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Abstract. Consideration of uncertainty in volcanic ash cloud forecasts is increasingly of interest, with an in-
dustry goal to provide probabilistic forecasts alongside deterministic forecasts. Simulations of volcanic clouds
via dispersion modelling are subject to a number of uncertainties relating to the eruption itself (mass of ash
emitted and when), parameterisations of physical processes, and the meteorological conditions. To fully explore
these uncertainties through atmospheric dispersion model simulations alone may be expensive, and instead, an
emulator can be used to increase understanding of uncertainties in the model inputs and outputs, going beyond
combinations of source, physical, and meteorological inputs that were simulated by the dispersion model. We
emulate the NAME (Numerical Atmospheric-dispersion Modelling Environment) dispersion model for simula-
tions of the Raikoke 2019 eruption and use these emulators to compare simulated ash clouds to observations
derived from satellites, constraining NAME source and internal parameters via history matching. We demon-
strate that the effect of varying both meteorological scenarios and model parameters can be captured in this way
with accurate emulation and using only a small number of runs per meteorological scenario. We show that ac-
counting for meteorological uncertainty simultaneously with other uncertainties may lead to the identification
of different sensitive model parameters and may lead to less constrained source and internal NAME parameters;
however, through idealised experiments, we argue that this is a reasonable result and is properly accounting for
all sources of uncertainty in the model inputs.

1 Introduction

Atmospheric dispersion models are used to predict the at-
mospheric transport, dispersion, and removal of ash emitted
during a volcanic eruption. NAME (Numerical Atmospheric-
dispersion Modelling Environment; Jones et al., 2007; Beck-
ett et al., 2020) is the atmospheric dispersion model used by
the London VAAC (Volcanic Ash Advisory Centre) and is
used during Icelandic eruptions (such as the 2010 eruption
of Eyjafjallajökull; Webster et al., 2012) to provide guidance
on the presence of ash in the atmosphere and reduce the risk
to aviation. Uncertainties exist in dispersion model predic-
tions due to errors and uncertainties in the input meteorolog-
ical data, the model parameterisations (describing physical

processes such as turbulence), and estimates of volcanic ash
emissions. It is important to understand and to quantify these
uncertainties and to communicate uncertainty information to
end-users. Indeed, there is a requirement for the VAACs to be
able to provide probabilistic forecasts by late 2025, alongside
deterministic volcanic ash cloud forecasts.

When a computer model (or “simulator”) cannot be eval-
uated fast or often enough at varied settings of its inputs, it
can be replaced by an “emulator” trained on a relatively small
number of simulations of the true physical model. This em-
ulator can then be used to perform analyses that would not
be possible (within a reasonable time frame) when using the
original simulator. An emulator allows fast predictions to be
evaluated for unseen combinations of the inputs, allowing the
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(often) high-dimensional input space to be more extensively
explored and accounting for the uncertainty in the inputs.
An emulator of the true simulator can then be used for tasks
including sensitivity analysis (Saltelli et al., 1999; McNeall
et al., 2024), Bayesian calibration (Kennedy and O’Hagan,
2001; Higdon et al., 2008; Sexton et al., 2011), and history
matching (Craig et al., 1996; Vernon et al., 2010; Williamson
et al., 2013; Andrianakis et al., 2015; Salter et al., 2019).

Within dispersion modelling, past studies have taken dif-
ferent approaches to assessing uncertainties in the ash cloud
forecast produced by NAME for volcanic eruptions, explor-
ing the effect and importance of different simulator inputs,
both with and without emulation (e.g. Leadbetter et al., 2022;
Jones et al., 2023). Harvey et al. (2018) studied the 2010 Ey-
jafjallajökull eruption with NAME and emulated the mean
ash column loading for 75 geographical regions for several
hourly time points. NAME was run at two spatial resolu-
tions, with the faster, coarser version being used to inform
emulators for the slower version. This study considered the
sensitivity of the output to the source parameters (those de-
scribing the emissions) and internal NAME input parameters
via emulators but did not calibrate to satellite observations,
and all simulations used a single deterministic meteorologi-
cal scenario; i.e. uncertainty in the meteorological conditions
was not considered.

For the Raikoke 2019 eruption, Capponi et al. (2022) ran
simulations of NAME with varied source and internal input
parameters and with input meteorology drawn from an 18-
member ensemble, comparing the NAME ash cloud forecasts
to satellite observations and constraining the source and in-
ternal inputs as the eruption progressed in time in order to
find the parameters that lead to accurate (or the most accu-
rate) output. Unlike Harvey et al. (2018), emulation was not
used; instead, multiple batches of NAME simulations were
performed, and only these simulations were used to produce
estimates of the inputs given the satellite observations.

In this article, we emulate NAME for simulations of the
2019 Raikoke eruption and combine aspects of the two ap-
proaches described above, namely fitting emulators to out-
put summaries, as in Harvey et al. (2018), and comparing
to observations, as in Capponi et al. (2022). Unlike Harvey
et al. (2018), we vary the meteorology and account for this
source of uncertainty via emulators. Unlike Capponi et al.
(2022), we use different metrics for comparing NAME and
observations and calibrate the inputs using emulators rather
than constraining input distributions using only the available
set of NAME simulations. This allows the full joint space of
NAME internal parameters, source inputs, and meteorologi-
cal scenarios to be explored and constrained, with all uncer-
tainties accounted for, aiming to protect against incorrectly
over-constraining inputs due to not considering all sources of
uncertainty in the inputs or due to only considering a limited
number of NAME simulations.

Given emulators for the ash cloud at different lead times
and different spatial regions, we constrain the space of inter-

nal and input simulator parameters using satellite retrievals
of ash column load, giving posterior estimates of inputs via
history matching. We consider different ways of emulating
NAME and consider different metrics for calibrating the pa-
rameters while accounting for meteorological uncertainty,
using NAME simulations at known inputs as proxy obser-
vations as a proof of concept before using satellite retrievals
from the Raikoke eruption. At longer lead times, or as we
restrict to a smaller subset of the output, the meteorologi-
cal scenario has a larger impact (either through the ensemble
spread increasing through time or through the meteorology
affecting the spatial distribution of ash), and accounting for
this properly can highlight different parameter sensitivities
and relationships through a more rigorous exploration of the
uncertainties due to all variable inputs.

Section 2 describes the NAME model, the simulation in-
puts and outputs used in this study, and the available satel-
lite observations for the Raikoke 2019 eruption. Section 3
outlines emulation and history matching and how these are
applied to NAME. Section 4 fits emulators to different sum-
maries of the NAME output, assesses their validity for pre-
dicting out of sample, and uses these emulators to calibrate
the uncertain input parameters where the observations are ei-
ther a known simulation of NAME or derived from satellite
retrievals. Section 5 discusses the implications of the results
and suggests potential extensions.

2 Volcanic ash simulations and observations

2.1 Modelling volcanic ash with NAME

NAME is an offline atmospheric dispersion model driven by
input meteorology (Jones et al., 2007). In the Lagrangian
framework, model particles, each representing a certain mass
of volcanic ash, are advected through the model atmosphere
according to the ambient wind obtained from the input me-
teorological data. Dispersion of volcanic ash is simulated us-
ing random walk techniques. Removal of ash from the atmo-
sphere by wet and dry deposition processes are parameterised
within NAME, including gravitational settling of heavy ash
particles. Details of the emissions, such as the emission rate,
the emission height, the emission time and the particle size
distribution, need to be specified by the user.

