). To summarize, this analysis has af-
forded interesting insight into ModelE AOD biases, suggest-
ing that the observed differences between retrieved and sim-
ulated optical depth is largely a result of changes in model
implementation rather than BrC representation. We do not
expect these biases to overpower BrC-driven changes in to-
tal AOD, because the BrC contribution to total AOD is small
– approximately 5 % of average total AOD in the base case
– and, as previously stated, there was no distinguishable
change in total AOD across all sensitivity test simulations,
including the control case.

3.3 BrC radiative effect

In the base case simulation, ModelE total OA radiative
forcing (RF) is −0.42± 0.01 Wm−2. This can be com-
pared to the organic RF of the control and default cases of
−0.46± 0.01 and −0.32± 0.01 Wm−2, respectively. Vari-
abilities presented here are calculated as the standard devi-
ation across repeated years of each simulated case. The in-
troduction of absorption does not shift organic aerosols from
negative to positive RF, since BrC is a weak absorber when
integrated across a wide wavelength range. Instead, represen-
tation of BrC or the attribution of absorption to all organics
result in a reduction in the total organic cooling effect. The
direct radiative effect of BrC in the base case simulation, cal-
culated according to Eq. (8), is 0.04± 0.01 Wm−2. For ref-
erence, Table 3 shows the TOA instantaneous direct RF of
other ModelE-simulated accumulation-mode aerosols.

BC aerosols have a large, positive RF (all from the short-
wave). This can be compared to BrC, which contributes a rel-
atively small radiative effect. Figure 13 shows the global spa-
tial distribution of this BrC effect, which is consistent with
maps of total organic and BrC aerosols (see Fig. 4).

3.3.1 Comparison of BrC radiative effect with previous
studies

Our estimate of BrC radiative effect can be compared to sim-
ilar BrC modeling studies. A wide range of radiative effects
are reported across previous studies because of the variabil-
ity in the treatment of BrC and/or OA absorption. Further-
more, different studies use different metrics to quantify BrC’s
impact on Earth’s radiative budget, with some reporting ra-
diative effect, as we have calculated, and others reporting
instantaneous or effective RF. It is important to keep these
variable treatments and climate metrics in mind, as they pose
a limitation to direct comparison between modeling studies.
To compare our scheme with literature values that report or-
ganic mass in Tg C, we converted ModelE mass and emission

Figure 13. Annual average of BrC radiative effect in Wm−2, cal-
culated according to Eq. (8).

output in Tg OA, using the previously mentioned OC-to-OA
ratio of 1.4.

As stated previously, there are three studies that have im-
plemented BrC in an Earth system model. Two of these stud-
ies, using CESM (Brown et al., 2018) and CNRM (Drugé
et al., 2022), calculated BrC effective radiative forcing of
ARIs (ERFARI). Brown et al. (2018) calculated an ERFARI
of 0.13 Wm−2 without BrC bleaching and 0.06 Wm−2 with
bleaching, while Drugé et al. (2022) reported 0.029 Wm−2

with bleaching. The lower ERF reported by Drugé et
al. (2022) may be a result of the different treatment of the
BrC-to-OA fraction: Brown et al. (2018) treated all BrC and
OAs the same, while Drugé et al. (2022) defined BB OAs as
BrC and fossil fuel OAs as non-absorbing. Both studies used
the same parameterization for the imaginary RI (see Eq. 1),
with a global average k550 nm around 0.02. Though we can-
not directly compare these studies to ours, as they calculated
ERF, our estimated BrC effect of 0.04 Wm−2 is similar in
magnitude, with small differences likely attributable to dif-
fering BrC treatments. Brown et al. (2018) had a slightly
larger global average BrC burden of 1.56 mgm−2 compared
to ours of 1.35 mgm−2, a larger imaginary RI compared to
ours of 0.0165, and a subsequently larger BrC effect. While
Drugé et al. (2022) similarly used an imaginary RI larger than
ours, they did not consider SOAs to be brown, and they re-
ported lower BrC emissions of approximately 1.73 Tgyr−1

compared to ours of 8.6 Tgyr−1 (or 6.14 TgCyr−1, given the
ModelE OC-to-OA ratio of 1.4), resulting in a lower estimate
of the BrC effect.

