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Abstract. High-quality long-term observational records are essential to ensure appropriate and reliable trend
detection of tropospheric ozone. However, the necessity of maintaining high sampling frequency, in addition
to continuity, is often under-appreciated. A common assumption is that, so long as long-term records (e.g., a
span of a few decades) are available, (1) the estimated trends are accurate and precise, and (2) the impact of
small-scale variability (e.g., weather) can be eliminated. In this study, we show that the undercoverage bias (e.g.,
a type of sampling error resulting from statistical inference based on sparse or insufficient samples, such as
once-per-week sampling frequency) can persistently reduce the trend accuracy of free tropospheric ozone, even
if multi-decadal time series are considered. We use over 40 years of nighttime ozone observations measured at
Mauna Loa, Hawaii (representative of the lower free troposphere), to make this demonstration and quantify the
bias in monthly means and trends under different sampling strategies. We also show that short-term meteorolog-
ical variability remains a cause of an inflated long-term trend uncertainty. To improve the trend precision and
accuracy due to sampling bias, two remedies are proposed: (1) a data variability attribution of colocated mete-
orological influence can efficiently reduce estimation uncertainty and moderately reduce the impact of sparse
sampling, and (2) an adaptive sampling strategy based on anomaly detection enables us to greatly reduce the
sampling bias and produce more accurate trends using fewer samples compared to an intense regular sampling
strategy.

1 Introduction

Tropospheric ozone is the third most important greenhouse
gas (after carbon dioxide and methane, Gulev et al., 2021).
Ozone is also a surface pollutant detrimental to human health
and crop productivity (Fleming et al., 2018; Mills et al.,
2018). The lifetime of tropospheric ozone ranges from min-
utes in the boundary layer to roughly 3 weeks for a global
average (Young et al., 2013), and its sources include pho-
tochemical production from various precursor gases and
stratosphere–troposphere exchange, which is challenging to
accurately quantify because emissions of ozone precursor

gases, atmospheric transport pathways, and extreme weather
patterns also change over time (Stohl et al., 2003; Zhang et
al., 2016). While the observations from remote high eleva-
tion sites can be used to quantify regional-scale ozone trends
and variability within the planetary boundary layer or lower
free troposphere (Cooper et al., 2020), only sparse profiles
from ozonesondes, lidars, or aircraft are available to monitor
ozone in the middle or upper troposphere.

Trend detection of free tropospheric ozone at a global
scale is particularly challenging because ozone is highly dy-
namic, and observations are too limited (infrequent in time

Published by Copernicus Publications on behalf of the European Geosciences Union.



6198 K.-L. Chang et al.: Effect of undercoverage bias on ozone trends

and sparse in space). In terms of long-term observations,
ozonesonde and aircraft provide high-quality ozone obser-
vations throughout the depth of the troposphere with a fine
vertical resolution, but these programs are expensive to main-
tain, and sampling rates are often quite low. Within the global
ozonesonde network (Tarasick et al., 2019), only three sites
– Hohenpeissenberg (Germany, 1966 to present), Payerne
(Switzerland, 1968 to present), and Uccle (Belgium, 1969 to
present) – manage to launch ozonesondes with a sampling
frequency of two or three times a week. Even so, consis-
tent long-term free tropospheric trends cannot be found be-
tween these three western European sites in relatively close
proximity (Chang et al., 2022). While most of the other
ozonesonde sites target a once-per-week sampling frequency,
the actual sampling rate is often less (e.g., the NOAA Global
Monitoring Laboratory (GML) ozonesonde record in Amer-
ican Samoa has an average sampling rate of 35 profiles per
year); therefore, the precision and accuracy of trends esti-
mated from these time series might be even less reliable.
Of the other instruments, only the lidar operated at the Jet
Propulsion Laboratory Table Mountain Facility (California)
has managed to provide ozone profiles with varying frequen-
cies of two to five times a week since 1999 (Chouza et al.,
2019).

The IAGOS (In-Service Aircraft for a Global Observing
System) program is also an important source of tropospheric
ozone observations. Since 1994, IAGOS commercial aircraft
have provided ozone profiles worldwide, and because the
program’s ozone instruments are calibrated regularly, its ob-
servational record can be considered to be a reference data set
(Tarasick et al., 2019). Nevertheless, from a sampling point
of view, since the availability of IAGOS data is tied to pre-
determined flight schedules, the sampling schemes are often
irregular and intermittent. Western Europe is the only region
with abundant and near-continuous ozone measurements dat-
ing from 1994, with an average of more than 100 profiles per
month (mostly from Frankfurt, Paris, Munich, Brussels, Düs-
seldorf, and Amsterdam). The IAGOS observations collected
at other regions often have data gaps (several years in some
cases); therefore, the reliability of trend estimates based on
these time series might be subject to higher levels of uncer-
tainty.

With the exceptions discussed above, free tropospheric
ozone observations are either sparse in time (once-per-
week sampling) or intermittent. However, these free tro-
pospheric vertical profiles are still the only long-term ob-
servational records available to validate satellite data and
global chemistry–climate model simulations. The common
approach to compare satellite data to in situ or ground-based
observations is to spatially and temporally co-locate compar-
isons between each individual profile and the corresponding
satellite value (Zhang et al., 2010) or at a monthly aggregated
scale (Ziemke et al., 2006). This study shows that the sam-
pling errors (due to a sparse sampling frequency) might per-
sistently bias the trend estimate even if multi-decadal records

are considered. Therefore, the implication is that inconsistent
trends can exist between ground-based and satellite observa-
tions due to different sampling schemes.

In terms of the impact of sampling on tropospheric ozone
monthly means, Logan (1999) analyzed ozonesonde profile
data and suggested that at least 20 profiles are required to
maintain the 2σ range below ± 30 % of the monthly means
near the extratropical tropopause and below ± 15 % of the
monthly means for the tropical and extratropical free tropo-
sphere. Using the IAGOS commercial aircraft profiles above
Frankfurt, Saunois et al. (2012) evaluated the sampling un-
certainty on seasonal means at 100 hPa vertical resolution
and found the uncertainty to be around 10 % at 700–500 hPa
and around 15 % at 400 hPa for a sampling frequency of four
profiles per month. However, the uncertainty can be reduced
to 5 % and 8 %, respectively, if the sampling frequency is in-
creased to 12 profiles per month. Cooper et al. (2010) merged
all April–May ozone profiles (all available ozonesonde, lidar,
and aircraft measurements) above western North America to
show that ozone had increased in the free troposphere over
1995–2008 and determined that 50 profiles per April–May
season (or 25 profiles per month) are required to produce
a seasonal column mean value in the 3–8 km range within
± 2 % bias.

In terms of the impact of sampling frequency on tropo-
spheric ozone trends, by using the IAGOS profiles above
western Europe, where the trend values are around 1–
2 ppbv per decade for 950–400 hPa and between 2–9 ppbv
per decade for 350–250 hPa over 1994–2017 (50 hPa resolu-
tion), Chang et al. (2020) found that at least 10 profiles per
month are required to detect the signal at 2σ confidence and
that 18 profiles per month are required for the trend bias to be
less than 5 % based on basic multiple linear regression; the
requirement can be alleviated to 4 and 14 profiles per month,
respectively, if a sophisticated statistical method (designed to
avoid overfitting to the spurious variability at individual pres-
sure levels) is applied (Chang et al., 2020). However, a higher
sampling rate is required for a weaker signal (e.g., < 1 ppbv
per decade).