Typically, Numerical Weather Prediction (NWP) data are
used as input meteorological data for NAME. Meteorologi-
cal uncertainty is generally considered by means of meteo-
rological ensembles – a set of NWP forecasts, referred to as
ensemble members, obtained by running NWP models mul-
tiple times with perturbed initial conditions. The spread in
the ensemble forecasts represents the meteorological uncer-
tainty.
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2.2 Dispersion modelling of Raikoke 2019

Raikoke is a volcanic island located at 48.29° N, 153.25° E.
The 2019 eruption studied here began around 18:00 UTC on
21 June 2019 and lasted for approximately 12 h. Aspects
of this event have been extensively studied, including by
de Leeuw et al. (2021), Smirnov et al. (2021), Capponi et
al. (2022), Harvey et al. (2022), and Prata et al. (2022). For
this study, we use an ensemble of 1000 NAME simulations
of the Raikoke eruption performed by Capponi et al. (2022).

The eruption source parameters (height, distal fine ash
fraction, mass eruption rate, ash density, and duration) and
internal NAME inputs (relating to free-tropospheric turbu-
lence and unresolved mesoscale motions; Webster et al.,
2018) that were varied in these 1000 simulations, and their
chosen prior ranges, are shown in Table 1. The 1000 sets
of inputs were chosen via a Latin hypercube design, so that
the design is space-filling across the full parameter space.
For full details of the chosen prior ranges and other design
choices made when generating the initial 1000-member de-
sign, see Capponi et al. (2022).

The mass eruption rate (MER) is an important driver of the
model output and is calculated from the other inputs as

MER= 50.7× 107
×H 1/0.241

×MERF×DFAF ,

where the MERF and DFAF (distal fine ash fraction) in-
puts have been applied to the relationship from Mastin et al.
(2009) (written here in g h−1).

For each of the 1000 sets of source and internal parame-
ters, the meteorological input is sampled from an 18-member
meteorological ensemble, MOGREPS-G (members labelled
0–17), initialised at 12:00 UTC on 21 June 2019 (Bowler et
al., 2008). Each input set is simulated with a single meteoro-
logical scenario. The resulting 1000-member NAME ensem-
ble contains 30 simulations with meteorological scenarios
0 and 17 and 58–60 simulations with scenarios 1–16. Cap-
poni et al. (2022) performed subsequent simulations based
on their constrained parameter distributions; however, we re-
strict to the initial 1000-member space-filling design.

2.3 Observations

To enable simulations of the event to be compared to the
real world, observations from the geostationary satellite
Himawari-8 are used (Bessho et al., 2016). These data are
available at both high temporal and high spatial resolution.
Pixels are classified as either containing ash or not with the
detection algorithm described in Saint (2023). The volcanic
ash retrieval algorithm of Francis et al. (2012) is used to
determine an estimate of ash column loading for the pixels
classified as containing ash, together with an error estimate
on the retrieved values. Further processing is undertaken to
additionally classify pixels as clear sky and regrid to a reg-
ular latitude–longitude grid corresponding to that used for
the NAME predictions with the resolution 0.45°× 0.3°. This

processing is as described in Pelley et al. (2021), except that
the target grid is slightly higher in resolution, and there is no
averaging in time, with only the satellite data from the times
indicated used.

Figure 1 plots the output of three NAME simulations at
12 h after the start of the eruption (with least, most, and
close-to-average ash) compared to the equivalent satellite re-
trievals. The observed ash cloud may be incomplete due to
failures of the detection or retrieval algorithm to either clas-
sify pixels as ash or reach an acceptable solution for the ash
cloud properties. Although in some cases obscuring mete-
orological cloud can be an issue for the detection, most of
the failures here are caused by either high ash column load-
ings or ash particle sizes beyond the detection algorithm’s
sensitivity range. Column loadings lower than approximately
0.2 g m−2 are not usually detected by this algorithm but qual-
itative assessment of the satellite imagery suggests that much
of the ash in the yellow regions visible from the NAME runs
in Fig. 1 was not present. Note that the observations plotted
here are not perfectly consistent with Capponi et al. (2022),
due to use of an updated method for processing satellite ob-
servations and regridding of the observations.

3 Methods

For clarity around the use of “model”, hereafter “simulator”
will refer to NAME, and “emulator” will refer to a statistical
model.

3.1 Emulation

Let the physics-based simulator (i.e. NAME) be denoted by
f (·), which takes a vector of inputs x ∈ X ⊂ Rp, where X
denotes the p-dimensional space of possible simulator in-
puts and returns output f (x). Here, x represents the values
of the inputs described in Table 1 (i.e. the source inputs and
internal NAME parameters), with the meteorological input
ignored for now. The simulator is run for a set of n inputs
X= (x1, . . .,xn) for xi ∈ X , resulting in a set of n simula-
tions F= (f (x1), . . .,f (xn)), where each f (·) ∈ R` is vec-
torised output of (or processed from) a single NAME sim-
ulation. Given a set of simulations, we fit a statistical model
or “emulator” so that the simulator output can be predicted
for any new input without having to run the true (expensive)
simulator.

When the simulator output is a single value (or has been
summarised to be a single value; for example, total mass of
atmospheric ash at 06:00 UTC on 22 June 2019), i.e. `= 1,
Gaussian processes (GPs) are a natural choice of emulator
and allow fast prediction at unseen settings of x, along with
uncertainty in this prediction (we have not observed the true
simulator at these points), which generally increases as we
move further (in input space) from known data points. In
general, conditional on the n simulator runs F, we emulate
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Table 1. List of source parameters and internal NAME parameters that are varied, and their prior ranges, in the NAME simulations of the
Raikoke 2019 eruption (from Capponi et al., 2022).

Parameter Description Range

H Plume height above summit [9,17] km
DFAF Distal fine ash fraction [0.5,20]%
MERF Uncertain factor for mass eruption rate (MER) [

1
3 ,3]

ρ Ash density [1350,2500] kg m−3

L Eruption duration [9,15] h
σu Standard deviation of horizontal velocity for free-tropospheric turbulence [0.0025,2.71]m s−1

σw Standard deviation of vertical velocity for free-tropospheric turbulence [0.001,1]m s−1

τu Horizontal Lagrangian timescale for free-tropospheric turbulence [100,900] s
τw Vertical Lagrangian timescale for free-tropospheric turbulence [33 1

3 ,300] s
mσU Standard deviation of horizontal velocity for unresolved mesoscale motions [0.27,1.74]m s−1

Figure 1. Predicted ash column loads (logarithm of g m−2) at 06:00 UTC on 22 June 2019 from three NAME simulations leading to least
ash (a), most ash (b), and closest-to-ensemble-mean ash (c) and the corresponding satellite retrieval estimates (d). The green triangle indicates
the location of Raikoke.

f (x) as

f (x)|F∼ GP
(
µ(x),C

(
x,x′

))
, (1)

for mean function µ(x) (which may range from constant to
a complex regression model in the inputs) and covariance
function C(x,x′) (often squared exponential or Matérn), con-
taining parameters controlling the variance, and correlation
in each input dimension. The covariance may also include
a “nugget” term (Andrianakis and Challenor, 2012) repre-
senting variance around training points. If this is zero, then
the GP interpolates training data exactly. If this is estimated,
then it may represent a number of uncertainties, including the
effect of unaccounted for (inactive) inputs or stochasticity in
the simulator. The nugget may be assumed to be constant
across input space or dependent on x (e.g. hetGP; Binois et
al., 2018).