Zhang et al. (2020) is the third study to use an ESM,
CESM in particular, and presented the most similar approach
to ours: primary BrC was regarded as a fraction of OAs,
SOAs were considered brown, and a photobleaching param-
eterization was used. They also used the same approach to
calculate the BrC direct radiative effect, allowing a direct
comparison to ours. Their treatment of BrC differed in that
they used a BrC-to-OA emission factor of 23 %, rather than
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Table 3. Global annual average instantaneous TOA direct RF of ModelE accumulation-mode aerosol species. Net RF was calculated as the
sum of shortwave and longwave forcings.

Species Shortwave RF (Wm−2) Longwave RF (Wm−2) Net RF (Wm−2)

OA (control) −0.49 0.03 −0.46
OA (default) −0.35 0.03 −0.32
Sulfate −1.25 0.06 −1.19
Nitrate −0.09 0.0 −0.09
BC 0.25 0.0 0.25

35 %; considered aromatic SOAs brown, rather than bio-
genic SOAs; and used a higher imaginary refractive index
of kBrC, 550 nm = 0.045, rather than our moderately absorb-
ing case of kBrC, 550 nm = 0.0165. With this treatment, Zhang
et al. (2020) calculated a BrC radiative effect of 0.1 Wm−2,
which is larger than our base case estimate of 0.04 Wm−2.
This is likely due to the higher imaginary refractive index
applied to both primary and secondary BrC: they reported
similar BrC emissions of 6.7 TgCyr−1, and, while our pro-
duction of brown SOAs is much larger than theirs (16.1 vs.
4.1 TgCyr−1), all ModelE SOAs have an imaginary RI less
than 0.002, much lower than their singular RI used.

Other studies have estimated the BrC instantaneous radia-
tive effect using chemical transport models (CTMs) – either
GEOS-Chem or IMPACT. Though these studies all differ in
their treatment of BrC, they can be grouped according to
whether they consider all OAs brown or treat BrC as a frac-
tion of OAs. Studies that do not differentiate between BrC
and other BB OAs report a TOA BrC radiative effect between
0.048–0.57 Wm−2 (Lin et al., 2014; Saleh et al., 2015; Wang
et al., 2018), while studies that treat BrC as a fraction of OAs
report between 0.04–0.29 Wm−2 (Park et al., 2010; Feng et
al., 2013; Wang et al., 2014; Jo et al., 2016; Tuccella et al.,
2020; Carter et al., 2021). Our calculated radiative effect is
at the lower end of this reported value range.

3.3.2 ModelE sensitivity to BrC parameterization

In all sensitivity cases, BrC representation produces a reduc-
tion in organic cooling, or an effective warming. The actual
magnitude of this effect, however, varies across simulations.
Figure 14 shows the direct radiative effect and variability, ex-
pressed as standard deviation, of each BrC simulation.

Comparing the case with no secondary BrC to the base
case, we can see that attributing absorption to SOAs has a
clear warming effect, since the magnitude nearly triples. Ex-
cluding chemical aging processes or only including brown-
ing also has a strong warming effect, compared to the base
case. Changing the optical properties of primary BrC, either
to the weakly absorbing or strongly absorbing case; vary-
ing the BB BrC-to-OA emissions ratio; and including only
bleaching rather than both browning and bleaching do not
produce distinctly different radiative effects from the base
case. Finally, the default case where all OAs are slightly

brown shows substantial warming relative to the base case
where only some organics are considered brown. Referring to
Fig. 8, which shows BrC AOD and AAOD across the same
simulations, we see that, while AAOD is much smaller in
magnitude, it is clearly the larger driver in changing simula-
tion radiative effect. There is also larger internal variability in
BrC radiative effect, compared to BrC optical depth, which
we attribute to variability in simulated meteorology.

The sensitivity analysis presented in Fig. 14 shows that
separating BrC from other organics through explicit repre-
sentation, including secondary BrC, and simulating a chem-
ical bleaching process have a distinguishable effect on Mod-
elE BrC warming. Thus, each of these properties should be
accounted for in BrC representation, and they should be the
primary target for future BrC lab and field research to better
constrain them. Since the base case BrC chemistry, brown-
ing followed by bleaching, is indistinguishable from the case
with only bleaching, simulating browning appears unneces-
sary on the scale of global annual averages, if the only inter-
est is BrC radiative effect. Such limited sensitivity to brown-
ing makes sense: BrC can only have a radiative effect when
there is insolation, and browner BrC is short-lived during the
daytime, so bleaching is the dominant process with regard
to radiative effect. This further suggests refining the relative
absorption value of browned BrC, now 150 %, may not be
necessary for this scope of study. Additionally, variation in
the primary BrC refractive index and BrC-to-OA emissions
ratio does not show distinguishable effects, suggesting it is
not critical to define precise values for these properties.