As motivation for this study, Fig. 1 shows the verti-
cal ozone profiles measured by ozonesondes launched from
Trinidad Head, California, during two intensive sampling
campaigns, including 30 ozonesondes launched in August
2006 and 36 ozonesondes launched in 10 May–19 June 2010
(all data links can be found in the “Code and data avail-
ability” section). At first glance, a tumultuous and unstruc-
tured variability is revealed by the individual profiles during
both campaigns. With a focus placed on the free troposphere
(700–300 hPa), individual sondes are typically characterized
by irregular vertical variability, but, with sufficient sampling,
the profile averages are generally much smoother. To simu-
late once-per-week or three-times-per-week sampling strate-
gies, we randomly select 4 or 12 profiles from each 1-month
campaign to produce the subsampled mean profiles, and we
repeat this process 1000 times. We find that the ranges of
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sampling variability based on four samples in a month (i.e.,
once-per-week sampling strategy) remain very uncertain. In
terms of absolute percentage deviation from the overall mean
(evaluated at 10 hPa resolution layers), average deviations of
12 % (August 2006) and 17 % (May–June 2010) are found
in the free troposphere for four samples. These deviations
can be reduced to 6 % and 9 %, respectively, if 12 samples
in a month are used (for a reference, average deviations be-
tween individual sondes and the overall mean are 25 % in
August 2006 and 30 % in May–June 2010, and an accuracy
of ± 5 % is generally achieved with ozonesondes in the tro-
posphere; Tarasick et al., 2021). This amount of sampling
variability is roughly comparable to the IAGOS data above
Europe (Saunois et al., 2012).

No similar intensive daily sampling campaigns are avail-
able from Hilo, Hawaii (e.g., at most, only 14 profiles
were launched in March 2001 during the TRACE-P cam-
paign; Oltmans et al., 2004). However, by comparing the
ranges of the 5th and 95th percentiles in the free tropo-
spheric ozonesonde records at Trinidad Head and Hilo, we
find similar variability in June–July–August and September–
October–November and a modestly higher variability at
Hilo in December–January–February and March–April–May
(Fig. S1 in the Supplement; the implications for stratospheric
intrusions will be discussed later). We can thus expect that
the sampling issue is not less important in the tropics than in
northern mid-latitudes.

To translate the impact of sampling bias on monthly means
into trends, we utilize the monthly mean time series of
nighttime temperature and ozone at Mauna Loa Observa-
tory (MLO), which are representative of the lower free tropo-
sphere (see Sect. 2 for data descriptions). Figure 2 shows the
impact of sampling bias on trend detection, based on monthly
means from full sampling (7 d per week) and once-per-week
sampling conducted only on Sunday or Tuesday (these two
days of the week are chosen to represent the extreme cases;
the detailed comparison of the trends from each day of the
week will be discussed in Sect. 3, and the complete daily
time series are shown in Fig. S2); thus, each month mean
is produced from ∼ 30 or ∼ 4 daily values, respectively. We
can clearly see how the sampling biases are produced due
to reduced sampling. For the temperature data, even though
some differences can be observed, the trend and its uncer-
tainty are similar between the results from the full and sub-
sampled records. The bias in the once-per-weekly sampled
ozone monthly means can be very large in some cases (e.g.,
greater than 10 ppbv, also indicated in Fig. 1), indicating that
ozone is far more variable than temperature. The MLO ozone
trends based on once-per-week sampling can be biased high
by 29 % or biased low by−46 % depending on different days
of the week. This figure also shows that, even though over
40 years of weekly ozone data were collected, trends can still
go undetected when the samples are not representative.

Quantitatively, if we compare each ozone daily value to
its monthly mean at MLO over 1980–2021, the mean ab-

solute deviation is 20 % or 8 ppbv (in Fig. S1, average de-
viations of 19 % above Trinidad Head and of 25 % above
Hilo are found between individual sondes and their seasonal
climatologies in the free troposphere; thus, so the sampling
variability is roughly consistent between sonde and surface-
based observations). Therefore, the main topic of this study
can be stated as follows: how many samples in a month are
required to eliminate the impact of a 20 % inter-daily varia-
tion on monthly means and trend estimates in an acceptable
range? Note that the sampling deviation associated with each
daily value represents the true ozone inter-daily variability
and should not be considered to be sampling bias; the sam-
pling bias occurs only if we use limited samples to estimate
the monthly mean value or trend.

To better quantify the impact of sampling on trend detec-
tion, it is important to distinguish between the effect of sam-
ple size and sampling bias. Traditionally, the trend analysis
of atmospheric composition time series often implicitly as-
sumes that the samples (in this case, monthly mean values)
are representative and can be used to assess trends; hence,
sample size is the major factor to determine for how long the
trends can be detected (assuming that the magnitude of the
trend, the data variability, and the autocorrelation are con-
stants; Weatherhead et al., 1998). Therefore, in order to clar-
ify the conceptual difference, we define sample size as the
number of points used to fit a statistical model (regardless
of the sampling rate), and we define undercoverage bias as
a type of sampling error resulting from statistical inference
based on sparse or insufficient samples. This conceptual dif-
ference can be clearly shown in Fig. 2: the three estimates of
ozone trends are based on the same sample size (i.e., the same
number of total monthly means), but the trend estimates from
reduced samples are severely biased due to undercoverage
bias. This work aims to investigate the impact of a series of
biased (or non-representative) monthly means on long-term
trends.

The goals of this study are as follows: (1) determine the
minimum number of ozone observations necessary for ac-
curate trend quantification in the tropical free troposphere,
(2) develop optimal sampling strategies that will improve
trend detection when faced with limited resources, and
(3) leverage co-located observations (e.g., temperature and
humidity) and climate indices (e.g., El Niño–Southern Oscil-
lation (ENSO) and quasi-biennial oscillation (QBO)) to im-
prove trend detection through multiple linear regression tech-
niques. Previous attempts to evaluate free tropospheric ozone
trends are typically adjusted by ENSO and QBO only (which
is the standard approach for stratospheric ozone trends). We
aim to show that adjustments based on co-located meteoro-
logical observations are more pertinent to tropospheric ozone
trend detection and attribution. Section 2 introduces the data
sets used in this study and includes a discussion on how the
trend and its uncertainty are estimated. Section 3 presents
a thorough investigation of the impact of different sampling
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Figure 1. Demonstration of ozone variability from two intensive sampling campaigns (30 profiles in August 2006 and 36 profiles in 10 May–
19 June 2010 at Trinidad Head, California) and sampling variability of subsampled means: individual sondes and the overall means are shown
in the left panels, and the variabilities of subsampled means are generated in the middle and right panels by randomly selecting 4 or 12 sondes
over 1000 times, respectively. This analysis demonstrates that the sampling uncertainty on monthly means in the free troposphere can be
reduced by half if the samples are increased from 4 to 12 sondes a month (evaluated by mean absolute percentage deviation at 10 hPa
resolution layers).

schemes on the bias in monthly means and trends. Section 4
provides a summary of this study.

2 Data and method

2.1 In situ measurements

In this study, we used the hourly ozone data set measured at
Mauna Loa Observatory (MLO), Hawaii (19.5° N, 155.6° W;
3397 m above sea level; Oltmans and Komhyr, 1986; NOAA
GML, 2023c) to investigate the impact of different sam-
pling frequencies and strategies on the estimates of monthly
means and trends, with a special focus on the quantification
of improvements in trend and uncertainty estimates when the
sampling frequency is increased. Since MLO is located in
the central North Pacific Ocean and at the northern edge of
the tropics, ozone variability at MLO is impacted by mid-
latitude dry air masses from the north and west and tropi-
cal moist air masses from the south and east (Gaudel et al.,
2018; Cooper et al., 2020). Lin et al. (2014) found that the
relative frequency of dry and moist air mass transport from
high latitudes (typically higher ozone) and low latitudes (typ-
ically lower ozone) can be influenced by short-term climate

variability, such as ENSO and the Pacific Decadal Oscilla-
tion. Therefore, an adjustment for meteorological and cli-
mate variability is important for quantifying the long term-
trend at MLO (Chang et al., 2021).