When ` > 1, for example, if we wish to emulate spatial,
temporal, or spatiotemporal simulator output, the two main
approaches are based around GPs as follows: by assuming
independence and fitting GP emulators to each output inde-
pendently (Lee et al., 2012) or by using a basis decomposi-
tion over the output F and emulating the coefficients given
by projection onto this basis with GPs (Higdon et al., 2008;
Salter et al., 2019). In what follows, we consider total ash col-
umn loads, aggregated across different regions and for differ-
ent lead times (as in Harvey et al., 2018), and fit independent
GP emulators to each of these summaries of the simulator
output.

NAME also requires meteorological data as an input
with the meteorological scenario m drawn from M, some
space of possible meteorologies; in this application, M=
{0, . . .,17} represent the 18 MOGREPS-G ensemble mem-
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bers (for which simulations were run by Capponi et al.,
2022). Given the nature of the NAME simulations in this
study, we can account for this meteorological uncertainty via
emulation in two different ways.

First, we assume that NAME is stochastic with respect to
m (i.e. if a NAME simulation is run at input x for different
choices of m from M, then the output f (x) is different). We
fit a single emulator that captures the dependence due to the
inputs x, and the variability across the different meteorolog-
ical scenarios m. This can be approached via Eq. (1), with
the nugget term representing the variability in the output at
x due to m. Rather than exactly emulating any combination
of (x,m), this emulates the mean of NAME at x, given any
sample of m from the 18-member MOGREPS-G ensemble.

For a particular x, we can write E
[
f (x)

]
,Var

[
f (x)

]
(we

do not need to know m because we are not emulating or pre-
dicting for a specific m but across all m). The expectation is
therefore targeting the mean of the NAME output at x, if we
were to run it at all 18 meteorological inputs. The variance
here accounts both for extrapolation from observed points in
the input space but also for the fact that we can view f (x) at
18 different choices of m.

As a second approach, because the meteorological scenar-
ios are sampled from a small, finite set, each of the 18 mete-
orological scenarios, m, could be thought of as representing
a different configuration, fm, of NAME. Each configuration
gives deterministic output at input x, and we could emulate
each in turn as follows:

fm(x)|Fm ∼ GP
(
µm(x),Cm(x,x′)

)
, m= 0, . . .,17 , (2)

where Fm is the subset of F containing simulations run using
meteorological input m, and the mean µm(·) and covariance
Cm(·, ·) functions are estimated for each m separately.

In this approach, for a particular summary of the NAME
output, we fit a set of 18 emulators, and for any choice of x,
we can predict the simulator output at this input vector for all
of the 18 meteorological scenarios as follows:(
E
[
fm(x)

]
,Var

[
fm(x)

])
, m= 0, . . .,17 .

The variance here only reflects the fact that we have not simu-
lated NAME itself at all combinations of (x,m) (the emulator
is extrapolating from known points).

In summary, the first approach predicts the output of
NAME at x, averaged across the 18 meteorological ensem-
ble members, and the second predicts the output for a specific
combination of (x,m). The latter has the benefit that it repre-
sents NAME in a truer sense; we can query the emulator for
any combination of (x,m), as with NAME itself. However,
the first approach does not in general require a small ensem-
ble of meteorological scenarios and could instead capture the
uncertainty due to a more continuous set of scenarios (e.g. if
every simulation of NAME was performed with a slightly
perturbed meteorological input).

In Sect. 4, we consider both approaches, referring to them
as the “overall” and “MET-specific” emulators, respectively.

3.2 History matching

Given an emulator(s), we may wish to compare to real-world
observations of the modelled quantity and constrain the input
space based on this. Often this is done via history matching
(Craig et al., 1996), where we rule out clearly poor choices of
the inputs, returning a space of not implausible x ∈ X , with
the retained part of X containing inputs that may be consis-
tent with observations, given uncertainty due to emulation,
observation error, and inconsistencies between the real-world
and the simulator. We assume

z= f
(
x∗
)
+ e+ η ,

where f (x∗) is the simulator at the “best” input x∗, which
represents real-world observations z up to observation error
e and model discrepancy η (differences between observations
and the simulator are independent of the inputs x, e.g. due to
missing or simplifications of physical processes). The sim-
ulator f (·) can be replaced by an emulator, and the “im-
plausibility” of an input x is given by (Vernon et al., 2010;
Williamson et al., 2013)

I(x)=
|z−E

[
f (x)

]
|√

Var
[
f (x)

]
+Var[e] +Var[η]

, (3)

where the expectation and variance of f (x) are from an
emulator (if we were able to run the simulator at any x,
Var

[
f (x)

]
= 0), and Var[e],Var[η] are the variance of the

observational error and model discrepancy respectively. The
not-ruled-out-yet (NROY) space is defined as the subset of X
where the implausibility falls below threshold T as follows:

XNROY = {x ∈ X |I(x)< T } ,

with T = 3 being a standard choice by the three-sigma rule
(Pukelsheim, 1994).

XNROY contains settings of the inputs where, given all
sources of uncertainty, we cannot say that output f (x) is in-
consistent with the observed value, z. It is not guaranteed that
such x produces simulator output close to z, due to emulator
variance, but that we are not yet sure if it will. Initially, it
may not be possible to rule out some parts of the parameter
space due to high emulator variance (perhaps due to lack of
training points), but we may be able to rule out these regions
later by running new designs on the expensive simulator and
refining emulators.

History matching is often used as an iterative procedure in
this way, with the goal to zoom in on parts of X with out-
put consistent with z, and it can be performed for multiple
outputs or summaries simultaneously (Vernon et al., 2010;
Williamson and Vernon, 2013). The implausibility for all
variables may be required to fall below T , but, alternatively,
a more conservative definition may be used with x instead
ruled out based on the kth highest implausibility at x, to pro-
tect against incorrectly discarding an input due to a single
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poor emulator or due to misspecified discrepancy. If emulat-
ing the entire plume rather than summaries of the output so
that the observations and emulator prediction E

[
f (x)

]
are `-

length vectors, then the formula in Eq. (3) generalises to a
distance metric across `-dimensional space, with `×` obser-
vation error and discrepancy variance matrices. Full details,
including how to efficiently history match for high `, are pro-
vided in Salter and Williamson (2022).

3.3 History matching for NAME

In Sect. 4, we compare history matching for NAME mod-
elling of the Raikoke eruption using the NAME simulator
only, using different choices of emulator, and using different
levels of conservatism. The overall goal is not to calibratem;
these are deemed to be possible representations of the true
meteorological conditions. The aim is to calibrate the inputs
relating to NAME and the eruption itself (i.e. x) while ac-
counting for the meteorological uncertainty.

In this section, I(x) (no subscript) denotes the implausibil-
ity calculated from the single emulator fitted across all mete-
orological scenarios (e.g. Eq. 1), and Im(x) denotes the im-
plausibility at x for meteorologym ∈M calculated via emu-
lators (Eq. 2). For any given x, we can efficiently evaluate the
expectation and variance for fm(x) for each m using the em-
ulators and hence calculate an implausibility for each choice
of m, {I0(x), . . .,I17(x)}. By repeatedly sampling x ∈ X , we
can use this to explore all possible combinations of (x,m)
and account for uncertainties in both inputs x and meteoro-
logical scenario m simultaneously, assessing how consistent
each combination of (x,m) is with observations.

