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Supplementary analysis for Section 3.2 is provided as follows:

• Since our meteorological adjustments are made by colocating ozone and dewpoint observations (when

selecting subsamples, meteorological variables used in different sampling schemes are coupled with ozone

data, i.e., not only ozone but also dewpoint is varying in the sampling analysis), we conduct a further

sensitivity test by fitting the same ozone data, but using different sources of dewpoint measurements,

including: (1) coupled daily data, (2) monthly averages of all daily nighttime data, and (3) monthly

averages of all 24-h hourly data. We randomly selected 4 days-per-month to carry out this test by 1000

iterations. The result shows much lower residual RMSD and MAD are obtained from the coupled data,

followed by monthly nighttime averages, and 24-h averages have the greatest errors (see Figure S7,

note that ENSO index is only available at monthly scale and thus has no effect on this test). Therefore,

it provides strong evidence that a better correlation and predictive performance can be achieved by

colocating ozone and meteorological variables at a finer scale.

• In Figure 2 we demonstrate that the sampling bias from weekly samples has a smaller impact on

temperature trends at MLO. We show the extended result by different time periods and by each day

of the week in Figure S8 (trends for meteorological variables are based on basic model (M1)). As

expected, although some variability is shown in trends from weekly subsamples, the result is more

consistent between different days of the week.

• Although our focus is the effect of sampling bias on ozone trends, it is also desirable to carry out the

similar attribution analysis to the pure sampling deviations (defined as the differences between ozone

daily value and its monthly mean). By removing the ozone variability and accounting for meteorology,

we aim to identify any remaining patterns (see Table S2 for the regression output). The result shows

that some seasonal differences are present and a higher sampling variability is more likely to occur

from July to November. As expected, neither a clear difference between days of the week nor a trend

was found in the sampling deviations. Overall, a moderate low R2 of 0.39 was found, indicating that a

large portion of the sampling deviations might merely be random noise.

Supplementary analysis for Section 3.3 is provided as follows:

In this section we aim to quantify the marginal improvement of sampling bias by increasing the number

of samples per month (Strategy B in Table 2). A complete random sampling is generally an infeasible

plan in a monitoring program, but compared with the regular sampling Strategy A, the randomness in

Strategy B enables us to avoid any potential systematic bias and investigate the undercoverage bias under

different sampling rates. As discussed in Section 2.1, since the MLO data set has limited missing values, it is

reasonable to assume the resulting data characteristics and statistics are representative of the underlying

population, i.e., not only monthly means, but also the trend estimate and its uncertainty derived from full

sampling, should also be representative. Based on this rationale, it is possible to quantify the respective

effect of sampling bias on (1) monthly mean, (2) trend estimate, and (3) trend uncertainty. The negative

effect of sampling bias on trend estimate and uncertainty can be considered to be a deterioration of trend

accuracy and precision, respectively. Since our focus is the marginal improvement, the sampling frequency is

the only control variable in this analysis (different time periods should play a minor role), so we only show

the result based on the mean trends over 1990-2021 (it is sufficiently long such that the discrepancy between

the mean and median trends is not critical).

Figure S11 shows the marginal decrement of bias exceedance rate and percentage bias as the monthly

sampling rate increases (step curves), the colocated meteorological adjustments are made for all the trends

and associated uncertainty estimates from full and reduced sampling. This figure demonstrates that even if

the weekly sampling frequency cannot be increased, any additional monthly samples can still reduce the

sampling bias and improve the trend accuracy and precision, albeit the marginal improvement generally

levels off at a certain point (as it is closer to the truth). Note that the step curves in Figure S11 are

approximated results based on a random sampling over 10,000 iterations. Therefore, we use logistic regression

to smooth out some heterogeneity and explicitly quantify the marginal improvement for each additional
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monthly sample. Let px be the bias exceedance rate or percentage bias derived from x profiles-per-month,

then logistic regression can be expressed as log (px/(1− px)) = a+ bx, where a and b are coefficients to be

fitted. Since the coefficient b in logistic regression cannot be directly interpreted as a slope or marginal effect,

an average derivative is used to represent the marginal effect (by calculating a derivative of the curve for

each x and then taking the average, Kleiber and Zeileis (2008)). An alternative approach is to use odds

ratio (eb), but odds ratio is often misinterpreted as probability, and it is not a standard measure in the

atmospheric science literature, so odd ratio is not adopted here. In summary, the marginal improvement is

roughly consistent between monthly mean, trend estimate and uncertainty, each additional monthly sample

corresponds to an average reduction of bias exceedance rate by 3.3% (SD=1.6%) and percentage bias by

0.6% (SD=0.2%).