The MLO record is an ideal test bed for investigating free
tropospheric sampling issues because (1) MLO is a high-
elevation site, and nighttime ozone at MLO is representative
of the lower free troposphere (Price and Pales, 1963; Olt-
mans and Komhyr, 1986; Tarasick et al., 2019; Cooper et al.,
2020), and (2) even though some large interannual variability
is present, the overall trends have been roughly linear since
the mid-1970s (Chang et al., 2021, 2023a), and, therefore,
the results from different sampling tests are comparable (e.g.,
if the trends are strongly varying between different time pe-
riods, it will be difficult to distinguish between the influence
of the sampling error and that of nonlinearity in trends). Note
that, since daytime data are excluded to avoid the influence of
localized anthropogenic emissions (Cooper et al., 2020), no
noticeable offsets or heterogeneities between different days
of the week, such as the ozone weekend effect, are found in
the MLO nighttime ozone record (see Fig. S3).

Once-per-day nighttime ozone averages (08:00–
15:59 UTC) at MLO are calculated to represent lower
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Figure 2. Demonstration of sampling bias from once-per-week sampling in monthly means and trends over 1980–2021 (nighttime tem-
perature and ozone at MLO). Each point represents a monthly mean, aggregated from full sampling (black) or once-per-week sampling
conducted only on Sunday (red) or Tuesday (blue). Each vertical range represents the magnitude of sampling bias in a given month. Trends
and associated uncertainty estimates are based on the basic model (M1).

free tropospheric ozone above Hawaii. While reliable hourly
ozone observations are available at MLO for the periods
1957–1959 and 1973–1979 (Cooper et al., 2020), colocated
meteorological data are more complete from the late 1970s;
therefore, our study focuses on the 42-year period from
1980 to 2021. We use a 50 % data coverage criterion to
determine the data availability; e.g., we require 15 daily
averages in a month. At the daily level, only 757 out of
15 341 (4.9 %) daily ozone values were missing for the
42 years over 1980–2021. At the monthly level, 12 out of
504 (2.4 %) monthly values failed to meet the 50 % data
coverage criterion (listed in Table S1 in the Supplement).
To avoid selecting non-representative subsamples, data from
those 12 months are discarded from our sampling analysis.
Links for all of the data sets are provided in the “Code and
data availability” section.

The measurement uncertainty for the MLO records (typi-
cally ∼ 2 %–4 %) is assumed to be random and is not explic-
itly taken into account in our analysis (in addition, the daily
nighttime averages are expected to smooth out some mea-
surement uncertainty). Nevertheless, if the measurement un-
certainty is not random, its effect is likely to be similar to that
of the sampling bias, and their total uncertainty is expected
to be propagated (and not neutralized).

2.2 Statistical models for evaluating trends and
uncertainties

Trend estimates are derived and compared based on the time
series produced from the complete data record (full sam-
pling) and reduced subsamples (according to different sam-
pling strategies) in two stages: in the first stage, only funda-
mental components for time series decomposition are con-
sidered for trend detection, i.e., a seasonal cycle and a linear
trend; in the second stage, several meteorological variables
and climate indices are incorporated into the model in order
to improve the trend estimate as adjustments for meteorology
and short-term climate variability are often considered to be
important for attributing ozone variability (Lin et al., 2014;
Porter et al., 2015; Chang et al., 2021). Let yt , t = 1, . . .,n be
the ozone mean time series. Each mean value is produced by
an aggregation of available data collected over a temporal in-
terval t (typically on a monthly scale). The statistical models
for the first and second stages can be expressed as outlined
below.

M1 (basic model):

yt =α0+

[
α1 sin

(
2π

Month
12

)
+α2 cos

(
2π

Month
12

)
+ α3 sin

(
2π

Month
6

)
+α4 cos

(
2π

Month
6

)]
+β0t +Nt .
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M2 (full model):

yt =α0+

[
α1 sin

(
2π

Month
12

)
+α2 cos

(
2π

Month
12

)
+ α3 sin

(
2π

Month
6

)
+α4 cos

(
2π

Month
6

)]
+β0t +β1WindSpeed+β2WindDirection
+β3Temperature+β4RelativeHumidity
+β5Dewpoint+β6ENSO+β7QBO30 hPa

+β8QBO50 hPa+Nt .

In the above, α0 is the intercept; {αk,k = 1, . . .,4} is a set of
coefficients jointly representing the seasonal cycle; β0 is the
trend value; {βk,k = 1, . . .,8} is a set of coefficients associ-
ated with different meteorological variables and climate in-
dices, respectively; andNt is the residual series. Note that the
M2 (full model) does not represent our final trend model as a
variable selection procedure will be carried out to determine
which variables are the most statistically and scientifically
meaningful.

The models are fitted based on the least squares (LSs) and
least absolute deviations (LADs) for the estimations of mean
and median trends (as well as other coefficients; albeit, the
focus is placed on the trend estimate), respectively. The esti-
mations of LADs are implemented using quantile regression
available from the R package quantreg (Koenker and Hal-
lock, 2001). In addition, the moving block bootstrap (MBB)
algorithm is integrated into LS and LAD estimations in or-
der to produce consistent uncertainty estimates between the
mean and median trends (Fitzenberger, 1998; Lahiri, 2003).
Because the autocorrelation and heteroscedasticity are not in-
variant between different subsampled time series, an MBB
approach is expected to accommodate a larger class of au-
tocorrelation structures and to be more flexible than a fixed
autoregressive model, such as an AR(1) or AR(2) process.

The fitting procedure for LS and LAD trends is conducted
iteratively and is outlined as follows: (1) for each iteration,
a trend model is fitted to randomly selected multi-blocks of
resampled data, and the corresponding bootstrapped trend
value is extracted, and (2) the final trend estimate (and its
1σ uncertainty) is produced by the mean (and standard devi-
ation or SD) of the bootstrapped trends from 1000 iterations.
The code for implementing median regression based on the
MBB algorithm is documented in the Tropospheric Ozone
Assessment Report (TOAR) statistical guidelines (Chang et
al., 2023b).

In terms of fitting quality, root-mean-square (percentage)
deviation and mean absolute (percentage) deviation are used
to assess the overall predictive performance:

RMSD=

(∑n
t=1(ŷt − yt )2

n

)1/2

, and

MAD=
∑n
t=1|ŷt − yt |

n
for the units of ppbv;

RMSPD=

(∑n
t=1((ŷt − yt )/yt )2

n

)1/2

, and

MAPD=
∑n
t=1|(ŷt − yt )/yt |

n
for the units of percentage.

In the above, ŷt is the fitted value of yt . To explicitly quan-
tify the sampling impact, by using the same methodology, we
can define the undercoverage bias as (sr− sc)/sc, where sc is
the statistic of interest (e.g., can be either the monthly mean,
trend value, or trend uncertainty) derived from the complete
data set, and sr is the statistic derived from the reduced or
subsampled data set; thus, RMSPD (root-mean-square pre-
dictive difference) and MAPD (mean absolute percentage de-
viation) can also be used to assess the improvement due to
sampling enhancement.

It should be noted that Chang et al. (2021) used an adap-
tive nonlinear trend technique (i.e., regression splines fitted
through generalized additive models (GAMs); no assump-
tions regarding the shape of trends is required in advance)
to model the ozone variability at MLO and found that the
nonlinearity captured by the GAM is largely diminished and
becomes roughly linear after the meteorological variability
is accounted for, indicating that the nonlinearity in the ozone
time series at MLO can be attributed to meteorological influ-
ence. Therefore, a change point analysis of long-term trends
at MLO is not considered in this study.

3 Results

3.1 Quantifying undercoverage bias in monthly means
and trends from weekly samples

Figure 3 shows the scatterplots between the monthly means
based on all available (complete) daily nighttime observa-
tions and monthly means aggregated from (reduced) weekly
samples, according to each day of the week and different bias
exceedance thresholds (e.g., the dark-red color indicates that
the absolute sampling bias of the mean from reduced samples
is greater than 25 % of the mean from complete samples in a
given month). In contrast to RMSD and MAD, which repre-
sent the overall predictive performance, bias exceedance rate
is a measure focusing on the frequency of extreme sampling
bias. Overall, even though we do not observe strong system-
atic biases from the scatterplots (as indicated by the correla-
tion line in blue), some large discrepancies are present (see
Table 1 for the results by each day of the week). On average,
13.5 % and 5.1 % of the months show the bias exceedance
rate to be greater than 15 % and 20 % of the monthly means,
respectively. Depending on the locations of these discrepan-
cies in the time series, they can obscure the true trend esti-
mate, as shown in Fig. 2.