Below, we outline the rationale behind each definition of
NROY space that we consider. The first two rely on a ran-
dom choice of m and should be broadly similar (up to using
NAME vs. using an emulator for NAME), whereas the latter
two account for the meteorological uncertainty via different
emulators. Both aim to ensure that we do not rule out the
choices of x that may in fact be correct if we were to simu-
late f (x) for an alternative meteorological scenario from the
MOGREPS-G ensemble.

Option 1: simulator-only XS

As a benchmark to compare the emulation approaches to, we
define an NROY space, XS, using only the 1000 NAME sim-
ulations (a similar approach to Capponi et al., 2022, but with
different summaries). Therefore, in Eq. (3), we can only cal-
culate I(x) at the 1000 input vectors x that NAME has been
simulated at, with E

[
f (x)

]
= f (x) and Var

[
f (x)

]
= 0. The

NAME output is dependent on the particular meteorological
scenario that each x was run with, so that the outputs that
are discarded for being too dissimilar from the observations,
and hence, the posterior distributions over x may be biased
by which m was randomly sampled for each simulation of
NAME.

If uncertainty in the NAME output due to meteorology is
small (relative to observation error), then this may not mat-
ter; however, there will always be a risk that a particular sim-
ulation fm(x) is unrepresentative of simulations at x for some
differentm, and hence, this definition cannot completely cap-
ture meteorological uncertainty in the output.

Option 2: pseudo-simulator XP

Option 1 is restrictive due to requiring simulations of NAME;
however, we can approximate what this NROY space would
be for other choices of x via emulation. To represent this ap-
proach, we sample x ∈ X , sample a meteorological scenario
m ∈M uniformly, evaluate the emulator fm(x) for this com-
bination of (x,m), and hence calculate Im(x). This is equiv-
alent to defining the NROY space without accounting for
the meteorological uncertainty and is akin to the approach
in Capponi et al. (2022).

To remove the effect of randomly sampling m, this space
can be found by evaluating Im(x) across all m ∈M and
keeping x such that it is not inconsistent with observations
for at least half of the meteorological scenarios; that is

XP = {x ∈ X |Im(x)< T for ≥ 9/18 m ∈M} .

If x is considered not implausible for only ≤ 8 of the me-
teorological scenarios, then it is therefore more likely we
would have run NAME for this x at one of the 10 implausible
choices, and we therefore rule out this x as it is inconsistent
with reality.

Option 3: overall XO

Here, we evaluate the overall emulator (i.e. treating NAME
as stochastic with respect to m so that the effect of m is ac-
counted for within this single emulator), and hence we have
a single implausibility per x that captures all uncertainties,
including those due to choice of meteorological scenario:

XO = {x ∈ X |I(x)< T } .

Option 4: conservative XC

If a parameter choice x is implausible for one or several me-
teorological scenarios, it may still lead to acceptable output
if we ran NAME for a different m, and so we may wish to
retain that x. Therefore, we should only rule out parts of X
if all meteorological ensemble members lead to implausible
simulator output at x. Conversely, we should keep any input x
if it is deemed to be non-implausible for at least one meteoro-
logical ensemble member (whether this is because this com-
bination of (x,m) leads to NAME being consistent with the
observations or because the emulator variance is high enough
that we cannot safely say it does not match). Therefore, here
we define NROY space such that we retain x ∈ X if Im(x)
falls below the threshold for any m ∈M:

XC = {x ∈ X |Im(x)< T for any m ∈M} ,
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where the implausibility Im(x) is evaluated using the emula-
tor for fm(x).

4 Results

In this section, we emulate aspects of NAME output to allow
a more extensive exploration of the effects that the source
and internal inputs, x, and the meteorological input, m, have
on the output, via the cheap-to-evaluate GP emulators. We
fit emulators for different lead times and regional aggrega-
tions (Sect. 4.1) and assess whether these are accurate for
NAME runs not used in the training set (Sect. 4.2) and how
this changes as the time since the start of eruption increases
or for more localised subsets of the output. We show that the
emulators can be used to consider the distribution of output
at x across all possible m (Sect. 4.3) and use this to motivate
the importance of accounting for meteorological uncertainty
when calibrating x. We assess the accuracy of different emu-
lators and definitions of NROY space in an idealised setting
to demonstrate performance (Sect. 4.4) before considering
the satellite observations (Sect. 4.5).

4.1 Emulating summaries

Using the ensemble of 1000 NAME runs simulating the
Raikoke eruption, as described in Sect. 2.2, and the emula-
tion and calibration techniques, as described in Sect. 3, we
emulate several summaries of the full NAME output. So that
comparisons with observations are possible, we subset the
output to grid locations at which satellite observations are
available for that time point and aggregate the ash column
loads across these locations only (or subsets of these). We
consider three particular time points (12, 24, and 36 h after
the eruption started, referred to as T1, T3, and T5, respec-
tively, for consistency with Capponi et al., 2022) for different
subsets of the observed plume.

1. Total airborne ash at T1, T3, and T5.

2. Total airborne ash at T1 split into north (N) vs. south (S)
by latitude= 48.1° N.

3. Total airborne ash at T1 split into west (W) vs. east (E)
by longitude= 157.7° E.

4. Total airborne ash at T1 split into four regions (NW,
NE, SE, and SW) given by latitude= 48.1° N and lon-
gitude= 157.7° E.

Although VAAC forecasts only go out to 18 h, we have
used longer lead times as well to demonstrate whether the
emulators retain accuracy as meteorological variability in-
creases (other eruptions may have a wider range of meteo-
rological forecasts in the first 18 h than here, so this partly
attempts to demonstrate whether the method can extend to
more variable events). Splitting into different geographical
regions at T1 demonstrates whether spatial variability can be

captured and whether there are different effects of x and m
as we consider smaller regions. This will also assess whether
meteorological dependence matters at shorter forecast lead
times for this eruption.

Satellite observations are given at grid box level, with me-
dian, 10th, and 90th percentiles. We perform the same ag-
gregations as with the NAME output to allow comparisons
between modelled ash and reality. To estimate uncertainty in
these totals, we sum the 10th and 90th percentiles for the rele-
vant grid boxes and, assuming Normality, calculate the vari-
ance, Var[e]. This is an overestimate, as it assumes perfect
correlation and hence inflates this variance; however, the true
correlation structure is unknown, and this conservative esti-
mate is preferable to an underestimation (e.g. through assum-
ing independent errors). As model discrepancy is unknown,
we assume that this is accounted for within this inflated er-
ror variance. In history matching, if we find that we rule out
all of the input space, then this suggests that we misspeci-
fied/underestimated these errors, and we should increase the
discrepancy variance.

Figure 2 plots the log totals (across observed ash loca-
tions) across the 1000 runs for T1 and T5, split by which
MOGREPS-G member was used as the meteorological sce-
nario for each simulation, with the solid vertical and horizon-
tal lines showing the median satellite observation for each
metric, and the dotted lines showing 99 % intervals. There
is a strong relationship for each m individually, with these
slightly shifted, depending on m. Only some of the meteoro-
logical ensemble members lead to simulations in the NAME
ensemble that overlap with the observations (e.g.m= 1 does,
but the simulations with m= 16 do not match T1 and T5 to-
tals at the observed locations simultaneously).