Since the BrC effect has a strong spatial inhomogene-
ity (see Fig. 13), the analysis demonstrated in Fig. 14 was
repeated within the BB regions and seasons discussed in
Sect. 2.3.2. For examples of this analysis in the SHSA and
AUST regions, see Figs. A3 and A4. Within BB regions, the
BrC radiative effect across all test cases is larger, appearing
to scale linearly from the global annual effect. This makes
sense, given BrC aerosols are more highly concentrated near
BB sources and low elsewhere (see Fig. 4). Furthermore,
since there is no regional difference in defined BrC physi-
cal or optical properties, an effect proportional to the global
average would be expected, with minimal differences result-
ing from regional SOAs and oxidant concentrations (affect-
ing concentration of secondary BrC and rate of primary BrC
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Figure 14. Global, annual average radiative effect of each BrC simulation, calculated according to Eq. (8). Error bars show the standard
deviations, which can be interpreted as the variability of each simulation across repeated years of simulation. Different-colored bars indicate
a different BrC property varied, and dashed bars indicate the base case of BrC representation (this is shown twice for ease of comparison to
other simulations), consistent with Figs. 7 and 8.

aging). It should be noted that narrowing the spatial and tem-
poral scales of analysis also results in larger internal variabil-
ity. As such, sensitivity tests are not distinguishable from one
another, and no additional conclusions can be drawn from
this regional analysis.

3.4 Study limitations

There are processes influencing BrC in the atmosphere that
were not included in the work presented here, posing lim-
itations to our estimate of the BrC radiative effect. Firstly,
chemical aging of secondary BrC was not simulated, de-
spite laboratory studies showing secondary BrC undergoes
bleaching. As mentioned in Sect. 2.2.4, our current BrC ag-
ing scheme does not account for the semi-volatile nature of
SOAs; therefore it cannot be used to bleach secondary BrC.
This may cause the SOA contribution to BrC warming to
be overestimated, as SOA absorption should decrease by at
least 50 % during the day, so we plan to include this in fu-
ture work. Aqueous-phase aging of BrC, which has faster
rates of browning and similar rates of bleaching compared
to heterogenous aging (Zhao et al., 2015; Hems et al., 2021),
was also not included. Faster browning, with limited change
in bleaching, may increase BrC-induced warming. On the
global annual scale of analysis presented here, however, it
may not have a discernible effect, just as browning, which
resulted in a build-up of more-absorbing BrC overnight,
showed no distinguishable effect in sensitivity tests.

Another limitation of this scheme is that water-soluble
and water-insoluble fractions of BrC were not differentiated
or characterized with different optical properties and aging.
This was done to be consistent with pre-existing OA repre-
sentation in ModelE, as BB OAs and biogenic SOAs are not
differentiated by solubility or hygroscopicity (Koch, 2001),
and, as mentioned in Sect. 2.2.3, changes to prescribed BrC
solubility affect the total organic burden and skew estimates
of the BrC radiative effect. Studies have shown, however,
that water-insoluble BrC can be more absorbing than water-
soluble BrC (Chen and Bond, 2010; Liu et al., 2013; Laskin
et al., 2015; Satish et al., 2020). It is possible that chemical
aging also differs between these two BrC types, for instance
darker water-insoluble BrC being more resistant to bleach-
ing, since reactions may proceed faster in the aqueous phase
(Hems et al., 2021). Accounting for these differences in BrC
solubility types could change model sensitivity to refractive
index and aging. Further study on aging in water-soluble and
water-insoluble conditions could clarify the potential impact
of not differentiating BrC by solubility within ModelE.