A once-per-week sampling analysis is carried out by esti-
mating the mean and median trends based on each day of the
week and different time periods. The following discussion is
based on Fig. 4a and c:
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Figure 3. Demonstration of exceedance bias (at different thresholds) from once-per-week samples in monthly means: panels show the
scatterplots between monthly means based on full sampling (x axis) and once-per-week sampling (y axis, by each day of the week). The
result are based on daily nighttime observations measured at MLO (1980–2021). The solid blue line in each panel is the 1 : 1 line, and the
dashed blue line represents the overall correlation.

Table 1. Undercoverage bias in monthly means (1980–2021) based on (a) once-per-week sampling by each day of the week and (b) different
sampling frequencies per week (average over all possible subsets). Bias exceedance rate indicates the frequency at which the absolute
sampling bias of the mean from reduced samples is greater than a threshold (5 %–25 %) of the mean from complete samples.

Bias exceedance rate (%) RMSPD MAPD RMSD MAD

5 % 10 % 15 % 20 % 25 % (%) (%) (ppbv) (ppbv)

(a) Sampling day

Sun 59.7 29.2 13.3 5.2 2.6 10.2 8.0 4.2 3.3
Mon 55.2 27.8 11.5 5.0 1.8 10.1 7.7 4.1 3.2
Tue 59.7 31.5 15.5 5.8 1.4 10.6 8.3 4.3 3.4
Wed 59.1 31.7 16.1 6.0 3.0 10.6 8.3 4.4 3.4
Thu 55.2 26.6 10.9 3.8 1.0 9.4 7.3 3.9 3.1
Fri 61.1 29.2 13.7 5.2 2.6 10.5 8.2 4.4 3.4
Sat 60.3 30.0 13.9 4.8 2.4 10.4 8.2 4.3 3.4

(b) Sampling frequency

1 d per week 58.6 29.4 13.5 5.1 2.1 10.3 8.0 4.2 3.3
2 d per week 39.4 11.9 3.2 0.7 0.3 6.6 5.1 2.7 2.1
3 d per week 25.6 4.4 0.7 0.1 0 4.8 3.7 2.0 1.5
4 d per week 14.6 1.3 0.1 0 0 3.6 2.7 1.5 1.1
5 d per week 6.0 0.2 0 0 0 2.6 2.0 1.1 0.8
6 d per week 0.7 0 0 0 0 1.7 1.3 0.7 0.6

– First of all, it is important to separate the effect of sam-
ple size (for fitting the trend model) from that of un-
dercoverage bias (due to sparse sampling). The scenario
on the left of Fig. 4a indicates the mean trends and 2σ
intervals estimated from full sampling (seven samples
per week). Trend values are around 0.9 ppbv per decade
from 1980, 1990, and 2000, but the uncertainty grows
when the time periods become shorter. This implies that
high certainty (2σ confidence level) in trends cannot be

attainable over 2000–2021 and 1995–2021, mainly be-
cause the time series are too short (i.e., roughly 30 years
of continuous data are required to detect the signal at
this magnitude, given the fact that the trends are rela-
tively linear over 1980–2021).

– However, given the fact that the sample size for trend
estimation is the same (i.e., the total number of monthly
means for full and weekly sampling), if we sample on
Tuesday or Wednesday only, high certainty in mean
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trends cannot be obtained even with 30 years of data
(1990–2021); and if we sample on Tuesday only, high
certainty in mean trends cannot be obtained even with
40 years of data (1980–2021). In these cases, we con-
clude that the sampling biases from weekly samples are
not neutralized even when very long-term records are
considered, and the undercoverage biases persistently
reduce trend accuracy.

– So far, the above discussion is based on the mean esti-
mator. The big picture remains similar if we compare
the results between the mean and median estimators.
Comparable patterns can be observed when the time se-
ries is sufficiently long (> 30 years), and it is not un-
expected to see some noticeable discrepancy when the
sample size is low (also confounding with sampling
bias in weekly samples). Note that the discrepancy be-
tween mean and median trend estimates can be mainly
attributed to ozone heterogenous variability (Chang et
al., 2023a), while the discrepancy between trend uncer-
tainties can also be attributed to different optimized al-
gorithms (if the regression assumptions are not severely
violated, the LS method tends to produce a narrower un-
certainty than other algorithms; see Fig. S4 for a further
demonstration).

3.2 Strategies for improving trend detection: attribution
of data variability

To further investigate the cause of sampling bias and to im-
prove the trend estimate, for the next step, we aim to attribute
the data variability by incorporating meteorological variables
and climate indices. Since meteorological variables are often
correlated, we need to evaluate which variables have the best
predictive performance and determine a simple yet powerful
model that accounts for the most variability.

The variable selection process is described in Appendix A.
In the following analysis, we use dew point and ENSO (in
addition to the basic model M1) as the most effective covari-
ates in our best trend model for the MLO ozone record. To
differentiate from the basic model, we refer to the trend es-
timate from the best model as the meteorologically adjusted
trend (since dew point is the main attributor). We then ap-
plied the best trend model to the once-per-week sampling
test (see Fig. 4b and d). Through meteorological adjustments,
this uncertainty attribution approach improves the precision
of the ozone trends at all timescales, and the uncertainty is re-
duced by 35 % on average (SD= 7 %) when focusing on full
sampling. This approach also improves the accuracy of the
trends which are based on once-per-week sampling; in par-
ticular, it leads to great improvement in the trend bias from
Tuesday sampling. These findings suggest that the sampling
bias in trends can be substantially reduced through a consid-
eration of colocated meteorological variability.

3.3 Quantifying the benefit of increasing sampling
frequency

This section extends the current scope beyond once-per-week
sampling. The purpose is to investigate the strengths of dif-
ferent sampling schemes and, eventually, to develop the best
approach to reduce sampling bias with a minimal cost (i.e.,
fewer additional samples). However, before this analysis is
carried out, it is desirable to fully understand the relationship
between the enhancement in sampling rate and the reduction
in sampling bias.

We summarize the sampling strategies adopted in this
study in Table 2. The most straightforward extension is to
simply increase the sampling days per week (strategy A). The
improvement in the sampling bias in monthly means is pro-
vided in the second part of Table 1. For the interpretation,
(1) the 10 % bias exceedance rate in monthly means is re-
duced from 29.4 % to 11.9 % if we increase the sampling fre-
quency from once per week to twice per week; (2) when fo-
cusing on the extreme cases, monthly mean bias exceedance
above 25 %, 20 %, 15 %, and 10 % can be eliminated based
on schemes of three to six samples per week, respectively;
and (3) three samples per week seems feasible in terms of
limiting the 10 % bias exceedance rate within 5 % and lim-
iting the average RMSPD and MAPD within 5 % (or below
2 ppbv). In terms of sampling bias in trends for strategy A,
Fig. 5 shows the mean trend and 2σ uncertainty for some
cases based on one to three samples per week (another visu-
alization is provided in Fig. S9 by showing the full-sampling
variations for the periods 1990–2021 and 2000–2021; e.g.,
twice per week might also occur on Monday and Thursday,
Monday and Friday, etc). From a sampling frequency of at
least 3 d per week (or 43 % data coverage), the trend esti-
mate from each individual scenario is fairly close to the true
trend (from full sampling), whereas, quantitatively, five sam-
ples per week are required to reduce the overall RMSPD and
MAPD trend biases to 5 % (see the first part of Table 3 and
the later discussion).