Figures 3 (north and south) and 4 (west and east) similarly
plot the regional splits at T1. As before, for an individual m,
there is a reasonably strong linear relationship between the
two summaries; however, while this is strong and relatively
similar across allm in Fig. 4, in Fig. 3 the relationship is both
more noisy for an individual m and more variable between
different m. This suggests that the variability in the meteoro-
logical scenarios in this case is leading to more differences
in spread north/south than west/east. In each case, there are
NAME simulations that lie within the 99 % interval around
the satellite observations.

Many of the members lie outside the satellite’s uncertainty
range. This is largely expected due to prior ranges leading
to a wide range of possible eruptions, only sampling 1000
points in a 10-dimensional input space (not capturing all pos-
sible simulator behaviours), the NWP not being a perfect
representation of weather conditions, and NAME not being
a perfect simulator of an eruption, among others. However,
it is worth noting that limitations in the satellite detection
and retrieval algorithms that are not accounted for in the pro-
vided uncertainties likely mean that the total mass present is
an underestimate, perhaps by up to an order of magnitude. If
this were accounted for then slightly more members may be
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Figure 2. (Log) total ash column load (in g) in the 1000 NAME simulations aggregated across locations where ash was observed at T1 and
T5 and plotted for meteorological scenarios 1–16. The vertical and horizontal lines indicate the median (solid line) and 99 % interval (dashed
lines) for the satellite observations for these two time points.

Figure 3. (Log) total ash column load (in g) for the 1000 NAME simulations for the split at T1 into north and south regions and plotted for
meteorological scenarios 1–16. Median observations (solid lines) and 99 % uncertainty (dotted lines) are plotted for each regional summary.
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Figure 4. As in Fig. 3 but for the west and east regions at T1.

within the satellite uncertainty. The observed column loads
are at the lower end of the 1000 NAME simulations, which
is a function of the choice of prior ranges for the NAME in-
puts (Table 1).

For each NAME summary above, we fit the emulators de-
scribed in Sect. 3.1; i.e. (1) fitting a single emulator and cap-
turing the meteorological uncertainty within this (“overall”
emulator), and (2) separate emulators trained for each mete-
orological ensemble member in turn (“MET-specific” emu-
lator). In each case, we emulate the logarithm of the total ash
column load and also use the log of the mass eruption rate
(MER) as part of the input vector x, as ash column loads are
linearly related to the emission rate.

For consistency, we split the 1000 NAME simulations into
the same training (75 %) and validation (25 %) sets every
time with sampling stratified by m. The overall emulator is
fitted to these 750 training points, while the MET-specific
emulators are trained on 22 points (MOGREPS-G ensemble
members 0 and 17) or 44–45 points (all other ensemble mem-
bers). In all subsequent sections, predictions for the points in
the validation set are directly comparable as the same runs
are always removed. Given that we already have simulations
of NAME, fitting an individual emulator may take seconds
(MET-specific and few training points) to several minutes
(overall and 750 training points). Depending on whether the
initial versions validate well, we may require repeated fit-
tings (for example, changing the mean/covariance functions)
to find a suitable emulator.

4.2 Out-of-sample predictions

To assess emulator accuracy for the different outputs, we
evaluate each emulator for the 250 points in the validation
set and compare these predictions to the true NAME output.
Across the fitted emulators, 93 %–97 % of the true values lie
within 95 % prediction intervals, indicating that the emula-
tors are capturing uncertainty in out-of-sample predictions
well. Figures 5 and 6 plot the NAME output against emula-
tor predictions (mean and 95 % prediction intervals) for the
250 validation points, for the totals at T1 and T5 respectively,
and for the MET-specific (left) and overall (right) emulators
(see the Appendix for the other emulated summaries).

The error bars in the MET-specific plots account only for
extrapolation via the emulator to combinations of (x,m) that
were not included in the training set. The error bars in the
“overall” plots account for both not training at a particular
x and also the uncertainty across all meteorological scenar-
ios. These predictions always exhibit larger uncertainty, de-
spite the fact that the “overall” emulator is being trained with
750 points, whereas the individual m-dependent emulators
are trained with at most 45 points. This indicates that, given
m, dependence due to the other inputs x is predictable.

Similarly, in each case the mean predictions lie closer to
the diagonal in the MET-specific cases because here we are
plotting an emulator prediction for a specific m against the
NAME output at that (x,m). For the “overall” plots, this com-
pares a prediction for f (x), i.e. averaged across all meteoro-
logical scenarios, against the output for a specific m. If there
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Figure 5. Out-of-sample predictions (point is for expectation; error bars show the 95 % prediction interval) plotted against NAME output
for (log) total ash column load at T1 and for the MET-specific (a) and overall (b) emulators coloured by whether the true value lies within
the 95 % interval (green is for true; blue is for false).

Figure 6. As in Fig. 5 but for (log) total ash column load at T5.

is variability between running NAME for different meteo-
rological scenarios, then the mean prediction should appear
less consistent with particular NAME runs. However, as long
as the particular output is generally captured within the un-
certainty around this emulator prediction (which is the case
around 95 % of the time), then this is not an issue, and the
emulator is capturing the uncertainty due to m as intended.

For T1, both emulators exhibit strong agreement between
the emulator mean and the true NAME output. The strong
correlation in the “overall” plot is therefore indicating that
there is low variability in the T1 total due to the meteorologi-
cal scenario (mean prediction across allm is fairly consistent
with the NAME output generated by a randomly sampledm).
At longer forecast lead times, we would expect that the mete-
orological ensemble diverges and causes greater uncertainty
at a given x, and this is demonstrated by predictions at T5
(Fig. 6). The MET-specific emulators are still quite accurate
(indicating that when we explicitly account for both x and

m, the output is predictable), but there are larger error bars
for the overall emulator, indicating that there is now a larger
effect due to m.

The results are similar when emulating the different re-
gional splits at T1 (see Appendix A); the MET-specific em-
ulators perform accurately for the north/south and west/east
splits, and although they become less accurate at capturing
the mean for the split into four regions, there is still predic-
tive ability. The overall emulators validate similarly for the
west and east regions (agreeing with the earlier assessment
that this split did not introduce much meteorological depen-
dence); however, there is evidence of greater effect ofm with
the north/south split and even more so when splitting into
four regions instead.

Overall, the MET-specific emulators show that when we
account for the meteorological dependence explicitly then
we can accurately predict the total ash across observed loca-
tions, despite only training these emulators on a small num-
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ber of inputs x. At longer lead times, or considering smaller
geographical regions at T1, the overall emulator suggests that
the meteorological variability is increasing; however, accord-
ing to the MET-specific emulators, the joint dependence be-
tween x and m is generally retaining its predictability. This
gives us a tool that can be applied to rapidly produce pre-
dictions for the Raikoke eruption across all meteorological
ensemble members for any particular choice of x.

4.3 Predicting across meteorological scenarios

Given that the emulators are demonstrating predictive abil-
ity, these can be used to explore questions that are time-
consuming if using only NAME. Here, we evaluate the emu-
lators at particular choices of x across all 18 ensemble mem-
bers from MOGREPS-G, explicitly giving the uncertainty in
the simulator output due to m. We evaluate both the overall
emulator and the 18 MET-specific emulators and visualise
the effect of changing the meteorological input.