While missing aging processes may cause an overestima-
tion of the BrC radiative effect, there are some sources of
BrC that were not introduced into ModelE, resulting in a pos-
sible underestimation of BrC absorption and therein radia-
tive effect. SOAs originating from aromatic precursors have
been shown to absorb light (Liu et al., 2016). ModelE, how-
ever, does not yet have aromatic gases explicitly represented
and therefore does not have the ability to simulate aromatic
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SOAs. Additionally, as mentioned in the introduction to this
study, recent work has identified a darker, more refractory,
less-soluble subset of BrC closely resembling tar balls (Saleh
et al., 2018). These aerosols have been shown to absorb not
just in the UV–VIS wavelength range but also in the near-IR
(Hoffer et al., 2017; Corbin et al., 2019; Chakrabarty et al.,
2023). Since our representation of BrC only accounts for ab-
sorption in the 300 to 770 nm range, this tar ball subset of
BrC could constitute an important source of organic warm-
ing in longer wavelengths. Further attention should be given
to the sources and optical properties of this subset to allow
for incorporation into climate modeling.

4 Conclusions

Carbonaceous aerosols like OAs are expected to grow in im-
portance as climate forcers, as wildfire frequency and inten-
sity increase with climate change, yet OA forcing still con-
tributes a large uncertainty (± 0.23 Wm−2) to Earth system
models (Flannigan et al., 2009; Keywood et al., 2013; Tsi-
garidis and Kanakidou, 2018; Szopa et al., 2021). To im-
prove the physical and chemical correctness of OAs and al-
low better calculation of OA forcing, light absorption of BrC
aerosols must be accounted for in climate models. We pre-
sented the first implementation of BrC in the GISS ModelE
ESM. BrC was introduced to ModelE through the definition
of four properties or processes: the BB BrC-to-OA emissions
ratio, the attribution of absorption to biogenic SOAs, the
imaginary RI of primary and secondary BrC, and a unique
chemical aging scheme for primary BrC. We conducted sen-
sitivity tests in which these properties were varied to, firstly,
estimate the average radiative effect of BrC and, secondly,
understand how that effect may change across a reasonable
range of uncertain parameters. Finally, ModelE performance
with BrC aerosols was evaluated by comparing simulated to-
tal AOD and AAOD to retrieval data from AERONET and
MODIS.

Both sensitivity tests and evaluation against retrieval data
showed BrC has no discernible effect on total AOD and
AAOD. There was no observable change in total AOD,
AAOD, or therein SSA, between the control simulation with
no BrC and all sensitivity test simulations. Furthermore,
comparison to retrieved optical depth showed similar model
skill with and without BrC. Biases in ModelE AOD, namely
an overestimation compared to retrieval AOD, were iden-
tified in this study, but these were attributed to changes in
model implementation, not the BrC scheme presented here.
While BrC did not change model performance in terms of op-
tical depth, it did reduce the total cooling effect of OAs, con-
tributing a net TOA radiative effect of 0.04± 0.01 Wm−2,
based on the global annual average of our base case simu-
lation. Therefore, the physical and chemical complexity in-
troduced by BrC may not be necessary to improve ModelE

AOD or AAOD performance, but it should be included to
increase the accuracy of OA radiative forcing estimates.

With regard to BrC parameters that were represented in
this study, sensitivity tests showed that separating BrC from
other organics, including secondary BrC, and simulating
chemical bleaching had distinguishable radiative effects, and,
as these properties are consistent with laboratory studies,
they should be accounted for. Because bleaching has been
identified as a key process, the effect of varying the threshold
absorption of primary BrC should be investigated in future
work. Variation in the primary BrC imaginary RI and BrC-to-
OA emission ratio, as well as simulation of chemical brown-
ing, did not show distinguishable effects. This indicated that
in the scope of the global annual average radiative effect, it
is not critical to precisely define values for these properties,
and browning can be ignored. On smaller spatial and tem-
poral scales, however, these may be of greater importance.
Since model evaluation with total AOD and AAOD provided
no insight into BrC properties, our next step is to further con-
strain this parameter space.

There have been in situ measurements of BrC absorp-
tion, in or downwind of fires, measured during flight cam-
paigns (Zhang et al., 2017; Zeng et al., 2020, 2021, 2022;
Washenfelder et al., 2022), and retrievals of BrC properties,
mass, and optical depth, from the AERONET and IMPROVE
ground-based networks (Arola et al., 2011, 2015; Schuster et
al., 2016; Chow et al., 2018) and satellite data (L. Li et al.,
2020, 2022). These can be used to directly evaluate ModelE
BrC representation. In a future study, which is already under-
way, we will present model evaluation against such in situ
measurements of BrC absorption in addition to a retrieval
of BrC AOD and AAOD from AERONET (Schuster et al.,
2016). We perform these comparisons either at 550 nm, when
provided by the data, or at more BrC-relevant wavelengths
by applying AAE suggested by campaign principal inves-
tigators (PIs) to ModelE output. By comparing these BrC-
specific data to those of ModelE, we hope to constrain the
BrC parameter space defined here, specifically evaluate per-
formance of BrC absorption, and further improve OA repre-
sentation.