Since the sampling frequency is the only control variable
in the following analysis, hereafter, unless additional demon-
strations are needed to highlight the influence of other fac-
tors, we place the focus on the meteorologically adjusted
mean trends over 1990–2021. To further demonstrate the
challenges with a low sampling rate, we aim to quantify the
improvement in sampling bias by increasing the number of
samples per month (strategy B in Table 2). We evaluate the
sampling bias at two stages. The first stage is to investigate
the statistical power at different sampling frequencies (the
likelihood of detecting a trend from subsamples based on the
fact that a true trend is observed in the full MLO record). In
the second stage, we define the acceptable rate according to
how many random samples produce a trend that falls within
± 10 % of the truth (after excluding the samples which fail to
detect the signal in the first stage). With this approach, we are
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Figure 4. MLO ozone trends and 2σ intervals derived from the mean (a, b) and median (c, d) estimators, without (a, c) and with (b, d)
meteorological adjustments, respectively. In each panel, the results are based on monthly means aggregated from full sampling (labeled as
“all”) and once-per-week sampling (labeled by day of the week) for six different time periods.

able to explicitly quantify the percentages of samples that can
(1) detect the signal and (2) produce an accurate estimate.

Figure 6 shows the full ranges of individual sampling bias
and variability for 2, 4, 8, 12, 16, and 20 samples per month,
along with the resulting statistical power and acceptable rate.
A dogmatic approach to comparing trends is based on the
intersection of uncertainty ranges; two trends are deemed
to have no “significant difference” if their confidence inter-
vals overlap. Figure 6 clearly highlights that this dichotomy
is simply unsatisfactory: despite the subsampled uncertainty
estimates intersecting with the true range, there is no justi-
fication for one to conclude that there is no sampling differ-
ence between the results for 4 and 12 samples per month. For
12 samples per month, 69.7 % of the samples yielded a trend
with a 2σ interval greater than zero. The acceptable rate in-
dicates that 53.3 % of the samples were able to detect the

trend within ± 10 % of the true value. In contrast, a strategy
of four samples per month yielded a low statistical power
of 40.1 %, and only 9.7 % of the samples could detect the
trend accurately. A strategy of just two samples per month
yielded an acceptable rate of zero because the subsamples
either severely overestimated the trend or were not able to
detect the trend.

It should be noted that statistical power is heavily affected
by the absolute magnitude of the trend and sigma values;
thus, we also considered other scenarios. Figure S10 shows
the following: (a) when a stronger signal and a lower sigma
are present (e.g., signal-to-noise ratio (SNR) > 5), a high
statistical power (99.9 %) can be achieved at a lower sam-
pling rate, and (b) when a similar signal is present, a lower
sigma uncertainty can also enhance the statistical power
(from 40.1 % to 73.2 %). Nevertheless, the acceptable rate
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Table 2. Sampling strategies adopted in this study.

Strategy Description

A A fixed sampling frequency within a week.
A weekly sampling frequency (d = 1, . . .,7) is predetermined to conduct the sampling analysis. For example, if d = 2 and
Monday and Wednesday are chosen then we select the data measured on corresponding days of the week to produce the
monthly means and trends. Since the possible combinations for this scheme are small (i.e., 7 possibilities for choosing 1 d
per week and 6 d per week, 21 possibilities for choosing 2 d per week and 5 d per week, and 35 possibilities for choosing
3 d per week and 4 d per week), the sampling results are based on all possibilities.

B A fixed sampling frequency within a month.
A monthly sampling frequency (d = 2, . . .,29) is predetermined to conduct the sampling analysis. For example, if d = 12,
we randomly choose 12 different days of the month, and then we select the data measured on corresponding days of the
month to produce the monthly means and trends. Since the possible combinations for this scheme can be very large, the
sampling results are based on 1000 iterations of random resampling.

C A seasonal sampling enhancement.
Based on existing once-per-week sampling, an increased sampling is applied to a particular season (e.g., twice-per-week
sampling in March–April–May and once-per-week sampling for other seasons).

D An adaptive sampling strategy according to the deviation from the climatology.
The procedure can be outlined as follows:
– A baseline monthly climatology needs to be established (i.e., see Fig. 8 as a demonstration).
– Based on existing once-per-week sampling, if a new weekly sample is too extreme to be acceptable (e.g., outside
a threshold from the climatology) then we take an additional sample 2 d later; otherwise, no further sample within
a week is required.
– By adjusting the threshold and the maximal affordable samples per week, we aim to efficiently reduce sampling bias
in monthly means and trends with the minimal additional samples.

is still far from ideal for low sampling rates, even if the trend
and SNR are strong. A further detailed analysis of strategy
B is provided in the Supplement (beyond the selected fre-
quencies in Fig. 6). Overall, based on an extensive evalua-
tion, we conclude that a minimal sampling rate of either 3
regular samples per week (strategy A) or 12 random samples
per month (strategy B) is required for the trend statistics to
be robust against the sampling impact.

3.4 Cost–benefit strategies for effectively increasing
sampling rate

For the situation where three regular samples per week or
higher are too expensive to maintain for a given ozonesonde
station, we aim to develop a simple cost–benefit strategy to
improve upon the existing once-per-week sampling scheme
by efficiently reducing sampling bias in monthly means and
trends with the minimal cost. Two strategies are proposed
in order to achieve this goal (see Table 2). Strategy C is
designed for increasing additional samples during a prede-
termined season (e.g., ozone is typically more variable and
less predictable during seasons with frequent stratosphere–
troposphere exchange events). Strategy D adopts an anomaly
detection approach to temporarily increase the sampling rate
based on the sampling deviation against the climatology.
The rationale is to first develop a baseline climatology (i.e.,
monthly mean and SD over 1980–1989). Then, for the pe-

riod 1990–2021, if any new weekly sample (the first in a
week) is too extreme compared to the climatology (e.g., out-
side monthly mean ± 2 SD), we take a second sample 2 d
after the initial sampling date (a third sample can be taken
2 d after the second sampling date if necessary); otherwise,
no extra sample within a week is required.

Strategy C is a mixed-sampling approach in which we
use once-per-week sampling for all months as the baseline,
and then, during a particular season, the frequency is in-
creased to two to seven samples per week (while the other
seasons maintain once-per-week sampling) so we can in-
vestigate if the overall trend estimate can be improved by
(partially or completely) removing specific seasonal sam-
pling biases. In Fig. 7, we show the seasonal trends and bi-
ases over 1990–2021 (difference between subsampled trend
and the true trend, with meteorological adjustments). This
is unexpected in that no consistent improvement in trend
precision and accuracy can be seen from extra seasonal
samples. Even if we increase the seasonal samples up to
full sampling, improvement can only be achieved in June–
July–August (JJA) and December–January–February (DJF),
while March–April–May (MAM) and September–October–
November (SON) still show a strong bias (and are no better
than with once-per-week sampling). Table 3 shows the per-
centage bias from strategies A and C (five samples per week
for a particular season and once per week for other seasons
so that the coverage rate is similar to twice-per-week sam-
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Figure 5. Same as Fig. 4 but based on the mean estimators only and (from top to bottom) one to three samples per week (e.g., the label
“1,3,5” indicates sampling on Sunday, Tuesday, and Thursday).

pling for all months); from this table, we can see that, even
though monthly mean bias is reduced with strategy C (com-
pared to once-per-week sampling), trend bias is unexpectedly
increased in MAM and SON.

The most likely reason for the trend bias in MAM and
SON is that these two seasons represent the MLO ozone peak
and trough of a year; thus, if we only enhance the sampling
in either season, the seasonal variability tends to outweigh
the trends (analogously to only sampling the tail of a his-
togram). In contrast, seasonal variability in JJA and DJF is
more consistent with the overall mean; thus, the trend esti-
mates are more likely to be improved (see Figs. S13–S15).
The cause of such phenomena can be associated with a well-
known sampling fallacy, also known as selection bias (Bate-
son and Schwartz, 2001) or preferential sampling (Diggle et
al., 2010). This fallacy typically occurs when the samples are
heavily biased toward a specific subset of the target popula-

tion. Since there is no guarantee regarding the improvement
in trend bias, strategy C is not an ideal sampling approach.