Figure 7 plots the emulator predictive distributions for the
(log) total ash at T1, where x has been set as the first nine
input vectors used to generate the 1000-member NAME en-
semble; i.e. these were simulated with NAME using a single
m, sampled at random, and the outcome of this simulation
is indicated by the vertical black line in each panel. For the
total at T1, the emulator predictions are relatively consistent
across the 18 choices of meteorological scenario. However,
at T5 (Fig. 8), there is much greater divergence in the 18
MET-specific emulator predictions at a given input x, again
illustrating that there is higher variability at T5 due tom. The
single overall emulator curve in each panel (dark line) has
larger variance than any of the individual densities, as it is
capturing the uncertainty across all m, and in each panel, we
see that the overall prediction is broadly capturing the spread
of the 18 individual predictions.

More specifically, these plots highlight potential issues
with calibration of the input parameters x. Considering
panel 7 in Fig. 8, the log(total ash) value, given from sim-
ulating NAME at this design point and a sampled m, is
≈ 27.6 (vertical black line), which is away from the observed
value (dashed vertical line; ≈ 26.3). Based on this compari-
son alone, we would likely conclude that this choice of x
does not lead to NAME output that is consistent with real-
ity. However, we see that there are two or three predictions
for different choices of meteorological input that are shifted
more towards the observation and that substantially overlap
with this – indicating that if we had, by chance, sampled a
different m at which to run this particular x, then the NAME
output may have been consistent with the observation, and
we would retain this x.

This example is not unique to this particular panel and this
output, and it is clear that the particular m at which NAME
was simulated for a given x may give a misleading represen-
tation or conclusion about that input. Particularly for T5, we
see that the variability due tom is large relative to the emula-

tor uncertainty at a particular x, and often only a small num-
ber of the distributions might intersect with the observations.
The particular m we simulated NAME at may be a biased
version of what we would find if we were able to run NAME
at x for all 18 choices, but we will not know this by only
conducting NAME runs at x for a single m. However, using
the emulators, instead of a single estimate given by running
NAME at a particular m, we can now predict for each m and
produce a distribution for the output at input x, across all m.

4.4 History matching to pseudo-observations

In this section, we use each of the 250 NAME simulations
from the validation set as “pseudo-observations”; i.e. we set
z= f (x∗) for a known x∗. We then assess whether the differ-
ent emulators for NAME and different definitions of NROY
space (Sect. 3.3) are able to accurately identify this true input
x∗. As these simulations are taken from the validation set, in
each case we are considering inputs different from what the
emulators have been trained on. We consider the different
emulated summaries from earlier and vary the observation er-
ror variance Var[e] (more a “tolerance to error” here). Using
the emulator expectation and variance at x∗ for each choice
of pseudo-observations z, we can calculate I(x∗) and Im(x∗)
and consider the different definitions of NROY space.

We would always want the true x∗ to be within NROY
space – occasionally, this will not be true (some predictions
always lie outside of 95 %, likewise 99 %), and it may fail
if emulator prediction is biased. A large NROY space is not
necessarily bad – it can signify either that our tolerance to
error is large, that our emulator is relatively uncertain, or that
large parts of parameter space do in fact lead to simulator
output “close” to the observations – and may in fact be a
realistic representation of the uncertainties in the inputs and
observations.

For each choice of pseudo-observation, as a simple metric,
we check whether the assumed truth x∗ is retained or incor-
rectly ruled out. This does not give a complete picture, as
perfect accuracy would be achieved by never ruling out any
inputs. If emulator variance and/or observation error are large
relative to the range of NAME output, then 100 % of possible
inputs being considered “close enough” to the truth could be
correct, but neither is true here. To provide additional infor-
mation for each choice of z, we also calculate the percentage
of the remaining 249 validation points that are not ruled out
in each case and report the median size of this space across
the 250 different choices of z (to demonstrate that any per-
ceived accuracy is not being driven by falsely retaining all
choices of x∗).

Even while knowing the input that generated the pseudo-
observations, we cannot perfectly assess the accuracy of the
different methods; we do not know the “true” size of each
space, i.e. what percentage of input vectors would lead to
output consistent with each choice of pseudo-observations,
up to observation error. To do so would require evaluating x
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Figure 7. Emulator posteriors for (log) total ash column load at T1 evaluated across all 18 meteorological ensemble members and for the
overall emulator for the first 9 design points x1, . . .,x9 in the 1000-member ensemble. The vertical solid line indicates the value given when
NAME was run at each of these 9 parameter settings (i.e. for a randomly sampled meteorology). The vertical dotted black line indicates the
observed (log) total ash at T1.

Figure 8. As in Fig. 7, comparing emulator predictions with the NAME output and observed value, but for T5.

at allm ∈M to know whether this x is ruled out, across large
samples of x, and this is not practically feasible with NAME.

We briefly outline the expected results for each definition
of NROY space.

1. We do not evaluate XS here, as it uses NAME itself, and
no emulator prediction is required; hence, we always
retain x∗. We also cannot evaluate whether we would
retain this x∗ if we would use a differentm (no repeats in
the NAME runs). Given accurate emulators, XP should

give a reasonable approximation of what XS would look
like if we could run many more simulations of NAME.

2. For XP, we calculate Im(x) using the MET-specific em-
ulators. If variability across m is low (relative to other
uncertainties), then this should accurately retain x∗;
however, if m has a larger effect, then we might incor-
rectly rule out x∗. We are effectively only allowed to
view the emulator at a single m, representing running
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NAME once per x∗ at a uniformly sampled meteorolog-
ical input, which may bias inference about the inputs.

3. For XO, we evaluate the overall emulator and explore x
with m uncertain but accounted for, which should iden-
tify x∗ if the meteorological uncertainty is being prop-
erly captured. The expectation of this emulator is un-
likely to be consistent with the particularm that we used
to generate z, and we would expect that sometimes the
truth, z, lies on the edge of the posterior distribution for
f (x) because we happened to view x∗ at an “extreme”
choice of m, and so we may sometimes rule out this in-
put.

4. For XC, we evaluate the MET-specific emulators and
jointly explore (x,m). This space should contain x∗ if
the emulators are accurate – it does not matter if z was
defined using a particularly extreme m, e.g. where 17
out of 18 meteorological scenarios would lead to f (x∗)
being far from z; this is because we are able to explicitly
consider all combinations and only require fm(x∗) to be
considered “close enough” to the pseudo-observations
for a single m.

It is important to note that XP and XC use the same emula-
tors, so any differences in accuracy between these two is not
emulator-driven but due to the different treatment of the me-
teorological scenario (sampled uniformly vs. fully varied).

Table 2 shows the number of times we fail to retain the
true x∗, across the 250 choices, for different NAME outputs
and definition of NROY space with varied observation error.
The value in the “Obs error” column refers to a scaling factor
applied to the observation error variance Var[e] for the true
observations. As the pseudo-observations are exactly equal
to NAME output, and so there is no observational error here,
this can be viewed as decreasing our tolerance to error; that
is, can we find simulations closer to z, and do we still find
the true x∗ that generated the observations as we decrease
this tolerance? N+S and W+E refer to requiring the implau-
sibility for both emulated regions to fall below T in order to
consider a point not ruled out. Similarly, “four regions” re-
quires a point to be retained for the NW, NE, SE, and SW re-
gions simultaneously. “At least three out of four” relaxes this,
allowing one region to be considered implausible (to protect
against a single biased emulator causing misclassification of
inputs).

In every case, XC performs the best in terms of retaining
the true x∗ and in most cases never rules out x∗, even as the
error tolerance decreases. This is unsurprising, as the emula-
tors are reasonably accurate out of sample, and this definition
only rules out a parameter setting if we are confident enough
that it could not be consistent with the truth for any of the 18
scenarios.