Note that an offset can be observed for the 5% bias exceedance rate in Figure S11(b), due to variability

in the colocated dewpoint observations (standard regression model assumes that covariates are measured

without error), which can cause some weak inconsistency in trend estimates (if we use the basic trend model,

such an offset can be removed, see Figure S12). Nevertheless, since the other metrics are not affected, there

is no need to particularly adjust the 5% bias exceedance rate in this analysis. If necessary, errors-in-variables

models can be applied (Gleser, 1981; Li, 2002).

The exercise in Figure S11 can be used as a reference to determine the minimum number of samples

necessary for accurate and precise trend detection. For example (based on logistic regression fits), at least 12

(and 23) samples per month are required to reduce MAPD trend bias to 10% (and 5%); and at least 15 (and

26) samples are required if RMSPD is a criterion. Based on Figure S11 and compared with previous studies,

(1) we found that a roughly 10% (and 5%) sampling uncertainty in monthly mean (MAPD) is associated with

a sampling frequency of 4 (and 12) samples per month, which is consistent with the IAGOS profiles at 700

hPa above Frankfurt, Germany (Saunois et al., 2012); (2) 25 samples per month are necessary for producing

the mean value within ±2% MAPD bias, which is consistent with the regional study above western North

America (Cooper et al., 2010); (3) Chang et al. (2020) found that 18 samples per month are required for

the MAPD trend bias to be less than 5% above Europe; under the same frequency the MAPD trend bias

is 6.8% at MLO, and it takes an additional 5 monthly samples to reach the 5% threshold, as the marginal

improvement eventually becomes less effective.

Supplementary analysis for Section 3.4 is provided as follows:

To better understand the diverse result between monthly mean bias decreases and trend bias increases in

Strategy C, Figure S13 demonstrates one of the most extreme cases in MAM: We first show the contrast of

time series between full sampling and Friday sampling, and then show another scenario that a time series is

produced from a mixture from full sampling for MAM and Friday sampling for other months. Under this

particular circumstance, we show that the trends are consistent between full and once-per-week sampling,

but the trend bias turns out to be inflated if we deliberately increase samples in MAM. On the other hand,

even though sampling enhancement in MAM tends to cause a low bias in the overall trends (Figure 7), we

show that a very high bias could also occur by simply selecting a different day of the week sampling (Figure

S14). Therefore, the direction of trend bias is not necessarily connected to the seasonal variability.

Supplementary analysis for Section 3.5 is provided as follows:

Previous trend studies of free tropospheric ozone profiles and/or columns were typically conducted without

considering other covariates (apart from the basic trend model (Tiao et al., 1986; Oltmans et al., 2006)) or

by only incorporating large-scale circulations, such as ENSO and QBO (Logan, 1994; Oltmans et al., 2013;

Chang et al., 2022). No previous trend studies (to the best of our knowledge) have thoroughly investigated

the attributions of free tropospheric ozone profile data variability to meteorological variates. Therefore,

while we aim to investigate the consistency between the Hilo ozonesondes and the MLO nighttime averages

(subsampled to the colocated dates), it is also desirable to consider meteorological influences on ozonesonde

trends. Note that relative humidity sensors on the older sondes were not as reliable as modern sensors

(Fujiwara et al., 2003), so the records before July 1991 were excluded from this analysis.
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Since the once-per-week sampling scheme at Hilo has too few profiles to perform the resampling analysis

(as we did for the MLO record in Figures 4-6), we are not able to properly quantify the improvement of

trend accuracy due to covariate adjustments, so we focus on the reductions of fitted residuals (an indication

of the overall fitted quality) before and after incorporating covariates. The results are shown in Figure S18:

• An overall strong correlation can be found between individual Hilo ozonesondes (680 hPa) and the

colocated MLO nighttime averages.