Although we found no direct causality between a reduc-
tion in monthly mean bias and trend bias, it is natural to
suspect that the extreme sampling biases attached to certain
months might be the main attributor to trend bias. Strategy
D is an adaptive approach designed for the elimination of
sampling bias that is too great to be reasonable or accept-
able. As discussed above, we use 1980–1989 ozone data to
develop a baseline climatology (i.e., seasonal cycle and SD)
and 1990–2021 data to validate the result. Given the fact
that the seasonal cycle is accounted for, a tolerance range
needs to be defined to determine if the magnitude of the de-
seasonalized anomaly is reasonable. The narrower the tol-
erance range (the higher the sampling rate), the greater the
reduction in the extreme sampling bias (see Fig. S16). With
this strategy, if we assume, at most, three samples per week,
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Table 3. Undercoverage bias in monthly means, trend estimate, and trend uncertainty from different sampling strategies (1990–2021, with
meteorological adjustments). Strategy A is based on different sampling days per week for all months. Strategy C is based on once-per-week
sampling for all months, incorporated with additional sampling of 4 d per week in a specific season (so the data coverage is similar to
sampling of 2 d per week for all months). Strategy D is an anomaly-based strategy: X(+Y ) : Zσ denote a sampling scheme based on X
regular samples per week with, at most, Y extra samples per week according to the Zσ tolerance range. Particular cases (shown in italic font
for 2 d per week and 1(+1) : 0.5σ or in bold font for 3 d per week, 1(+2) : 1σ , and 1(+2) : 0.5σ ) indicate that fewer samples are used to
achieve a better estimation by Strategy D.

monthly mean bias trend bias trend uncertainty bias

Coverage [%] RMSPD MAPD RMSPD MAPD RMSPD MAPD

Strategy A

1 d per week 14.3 10.4 8.1 13.4 11.1 32.1 30.6
2 d per week 28.5 6.6 5.1 8.7 7.3 16.9 15.5
3 d per week 42.7 4.8 3.7 6.6 5.4 10.4 9.3
4 d per week 57.0 3.6 2.8 5.6 4.6 7.1 6.0
5 d per week 71.2 2.6 2.0 4.6 3.8 6.2 5.7
6 d per week 85.4 1.7 1.3 4.1 3.6 4.2 3.5

Strategy C

MAM(5)+ others(1) 28.7 9.4 6.8 16.8 14.6 23.8 21.5
JJA(5)+ others(1) 28.7 8.4 6.2 7.6 6.3 24.0 22.1
SON(5)+ others(1) 28.5 9.0 6.5 20.2 18.0 25.7 24.2
DJF(5)+ others(1) 28.4 9.7 7.0 8.9 6.9 28.3 27.0

Strategy D

1(+1) : 2σ 20.8 8.5 6.5 13.4 10.9 24.6 23.4
1(+1) : 1.5σ 22.4 7.9 6.1 12.7 10.5 23.1 21.7
1(+1) : 1σ 24.1 7.4 5.7 10.9 8.9 20.6 18.9
1(+1) : 0.5σ 25.9 6.9 5.3 7.0 5.5 16.8 16.1
1(+2) : 2σ 24.3 7.9 6.1 10.4 7.5 21.4 19.9
1(+2) : 1.5σ 27.5 7.1 5.4 8.8 6.3 18.2 16.4
1(+2) : 1σ 31.3 6.2 4.7 6.4 5.0 16.7 15.3
1(+2) : 0.5σ 35.9 5.2 3.9 3.6 2.7 14.7 12.1

our aim is to find an optimal tolerance range, such that the
trend bias is better than the scheme of three regular samples
per week (indicating that fewer samples are used to achieve
a better estimation). Since the climatological mean and SD
vary in different months, the sampling rate is not uniformly
distributed across the year. Figure 8 displays the climatology
and average monthly sample size based on different toler-
ance ranges and, at most, three samples per week. We can
see that the necessary monthly samples are clearly associ-
ated with the monthly variability: the higher the monthly SD
(e.g., April), the fewer additional samples are required. Our
specification for tolerance is purely based on ozone monthly
variability; alternative approaches might be possible if the
extreme sampling bias can be attributed to other factors (e.g.,
extreme weather conditions), but this is beyond the scope of
this study.

To facilitate a discussion of strategy D, let X(+Y ) : Zσ
denote a sampling scheme based on X regular samples per
week with, at most, Y extra samples per week according to
the Zσ tolerance range (a demonstration is made using the

1(+2) : 2.5σ scheme in Fig. 9). The percentage bias and cov-
erage rate for strategy D are summarized in the third part of
Table 3:

– When focusing on, at most, two samples per week, the
trend accuracy based on the 0.5σ tolerance (∼ 1.8/7) is
comparable to 2/7 regular sampling.

– When focusing on, at most, three samples per week, the
trend accuracy based on the 1σ tolerance (∼ 2.2/7) is
comparable to 3/7 regular sampling. The trend bias can
be further reduced to below 5 % if a narrower 0.5σ tol-
erance (∼ 2.5/7) is applied (5/7 regular sampling is re-
quired to meet the same goal).

Under these circumstances, an improved trend accuracy is
achieved with fewer samples than regular sampling, but the
bias metrics for monthly means and trend uncertainty re-
main at similar levels as regular 2/7 or 3/7 sampling; this
result indicates that strategy D is only designed for improv-
ing trend accuracy. Note that, from the above result, a more
constrained tolerance is required to achieve our goal, but a
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Figure 6. Statistical power and accuracy for trend detection: this figure illustrates how trend values can become noisy and uncertain when
the data set is thinned from full sampling (every day of the month) to 2, 4, 8, 12, 16, and 20 samples per month. The vertical blue lines
represent the 1990–2021 ozone trend based on the full record (without meteorological adjustments), with the solid line being the mean
trend value and the dashed lines representing the 2σ interval. For each panel, subsamples are generated randomly and independently over
1000 iterations, and resulting subsampled trends are sorted along the y axis from the lowest to the highest values (purple line – the lowest
and highest values are indicated in the bias range); each horizontal line indicates the 2σ interval. Subsampled trends with p values ≤ 0.05
(dark gray and orange) are summarized by statistical power. Subsampled trends with p values ≤ 0.05 and within ± 10 % bias (orange) are
summarized by the acceptable rate.

gradual improvement can still be provided by the 2σ or 1.5σ
tolerance. This suggests that the adaptive sampling strategy
can be tailored to a specific sampling rate according to the
budget (by modifying the tolerance range and the maximal
samples allowed in a week; see next section).

3.5 Recommendations on efficient sampling for trend
detection

We recognize that, in reality, once-per-week sampling does
not imply that the sample is always measured on the same
day of the week. We use the ozonesondes launched at
Hilo, Hawaii, as an example (19.72° N, 155.05° W; Hilo
is ∼ 56 km northeast of MLO with a roughly once-per-
week sampling frequency in 1982–2021). The effect of (real)
sparse sampling is shown by matching the Hilo ozonesonde

launch dates and the MLO surface ozone record (the Hilo
data are selected for the same pressure level as MLO), and
then the MLO ozone trends are estimated based on the Hilo
ozonesonde sampling dates and also by shifting 1, 2, . . ., 6 d
after the colocated dates (Fig. S17). The result shows that a
strong sampling bias in trends can be observed from the Hilo
ozonesonde sampling scheme and also based on our previ-
ous finding that similar amounts of sampling variability can
be observed between the Hilo ozonesonde and MLO night-
time ozone records (Fig. S18); therefore, the implications for
undercoverage bias from previous discussions are still valid.

We revisit the analysis in Fig. 5 by incorporating the
anomaly-based sampling strategy. Figure 10 shows the
trends based on the 1(+1) : 0.5σ , 1(+1) : 1σ , and 1(+2) : 1σ
schemes. This demonstrates how we can tailor our sam-
pling scheme to a specific budget by adjusting the tolerance
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Figure 7. MLO ozone seasonal trends under full sampling (upper panel) and seasonal trend bias (each cross represents the difference between
a subsampled trend and the true trend, with meteorological adjustments – lower panel) under mixed sampling (1990–2021, strategy C): 1/7
indicates the baseline scenario representing once-per-week sampling for all months, and k/7 (k = 2, . . .,7) indicates x samples per week for
a particular season, while the other seasons remain at once-per-week sampling.

range and the maximal samples per week. These selections
are made because previous comparisons (based on 1990–
2021) found that the trend accuracy is comparable between
two regular samples per week and the 1(+1) : 0.5σ scheme
and between three regular samples per week and 1(+2) : 1σ
scheme. Thus, we might be able to reduce the cost without
compromising the trend accuracy by omitting some samples
which are expected to convey less new information.