At the other end of the scale, XP almost always performs
the worst and often fails to find the true x∗. It is accurate
in situations where the meteorological variability is lowest

Table 2. For a given NAME output, a choice of observation error,
and definition of NROY space, the table shows how often the “true”
x is incorrectly ruled out when the 250 validation points in turn are
taken to be the pseudo-observation. “Errors” refer to the raw number
of misclassifications out of 250, and “NROY” refers to the median
percentage of space that is not ruled out in each experiment.

NAME Obs Errors NROY
output error

XP XO XC XP XO XC

T1 1 0 0 0 47 % 48 % 54 %
0.1 0 0 0 18 % 20 % 26 %

0.01 11 0 0 10 % 15 % 19 %

T3 1 4 0 0 29 % 40 % 48 %
0.1 47 3 0 14 % 31 % 33 %

0.01 73 4 0 11 % 30 % 32 %

T5 1 21 0 0 27 % 48 % 53 %
0.1 79 0 0 16 % 44 % 43 %

0.01 92 0 0 14 % 43 % 42 %

T1 (N+S) 1 22 7 0 27 % 54 % 45 %
0.1 182 10 0 1 % 43 % 19 %

0.01 250 10 0 0 % 41 % 12 %

T1 (W+E) 1 0 0 0 42 % 44 % 50 %
0.1 5 1 0 13 % 17 % 22 %

0.01 38 7 0 6 % 12 % 15 %

T1 (four 1 76 9 1 13 % 49 % 36 %
regions) 0.1 243 12 1 0 % 38 % 13 %

0.01 250 12 5 0 % 36 % 5 %

T1 (at least 1 7 1 0 37 % 64 % 54 %
three out 0.1 116 4 0 4 % 52 % 26 %
of four) 0.01 246 7 0 0 % 50 % 16 %

(T1 total; T1 W+E) but is poor once error tolerance reduces
(e.g. even for T1, once we reduce Var[e] enough, it starts
to fail) or variability across m increases (e.g. for T5, N+S
split, and four-region split). Again, this result is expected –
for XP to identify x∗, it requires consistency with z across
at least half of the choices of m. This is a proxy for XS and
shows that even if the true observation were generated by
some known x∗ and m, we would often fail to identify this
x∗ without accounting for the meteorological variability, and
we risk incorrectly constraining the inputs.

XC and XO generally lead to a larger percentage of the in-
put space being retained, but it is difficult to know whether
this is correct without a large number of NAME simulations.
However, across different summaries and varied Var[e], we
see that we rarely or never rule out the chosen x∗, even as
the tolerance to error decreases and when XP performs very
poorly (suggesting larger meteorological variability relative
to observation error and emulator variance). Even if bad pa-
rameter settings are not being ruled out often enough in these
cases, this result is still preferable to over-constraining X and
ruling out the “correct” x∗.

Some of the examples, however, give strong evidence that
the results are as intended; for the N+S split, even with the
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Table 3. Percentage of parameter space X that is not ruled out yet
for the four different definitions of NROY space and for different
individual summaries and combinations thereof. In each row, the
lowest and highest percentages are highlighted by italics and bold
text, respectively.

Summary/region Sim. Pseudo Overall Cons.
XS XP XO XC

T1 11.7 10.9 11.0 13.5
T3 11.4 11.3 16.6 26.4
T5 16.8 23.0 40.7 45.5
T1 + T3 8.3 8.5 9.5 12.3
T1 + T3 + T5 0.9 1.3 5.6 8.6
North 17.8 17.4 31.7 47.0
South 3.8 2.5 7.6 13.6
N+S 2.4 1.4 6.7 12.9
West 8.0 8.1 8.1 10.8
East 15.8 16.7 17.4 22.7
W+E 7.0 7.1 7.2 10.1
NW 14.5 12.7 26.5 42.8
NE 23.1 25.8 46.6 61.9
SE 5.0 4.1 7.2 12.7
SW 3.1 2.0 9.1 17.4
All four 0.7 0.4 5.4 11.1
At least three 2.9 2.7 8.7 17.0

largest observation error, the true x∗ is ruled out by XP in 22
of 250 experiments and the median size of the retained pa-
rameter space across these 250 is 27 %. Even when Var[e] is
100 times smaller, XC never rules out the true x∗, with a me-
dian of 12 % of all inputs retained; more space is being ruled
out, to within a lower tolerance to error while still more ac-
curately identifying the correct answer, thanks to evaluating
all combinations of x and m.

4.5 History matching to satellite observations

Having demonstrated the accuracy of emulation and perfor-
mance of the history matching definitions in an idealised set-
ting, we now set z as the satellite observations. We have the
observation error variance as before and search for (x,m),
such that the NAME output is within observation error of re-
ality. Table 3 gives the percentage of input space that is not
ruled out for different combinations of the emulated outputs
for each NROY definition. Unlike in the previous section,
we can consider XS here because we do not know the true
input and can compare distributions derived from NAME to
emulator-based ones.

As expected, XS and XP usually have a similar size; the
definition of XP is such that it approximates XS with emu-
lation rather than only NAME simulations. Some of the dif-
ferences between these two are driven by the relatively small
number of samples (1000) used to define XS, but the general
similarity suggests that emulator variance is not high relative
to other variability (observation error; across different inputs)

and that replacing NAME with an emulator is not causing
substantially more space to be retained.

XC always retains a higher percentage of the input space,
and this uses the same set of emulators as XP; hence, the in-
crease in the percentage of X being retained is being caused
by the definition of NROY and not by the emulator uncer-
tainty. This gives some evidence that the larger percentages
of space retained by XC may in fact be reasonable and is due
to the fact that exploring more combinations (x,m) leads to
the identification of substantially more possibilities for x.

Conversely, this suggests that there is a non-zero probabil-
ity that XP, and hence the simulator-only approach XS, rules
out choices of x that would in fact be considered not implau-
sible if we happened to have simulated NAME at that x with
a different sample of m. In some cases (e.g. the T1 total and
the “west” region), there is not much difference in the sizes
of the four spaces, which suggests that the meteorological
variability is low (compared to other uncertainties) for these
metrics. However, even in the most similar case (T1, with
13.5 % for XC and 11.7 % for XS), 1.8 %, or 18 of the 1000
runs, may have matched reality (up to observation error) if
simulated at an alternative m. As in the previous section, if
we consider summaries with more variability across choices
ofm (e.g. “south” region), the sizes diverge more, adding ev-
idence that if we consider more local aspects of the NAME
output, the impact of the meteorological scenario increases,
and jointly assessing the effect of x andm is critical to ensure
accurate understanding and calibration of the inputs.

The percentage of input space X that is retained varies
substantially depending on the choice of NAME output and
choice of NROY definition, and observed sensitivities and
relationships between different inputs are also dependent on
these choices. Figures 9 (log(MER)) and 10 (mσU ) plot the
prior and NROY spaces for these two inputs (averaged across
the other inputs) across different NAME outputs and def-
initions of NROY space. In each case, the distribution of
log(MER) has been constrained substantially compared to
the prior. For the T1 total and the split into W+E regions,
the three NROY spaces are relatively similar; however, for
the split into N+S and into four regions, which (from ear-
lier) have a larger meteorological effect, there is a difference,
with XP resulting in much narrower distributions than the
other definitions, while being contained within the other dis-
tributions. XC shows that higher values of log(MER) may be
possible, given the “correct” choice of m.