5 Best practices for complexity of BrC
representation in ModelE

Based on the findings and conclusions of this study, we
present best practices for representing BrC in ModelE. With
the aim of balancing accuracy with computational cost,
we specifically discuss the degree of complexity needed.
This summary is a product of model sensitivity tests (see
Sect. 3.3.2); when the BrC radiative effect of test simulations
is distinguishable, we choose parameters based in literature
analysis, which were identified and derived in Sect. 2.2. Our
best practices for the ModelE scheme are inherently depen-
dent on the research objective of simulating BrC aerosols.
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If the objective is to capture total AOD and AAOD at
550 nm, the irradiance-weighted average wavelength in the
solar spectrum, no explicit BrC representation is needed.
However, the same cannot be said for capturing total optical
depth at shorter UV and near-UV wavelengths, where BrC
absorption is maximized and likely contributes more to total
AAOD. If the research objective is to estimate the global an-
nual average TOA BrC radiative effect, BrC should be explic-
itly represented, biogenic SOAs should be treated as brown
(though much less absorbing than primary BrC), and a BrC
bleaching process should be simulated. In this case, the BrC-
to-OA emissions ratio and the imaginary refractive index of
primary BrC at 550 nm do not need to be strictly defined. We
can instead apply a reasonable range for these parameters:
15 %–55 % for the BrC-to-OA BB emissions proportion and
0.003–0.03 for kBrC, 550 nm, derived in Sect. 2.2.1 and 2.2.3,
respectively. Regarding regional studies of the BrC radia-
tive effect, though our regional sensitivity analysis yielded
no additional conclusions, parameterizations for kBrC, 550 nm
and the BrC-to-OA emissions ratio can be tailored to spe-
cific BB regions given prior knowledge of regional BC and
OA emissions. This would allow a region-specific, likely nar-
rower range of parameters to be utilized. Finally, if the re-
search objective is to capture the diurnal variability in OA ab-
sorption, a browning process should be included in addition
to the processes and parameters for the global radiative ef-
fect case. Both browning and bleaching processes should be
linked to and driven by hydroxyl, nitrate oxidant, and ozone,
concentrations, to allow the build-up of more-absorbing BrC
at night via nitrate oxidation and more rapid aging during the
day.

Appendix A

Table A1. UV–VIS-band-averaged complex refractive index of ModelE BrC tracers. For details of the calculation of these values, see
Sect. 2.2.3.

BrC Tracer Real refractive index (n) Imaginary refractive index (k)

Weakly absorbing BrC: emitted 1.53 0.003
Moderately absorbing BrC: emitted 1.53 0.0165
Strongly absorbing BrC: emitted 1.53 0.03
Isoprene SOA 1 1.53 2.28× 10−3

Isoprene SOA 2 1.53 2.26× 10−3

α-pinene SOA 1 1.53 9.01× 10−4

α-pinene SOA 2 1.53 4.91× 10−4
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Table A2. ModelE prescribed second-order rate constant for each BrC aging reaction driven by atmospheric oxidants. Constants are derived
from a kinetic model provided by Hems et al. (2021).

Aging process Oxidant Second-order rate constant

Browning OH 1.9× 10−11 cm3 molecule−1 s−1

NO3 1.7× 10−13 cm3 molecule−1 s−1

Bleaching OH 4.4× 10−11 cm3 molecule−1 s−1

O3 9.15× 10−16 cm3 molecule−1 s−1

Table A3. Months regarded as the peak fire period for each biomass burning region in model evaluation against AERONET and MODIS
data. Months are based on periods of peak emission as discussed in Pan et al. (2020), while dominant fire sources are taken from van der
Werf et al. (2017) and listed in decreasing order of fire carbon emissions magnitude.