In summary, to achieve efficient sampling enhancement
for trend detection based upon current once-per-week sam-
pling, we can adjust our adaptive sampling strategy accord-

ing to the funds available to purchase additional ozoneson-
des. In terms of annual samples and budget (the cost to
launch one ozonesonde is roughly USD 1500 to cover both
equipment and personnel costs), we can make the best use of
an extra 26 profiles in a year (∼ 1.5 per week) by applying
the 1(+1) : 2σ scheme. If an additional 42 profiles per year
(∼ 1.8 per week) are allowed, we can achieve a similar trend
accuracy compared to two regular samples per week by ap-
plying the 1(+1) : 0.5σ scheme. Likewise, an additional 63
profiles (∼ 2.2 per week) would allow us to produce a trend
accuracy comparable to three regular samples per week (the
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Figure 8. Monthly climatology (± 1 SD) and average samples per month based on, at most, three samples per week and different tolerance
ranges (strategy D).

Figure 9. Demonstration of anomaly-based sampling for ozone time series. Panel (a) shows the magnitude of monthly sampling bias between
full sampling (black) and once-per-week sampling on Sunday (purple). Panel (b) is based on the same scheme, but additional samples are
taken when any weekly samples are found to be outside the 2.5σ range from the climatology (at most, three samples per week). Trends and
associated uncertainty estimates are meteorologically adjusted.
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Figure 10. Same as Fig. 5, but the anomaly-based sampling strategy is incorporated. From top to bottom: the 1(+1) : 0.5σ , 1(+1) : 1σ , and
1(+2) : 1σ schemes. Numbers in parentheses in the x axis indicate the extra sampling days of the week.

1(+2) : 1σ scheme) (3 profiles per week is equal to 156 pro-
files per year). Therefore, our ultimate goal can be achieved
without fully sampling 3 d per week (and saving the cost for
41 profiles a year). Although our recommendations are based
on the MLO ozone data variability, an adjustment tailored
to a specific time series can be made as long as the clima-
tology can be reliably determined. Previous work has shown
that models with coupled stratosphere–troposphere dynamics
and chemistry can realistically simulate ozone variability in
the free troposphere for the purposes of evaluating sampling
strategies and the impact of interannual variability on long-
term ozone trends (Lin et al., 2015b; Barnes et al., 2016).
Since our baseline reference constitutes both the climatolog-
ical mean and SD, it can be adapted to the environments at
different locations (as the climatology from each monitoring
site is expected to reflect local features and variations). We
could also constantly update the climatology by incorporat-

ing new information from recently available samples to better
represent long-term baseline variability.

There is no additional statistical complexity to extend the
anomaly-based sampling strategy to vertical profile data, ex-
cept for the fact that we translate the comparisons between
surface measurements into vertical profiles (either MAD or
RMSD can be used to represent the average deviation be-
tween individual profiles and the climatology at a fixed ver-
tical grid). Nevertheless, one significant complication in pro-
file analysis is the common presence of stratospheric intru-
sions as these events can greatly enhance the ozone concen-
trations in the middle and upper troposphere and occur more
frequently in spring and early summer (see Figs. 1 and S1)
(Cooper et al., 2005; Lin et al., 2015a). Data measured during
these events are highly leveraged and can be either filtered
out or taken into account in meteorological adjustments (if
a proper covariant can be identified) for tropospheric ozone
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trend analysis. Therefore, additional samples might be re-
quired in regions frequented by stratospheric intrusions be-
cause these data are more likely to deviate from the climato-
logical ranges.

4 Conclusions

Since the late 1980s, the challenges in quantifying global- or
regional-scale ozone climatologies and trends from sparsely
sampled ozone profiles have been regularly revisited (Prinn,
1988; Logan, 1999; Cooper et al., 2010; Saunois et al., 2012;
Chang et al., 2020). While the great majority of attention has
been paid to maintaining long-term operations or expanding
observational networks, scant effort has been devoted to in-
creasing the regular sampling rate. The under-appreciation
of high-frequency sampling might be due to a common as-
sumption that the impact of sampling bias (along with me-
teorological influence) can be neutralized once the time se-
ries is sufficiently long (typically 20 or 30 years). It should
be noted that the larger the data variability, the longer the
data length required to detect a given trend (Weatherhead
et al., 1998; Fischer et al., 2011). This paper shows that a
low sampling frequency generally results in an unexpect-
edly larger uncertainty, which leads to suppressed statistical
power and requires a much longer time period (e.g., persis-
tence for 40 years in some cases) for free tropospheric ozone
trend detection. In conclusion, we found that a regular sam-
pling frequency of at least three samples per week is required
to avoid most of the impact from low sampling rates.

This paper used over 40 years of daily nighttime ozone
data measured at Mauna Loa Observatory (representative of
the lower free troposphere) to show that a large trend bias
could be present when the sampling frequency is sparse and
insufficient. Although the variability of sampling deviations
is rather unpredictable over time (dependent on meteorology,
to a certain extent), these sampling deviations become inher-
ent biases in a time series when samples are limited. Since
the trend estimate is derived from the chronological order of
a time series of events, certain extreme sampling biases at-
tached to different times could have a severe impact on trend
estimation. In this study, we have shown two remedies to im-
prove trend detection under sampling bias: the first is to at-
tribute the data variability by incorporating colocated meteo-
rological variables, demonstrating a substantial improvement
in trend precision (and a moderate improvement in the trend
accuracy), and the second is to adopt an adaptive sampling
strategy for eliminating anomalous sampling bias, which al-
lows improved trend accuracy with fewer samples.

We summarized the challenges of detecting free tropo-
spheric ozone trends as follows:

1. At least a few decades of continuous data could be
necessary to confidently detect a weak signal of ozone
trends. However, if sampling bias is present, an extra
period of time might be required to be able to detect the

same signal. In our first trend result, we used the MLO
ozone data to show that highly confident ozone trends
(2σ confidence level) can be detected over 1990–2021
under full sampling, but under once-per-week sampling,
trends might fail to be detected even though an addi-
tional 10 years of data are considered (the left panels of
Fig. 4 for both mean and median estimators).

2. The longer the time period, the more consistent the
trend estimates from different trend techniques (mean
and median regression), but sparse sampling can result
in similar biases to long-term trends regardless of trend
techniques.

3. A proper attribution of data variability can efficiently
improve the trend precision. Based on full-sampling
ozone data at MLO, meteorological adjustments im-
prove residual RMSD and MAD by 27 % and reduce
the trend uncertainty by 35 % (an average over differ-
ent time periods). In terms of variable selection, dew
point is the most important variable for ozone trend de-
tection and attribution at MLO as it is a good indicator
of air mass origin, and it removes the noise in the data
caused by the constant shifting between air masses of
mid-latitude or tropical origin (Gaudel et al., 2018).

4. Meteorological adjustments can also reduce the under-
coverage bias due to sparse sampling and can thus im-
prove the trend accuracy. This conclusion is drawn be-
cause once-per-week sampling trend bias is largely re-
duced after meteorology is accounted for (the right pan-
els of Fig. 4), and the trends are more consistent be-
tween different days of the week.

5. An incorporation of climate indices, such as ENSO and
QBO, has no effect on the improvement of sampling
bias because these large-scale circulations are only char-
acterized at the monthly level. In contrast, we showed
that a better predictive performance can be achieved by
incorporating the colocated dew-point observations (on
the same sampling dates) compared to using monthly
aggregated information. This result indicates that small-
scale colocated adjustments are more important for re-
ducing undercoverage bias.