For mσU , regardless of the NROY definition, the poste-
rior is the same as the prior for the T1 total and W+E split,
and we might conclude that this input is not affecting the out-
put. However, there are clearly differing results for the other
regional decompositions, including the most localised sum-
maries, and fully accounting for meteorological uncertainty
leads to a strong preference for lower values of mσU . Fig-
ure 11 shows the pairwise relationship between log(MER)
and mσU for the north/south regional split, for XP, and for
XC. The opposite relationship observed for mσU in the 1D
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Figure 9. The distribution of log(MER), for different summaries and definitions of NROY space, compared to the prior.

Figure 10. The distribution of mσU , for different summaries and definitions of NROY space, compared to the prior.

plot (Fig. 10) is due to an interaction with possible values
of log(MER); XC allows higher values of log(MER) to be
considered not implausible if combined with a relatively low
value of mσU .

5 Discussion

In this paper, we have emulated different summaries of
NAME output for the Raikoke 2019 eruption, simultane-
ously exploring the dependence on, and uncertainty due to,
the eruption source inputs, the internal NAME parameters,
and the meteorological scenario. We demonstrated the accu-
racy of these emulators and showed that we can efficiently
make predictions of the NAME output for any combination
of (x,m) (with uncertainty due to this being an approxima-
tion of NAME). We used these emulators to fully explore the
effects and interactions that the different inputs (source, in-
ternal, and meteorological) have on the output, accounting
for the uncertainties in each of these.

Given emulators, we calibrated the source and internal
NAME parameters via history matching, using different out-
puts, emulator type, and definition of the retained (NROY)
part of the input space. This demonstrated that randomly
sampling the meteorological scenario (equivalently, just run-
ning NAME) leads to a much more constrained input space
compared to only ruling out combinations of the source and
internal inputs if they would be inconsistent with satellite
observations for all 18 possible meteorological scenarios.
Due to the expense of the simulator, such a comparison is
not usually feasible; however, with emulators accounting for
meteorological uncertainty, this can be done efficiently with
the aim of ensuring that we do not incorrectly constrain the
source and internal inputs due to biases from only viewing
NAME at x for a single m.

For each emulated output, using a more conservative def-
inition of the not-ruled-out-yet space unsurprisingly resulted
in a larger percentage of the original parameter space being
considered not inconsistent with observations. However, the
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Figure 11. Pairwise representation of which combinations of log(MER) and mσU are in the XP (a) and XC (b) NROY spaces when history
matching for the north and south regions at T1.

use of different choices of pseudo-observations demonstrated
that this appears to be more accurate, and we also showed
that this larger space was not being driven by emulator uncer-
tainty but by the uncertainty due to the meteorological input.
When the meteorological effect is smaller (e.g. as for the total
at T1), the different choices of NROY space are more simi-
lar. Moving further ahead in time, or splitting the output into
smaller regions, the impact of the meteorological scenario
increased, resulting in a larger difference in the calibration
results.

The choice of NAME summary, definition of NROY
space, and how the meteorology is captured, clearly affects
the conclusions we make about the importance of inputs. For
example, considering only the total ash, it may appear that
the unresolved mesoscale parameter, mσU , is not important;
however, when considering ash north and south of 48.1° N,
this parameter does have an effect – and whether its distribu-
tion is skewed left or right depends on how we are account-
ing for meteorological uncertainty. Some differences may be
driven by our choice of summary (could use other splits than
at latitude 48.1° N); however, it is probable that similar dif-
ferences would be evident for other outputs.

When the meteorological scenario is restricted to a small
meteorological ensemble, then accurate emulators can be
constructed despite a small number of training runs. How-
ever, if there are too few runs available per scenario (ei-
ther if there are fewer overall NAME simulations performed
or if there is a larger available ensemble of meteorological
scenarios), then treating NAME as stochastic is appropri-
ate. Although here this emulation approach and the result-
ing NROY definition did not capture the meteorological un-
certainty as well as the MET-specific emulators, it resulted
in greater accuracy than the simulator-only approach (and
the emulator-based approximation of this). The benefit of the
MET-specific emulators is that they are a more realistic rep-
resentation of NAME; NAME is run for a specific (x,m), and
this emulator predicts the output at this combination, whereas
the overall one cannot. If the meteorological scenarios them-

selves, or key patterns from them, could be represented via
dimension reduction and hence represented by a small num-
ber of coefficients, then a wider range of scenarios could be
incorporated by a single emulator while still being able to
predict for a specific meteorological scenario (see, e.g., Salter
et al., 2022, which demonstrates jointly calibrating simula-
tor inputs and parameters controlling spatiotemporal temper-
ature fields).

A benefit of history matching is in its sequential nature,
and this could be exploited to simplify emulation of the full
plume. For example, clearly implausible combinations of in-
puts and meteorological scenarios can initially be ruled out
based on easy-to-emulate metrics such as the total ash, and
this may remove some of the wide range of behaviours ob-
served across the full input space. Removing implausible
output makes the remaining space less variable, making the
plume location more consistent, and potentially enabling the
spatial aspect of the plume to be emulated more easily.

Emulation may be difficult to apply in a real-time setting,
as this would require unsupervised fitting of multiple statisti-
cal models and ideally requires proper validation. However,
there is a benefit in assessing past eruptions and using this
information about the model inputs to enhance simulation
of future eruptions (e.g. to obtain better priors on uncertain
inputs for NAME simulations and better understanding of
which inputs are most important/sensitive in different situ-
ations). It may also provide insights into probabilistic fore-
casting, as the emulators can more rigorously explore tails of
joint distributions across the different sources of uncertainty.
Rather than considering summaries of the output, other quan-
tities, such as ash at a particular location over time, could
be emulated instead. This could be approached in a similar
way as was done in this study, with emulators trained on
NAME simulations and predictions made for a more com-
plete combination of inputs and meteorological scenarios, al-
lowing the production and assessment of more detailed infor-
mation about possible impacts at important locations.
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Appendix A: Additional plots

Figure A1. (Log) total ash column load (in g) for the 1000 NAME simulations and for the split at T1 into NW and SW regions and plotted for
meteorological scenarios 1–16. Median observations (solid lines) and 99 % uncertainty (dotted lines) are plotted for each regional summary.

Figure A2. As in Fig. A1 but for the NE and SE regions.
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A1 Validation and prediction at T3

Figure A3. Out-of-sample emulator predictions for (log) total ash column load at T3.

Figure A4. As in Fig. 7, comparing emulator predictions with NAME output and the observed value, for (log) total ash column load at T3.
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A2 Validation for north vs. south split

Figure A5. Out-of-sample emulator predictions for the “north” region at T1.

Figure A6. Out-of-sample emulator predictions for the “south” region at T1.
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A3 Validation for west vs. east split

Figure A7. Out-of-sample emulator predictions for the “west” region at T1.

Figure A8. Out-of-sample emulator predictions for the “east” region at T1.
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A4 Validation for four-region split

Figure A9. Out-of-sample emulator predictions for the “NW” region at T1.

Figure A10. Out-of-sample emulator predictions for the “NE” region at T1.
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Figure A11. Out-of-sample emulator predictions for the “SE” region at T1.

Figure A12. Out-of-sample emulator predictions for the “SW” region at T1.
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