Biomass burning region Months regarded as peak biomass Dominant fire sources
burning period

Southern-Hemisphere South America (SHSA) August, September, October Tropical deforestation/degradation,
savanna/grassland/shrubland fires

Southern-Hemisphere Africa (SHAF) July, August, September Savanna/grassland/shrubland fires

Temperate North America (TENA) June, July, August Temperate forest fires,
savanna/grassland/shrubland fires,
agricultural waste burning

Boreal North America (BONA) June, July, August Boreal forest fires

Southeast Asia (SEAS) March, April, May Savanna/grassland/shrubland fires,
tropical deforestation/degradation,
agricultural waste burning

Boreal Asia (BOAS) March, April, May Boreal forest fires,
agricultural waste burning

Equatorial Asia (EQAS) July, August, September Peat fires,
tropical deforestation/degradation

Australia (AUST) September, October, November Savanna/grassland/shrubland fires,
temperate forest fires

Figure A1. BrC-to-OA emissions ratio, calculated according to Eqs. (1) and (2) using BC and OA emissions from the CEDS BB inventory
(year 2000 climatological monthly emissions averaged over the entire year). The white space shows where BC or OA emissions are zero.
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Figure A2. Simulated ModelE optical depth at 550 nm plotted in the log10 space against retrieved MODIS optical depth. Each point cor-
responds to the optical depth in 1 month, averaged across the 2007–2016 period, in each grid cell (ModelE has been re-gridded to match
MODIS’ 1° by 1° resolution). ModelE control case optical depth values are shown as x’s, while base case values are shown as o’s. The slope
and r2 of the linear regression are displayed on the top-right corner of each plot, and regression lines are included within each plot. Panel
(a) shows global AOD values. Panel (b) shows AOD in BB regions during months considered peak for BB, with each color representing a
different region.
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Figure A3. Radiative effect of each BrC simulation, averaged within the Southern-Hemisphere South America (SHSA) BB region across
months of peak fire activity – August, September, and October (ASO; see Table A2). Consistent with Fig. 14, the BrC effect is calculated
according to Eq. (8). Error bars show the standard deviations (variability of each simulation across repeated years of simulation), different-
colored bars indicate a different BrC property varied, and dashed bars indicate the base case of BrC representation (shown twice for ease of
comparison to other simulations), consistent with Figs. 7, 8, and 14.

Figure A4. Radiative effect of each BrC simulation, averaged within the Australia (AUST) BB region across months of peak fire activity –
September, October, and November (SON; see Table A2). The BrC effect is calculated according to Eq. (8), and displayed error bars, bar
color, and dashed bars are consistent with Figs. 7, 8, 14, and A3.

https://doi.org/10.5194/acp-24-6275-2024 Atmos. Chem. Phys., 24, 6275–6304, 2024
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Code and data availability. The GISS ModelE code is publicly
available at https://simplex.giss.nasa.gov/snapshots/ (National
Aeronautics and Space Administration, 2024); the most recent
public version is E2.1.2. The Fortran code used for the sim-
ulations described in this study, along with the model output,
the Alaskan peat sample input, and the fitted data (see dis-
cussion on “first parameterization” in Sect. 2.2.3), is available
at https://doi.org/10.5281/zenodo.8342620 (DeLessio et al.,
2023). The model code can be found in the file titled “mod-
elE_code_092723.tar.gz”, the model output is in the file titled
“ModelESimAndEmisData.tar.gz”, and the Alaskan peat data
are in the Excel file titled “KK Parameterization-AK Peat.xlsx”.
Model simulation data are averaged over specified time peri-
ods and included as netCDF files; individual file names start
with the period averaged over and end with the simulation
type (“SensitivitySim{#}” or “transient_{ctrl/base}case”). The
CEDS emissions file used for Eq. (1) (see Sect. 2.2.1), titled
“CMIP6_CEDS_BBURNemis_forEq1.nc”, is also included with
these simulation data. MERRA-2 reanalysis data are available
at https://doi.org/10.5067/QBZ6MG944HW0 (GMAO, 2015).
AERONET data are available at https://aeronet.gsfc.nasa.gov/
cgi-bin/webtool_inv_v3?stage=3&region=United_States_East&
state=Maryland&site=GSFC&place_code=10&if_polarized=0
(AERONET, 2023). Lastly, MODIS data are available at
https://doi.org/10.5067/MODIS/MOD04_L2.006 (Levy and Hsu,
2015).
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