• Our previous findings show that meteorological adjustments on average reduce the fitted residuals by 27%

and trend uncertainty by 35% at MLO. Consistent improvements can be found at the corresponding level

(680 hPa) above Hilo, by 24% and 34%, respectively, further demonstrating that the free tropospheric

ozone variability can be attributed to colocated meteorological influence (i.e., dewpoint variability in

this analysis).

• Nevertheless, highly consistent trends are still not observed between the Hilo ozonesonde (680 hPa)

and the colocated MLO record. The reason behind this warrants further detailed investigation, but the

combined effect of measurement uncertainty and intra-daily variability is expected to play a major role.
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Table S1: A list of the months that have not met the 50% data coverage criterion (MLO ozone record).

Year Month # daily values
1984 Apr 0
1987 Apr 0
1987 May 0
1987 Jun 0
1987 Jul 8
2000 Sep 0
2002 May 14
2003 Aug 14
2004 Dec 10
2005 Jan 0
2005 Feb 0
2005 Mar 8

Table S2: Numerical output from the multiple regression fit to the sampling deviations (differences between

daily ozone value and its monthly mean), where each month and day of the week are treated as discrete

factors (e.g., to investigate which months are more likely to have a stronger sampling variability).

Estimate Std. Error SNR P -value
Intercept [ppbv] -1.99 1.13 -1.76 0.08
trend [ppbv/dec.] <0.01 0.09 0.04 0.97
dewpoint [◦C] -0.53 0.03 -18.65 <0.01
relative humidity [%] -0.09 0.01 -8.42 <0.01
temperature [◦C] -0.89 0.05 -17.62 <0.01
wind direction [degree] -0.01 <0.01 -3.03 <0.01
wind speed [m/s] -0.04 0.03 -1.37 0.17
factor(Feb) [ppbv] -0.04 0.41 -0.10 0.92
factor(Mar) [ppbv] 1.22 0.40 3.05 <0.01
factor(Apr) [ppbv] 0.21 0.40 0.52 0.60
factor(May) [ppbv] 2.07 0.41 5.06 <0.01
factor(Jun) [ppbv] 2.70 0.42 6.36 <0.01
factor(Jul) [ppbv] 4.81 0.42 11.34 <0.01
factor(Aug) [ppbv] 5.90 0.44 13.55 <0.01
factor(Sep) [ppbv] 5.15 0.43 11.91 <0.01
factor(Oct) [ppbv] 4.33 0.41 10.50 <0.01
factor(Nov) [ppbv] 3.83 0.41 9.43 <0.01
factor(Dec) [ppbv] 1.32 0.40 3.29 <0.01
factor(Mon) [ppbv] -0.11 0.30 -0.35 0.73
factor(Tue) [ppbv] -0.49 0.30 -1.61 0.11
factor(Wed) [ppbv] -0.34 0.30 -1.12 0.26
factor(Thu) [ppbv] -0.10 0.30 -0.34 0.73
factor(Fri) [ppbv] -0.33 0.30 -1.10 0.27
factor(Sat) [ppbv] -0.10 0.30 -0.33 0.74
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Figure S1: Vertical profiles of seasonal ozone in the northern mid-latitudes (Trinidad Head, California) and

the tropics (Hilo, Hawaii) over 2012-2021: gray lines represent individual sondes, black lines represent the

mean, and red lines represent the 5th, 50th and 95th percentiles. Sampling uncertainties are evaluated by

mean absolute percentage deviation at 10 hPa resolution layers within 700-300 hPa.

7



Figure S2: Daily and monthly nighttime ozone mean time series at Mauna Loa, Hawaii.