6. We found that three samples per week are required
to (1) reduce 10 % exceedance bias and the overall
monthly mean bias to below 5 % and (2) constraint ex-
treme bias in trends within a reasonable range and gain
sufficient accuracy for trend detection (an overall bias
∼ 5 %–7 %).

7. Imbalanced sampling might deteriorate the trend accu-
racy due to selection bias. We used once-per-week sam-
pling as a reference, and increased additional regular
samples during a particular season; the result shows that
an improved trend estimate can only be achieved in JJA
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and DJF, while the trend bias is deteriorated in MAM
and SON.

8. We proposed an adaptive sampling approach that adopts
an enhanced sampling frequency if any upcoming sam-
ple is too deviant from the baseline climatology. By
eliminating extreme sampling bias, this approach can
efficiently improve the trend accuracy with fewer sam-
ples (an average of 2.2 samples per week) than a regular
sampling strategy of three samples per week. If we use
a more constrained tolerance (an average of 2.5 sam-
ples per week) to rule out the extreme sampling bias,
the RMSPD and MAPD trend bias can be reduced to
5 %.

It should be emphasized that the effect of undercoverage bias
summarized above is to be expected in a sparsely sampled en-
vironment even if perfect observations are obtained (i.e., no
measurement uncertainty). The general implications are ex-
pected to be the same for vertical profile trend analysis since
consistent amounts of sampling variability are observed from
intensive sampling campaigns (Fig. 1) and decadal seasonal
variability (Fig. S1).

Looking to the future, the sampling strategy proposed
in this study is designed to validate the trace gas prod-
ucts produced from NOAA’s current Joint Polar Satellite
System (JPSS, https://www.nesdis.noaa.gov/our-satellites/
currently-flying/joint-polar-satellite-system, last access: 30
March 2024), the future Geostationary Extended Observa-
tions (GeoXO satellite system, scheduled for launch in the
early 2030s, https://www.nesdis.noaa.gov/GeoXO, last ac-
cess: 30 March 2024), and the future Near Earth Orbit Net-
work (NEON, scheduled for launch in the early 2040s). Pre-
vious efforts to compare trends between ground-based and
satellite measurements are typically based on aggregated
monthly time series (Gaudel et al., 2018). This study shows
that such a comparison could be biased when the sampling
rate is low or when the sampling schemes are different. Given
the fact that the current free tropospheric ozone observing
system is sparse not only in time but also in space (Tarasick
et al., 2019), it is questionable whether the existing network
is capable of comprehensively performing satellite evalua-
tion and validation. Therefore, in addition to a proper sam-
pling rate, a reliable and extensive monitoring network is also
required (Miyazaki and Bowman, 2017; Weatherhead et al.,
2018).

Previous designs to expand monitoring networks or spa-
tial coverage were typically determined through observation
correlation ranges (Sofen et al., 2016; Weatherhead et al.,
2017). This type of analysis aims to minimize the spatial gap
by maximizing correlation ranges from additional sites, but
these additions are not designed to accurately evaluate global
or regional trends. Specifically, we point out that strong spa-
tial heterogeneity is often present in regional ozone trends
and variability, as indicated by a wide range of free tro-
pospheric trends observed at individual sites above Europe

and western North America (Chang et al., 2022, 2023a);
therefore, evaluating regional ozone trends based on a single
sparsely sampled data source is likely to produce an incom-
plete assessment of the true trend. We thus recognize the im-
portance of evidence synthesis by integrating data from var-
ious platforms (Richardson, 2022; Shi et al., 2023). For in-
stance, aircraft field campaigns are mostly short-term or tem-
porary activities, but those data are carefully planned with
specific science objectives (such as improving forecasting
skill and evaluating satellite data); thus, those data should
also be considered in the regional trend assessment together
with ozonesonde, lidar, and commercial aircraft data sets
(through a detailed data intercomparison and data fusion ap-
proaches; Cooper et al., 2010; Liu et al., 2013; Chang et al.,
2022, 2023a).

Appendix A: Variable selection for trend detection
model

We investigate the impact of each climate index and meteo-
rological variable on mean and median trends based on full
sampling (Fig. S5). Since the mechanism of incorporating
covariates is highly similar between the mean and median re-
gressions, the following discussion is focused on mean trends
only. Except for QBO, all the other variables show a trend
over 1980–2021. Since a trend in the independent variable
can induce a trend in the dependent variable, we also repeat
the same analysis based on detrended covariates. After the
trend from each covariate is removed, the trend estimates
become more consistent (Fig. S5). Overall, a stronger im-
pact is found with dew point, relative humidity (in terms of
much lower uncertainty), and ENSO (no improvement in the
signal-to-noise ratio, but it produces very different trends at
shorter time periods, e.g., 2000–2021 and 2005–2021), and
a weaker impact is found with other covariates. Quantita-
tively, dew point makes the greatest improvement by produc-
ing the lowest RMSD and MAD and the highest signal-to-
noise ratio for trend estimates (as previously shown in Chang
et al., 2021). By adding dew point alone, R2 has increased
from 0.54 (basic model) to 0.75 (R2 for the full model is
0.77). This is not unexpected because Chang et al. (2021)
also showed that an incorporation of dew point produces a
better fitting quality of ozone at MLO than relative humidity
and temperature.

As discussed in Sect. 2.1, ozone variability at MLO is im-
pacted by dry air masses from the north and west (low dew
point) and moist air masses from the south and east (high dew
point) (Gaudel et al., 2018), and its relative frequency is cor-
related with atmospheric circulations, such as ENSO (Lin et
al., 2014). Therefore, we select dew point and ENSO (in ad-
dition to the basic model M1) together as our best model for
trend detection: relative humidity and temperature are not in-
cluded to avoid multicollinearity (these two variables jointly
determine dew point), and wind direction, wind speed, and
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QBO are excluded because they have a negligible impact
on trend detection. We compare the model residuals from
the basic and best models based on full sampling (Fig. S6),
and the result shows that the model fit is substantially im-
proved after accounting for meteorology in terms of (1) a
reduction in RMSD and MAD of 27 %, (2) the residual vari-
ability becoming weaker and the 2σ interval for Loess (lo-
cally weighted scatterplot smoothing) curve becoming nar-
rower, and (3) the nonlinearity in residuals being reduced.
In addition, it is worth reinforcing that our sampling results
are expected to be reliable in general because the residuals
are roughly linear over 1980–2021, which means there is no
indication that the long-term trends have changed or turned
around, and results are not sensitive to specific periods.

Additional analyses were carried out and described in the
Supplement. Specifically, we show that (1) an incorporation
of colocated dew point observations produces a much bet-
ter predictive performance than using monthly averages of
all nighttime or 24 h data (Fig. S7), demonstrating that some
sampling bias can be attributed to meteorological variability,
and (2) temperature trends from each day of the week are
more consistent with full sampling (Fig. S8), emphasizing
that more careful attention needs to be paid to ozone trend
detection at a low sampling frequency; in addition, (3) an
attribution analysis (Table S2) is carried out regarding pure
sampling deviations (defined as the difference between an
ozone daily value and its monthly mean). By comparing the
magnitudes of the signal-to-noise ratio for each covariate, the
result shows that a higher sampling variability is more likely
to occur from July to November (with all covariates consid-
ered), but a weak R2 of 0.39 indicates that a large portion of
the sampling deviations might merely be unstructured vari-
ability.

Code and data availability. MLO meteorological data can be
found at ftp://aftp.cmdl.noaa.gov/data/meteorology/in-situ/mlo/
(NOAA GML, 2023b), and ozone data can be found at
https://gml.noaa.gov/aftp/data/ozwv/SurfaceOzone/ (NOAA
GML, 2023c). Ozonesonde data measured at Trinidad
Head (California) and Hilo (Hawaii) can be downloaded at
ftp://aftp.cmdl.noaa.gov/data/ozwv/Ozonesonde/ (NOAA GML,
2023a). The Python and R codes for implementing quantile
regression based on the MBB algorithm are provided in the TOAR
statistical guidelines (Chang et al., 2023b).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/acp-24-6197-2024-supplement.
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