Figure S3: Daily nighttime ozone histograms by each day of the week at Mauna Loa, Hawaii. No

distinguishable difference can be observed in the average of each histogram (as indicated by the vertical line).
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Figure S4: Resampling distributions of the median/mean trends based on standard LAD/LS fits (left) and

moving block bootstrap (right). A total of 10,000 iterations is made and for each iteration, 4 samples per

month are randomly selected and then the median/mean trends are fitted to the same subsamples. The

result shows that the mean-based regression tends to have a narrower uncertainty than the median-based

regression, and moving block bootstrap (accounted for autocorrelation) tends to have a greater uncertainty

than the standard regression fits. Trends and associated uncertainty estimates are meteorologically adjusted

(MLO nighttime ozone, 1980-2021).
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Figure S5: Comparison of the impact of climate indices and meteorological variables on MLO ozone trend

estimates and 2-sigma intervals: Ozone trends are based on the mean (a & b) and median (c & d) estimators,

and derived from variables without detrended (a & c) and detrended variables (b & d), respectively. In

each panel the results are based on the basic model (left), each individual variable (middle), and full model

(right), as well as different time periods. Variables include El Niño-Southern Oscillation (ENSO), quasi

biennial oscillation (QBO), temperature, wind speed (WS), wind direction (WD), relative humidity (RS),

and dewpoint (DP). Note that the peak correlation between ENSO and ozone is found where the ENSO

index shifts forward by 5 months, so here a lagged ENSO correlation is considered, albeit no noticeable

impact on trends is found when using the peak or zero-lag ENSO correlation (not shown).
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Figure S6: Residuals from least squares regression models without and with meteorological adjustments

(left), and meteorological adjusted ozone values and anomalies (right). Shaded curves indicate the Lowess

smoother [± 2-σ].

Figure S7: Residual RMSD and MAD from different sources of meteorological observations, based on

the mean (left) and median (right) estimators: Trend models are fitted through meteorological variables

selected from colocated sampling dates (coupled), from all nighttime averages (nighttime), and from all

hourly averages (24h), respectively. Each black line represents an outcome from resampled data, and the

purple line represents the average over 1000 iterations. The result shows a better predictive performance can

be achieved by colocating dependent and independent variables at a finer scale.
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Figure S8: MLO nighttime temperature trends based on the mean (left) and median (right) estimators.
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Figure S9: Impact of increasing weekly sampling frequency on trends over 1990-2021 (upper panel) and

2000-2021 (lower panel): The possible combinations are different for each sampling scheme (i.e., a total of 7

sets for 1 day/week and 6 days/week, 21 sets for 2 days/week and 5 days/week, and 35 sets for 3 days/week

and 4 days/week). For each scheme, results are sorted from the lowest to the highest sampled trend values

(MLO nighttime ozone).
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Figure S10: Same as Figure 6, but (a) for 1990-2021 with meteorological adjustments (to show the scenario

when a stronger trend and SNR are present), and (b) for 1995-2021 with meteorological adjustments (to show

the scenario that when a similar trend is present, a lower sigma can also yield a reasonable statistical power).

Note that meteorology is accounted for in these panels, so the acceptable rate at a low sampling frequency is

greater than Figure 6 (see Section 3.2 for detailed discussions of meteorological impact on trend accuracy

and precision), however, the results are less satisfactory compared to scenarios with higher sampling rates.
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Figure S11: Marginal decrement of the bias exceedance rate (upper panel), and RMSPD and MAPD

(lower panel) in monthly means, trend estimates, and trend uncertainties, according to different sampling

frequencies per month (MLO nighttime ozone, 1990-2021): Step curves represent the results obtained from

resampling method, and smooth curves represent the logistic regression model fit in order to quantify the

marginal improvement. Trends and associated uncertainty estimates are meteorologically adjusted.
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Figure S12: Same as Figure S11, but based on without (left) and with (right) meteorological adjustments.

The bias exceedance rates in each panel are estimated based on different reference numbers. For example,

the green curve in the upper left panel is determined by how often do |sk,x − 0.91|/0.91 exceeds 0.05 in

10000 resampling (where sk,x is the bootstrapped trend value, k = 1, ..., 10000 iterations and x = 2, ..., 29

days/month). This result demonstrates that since there is an uncertainty in the colocated meteorological

variables, the marginal decrement for the 5% bias exceedance rate is less efficient when the sampling frequency

increases (but the other metrics are not affected).
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Figure S13: Demonstration of preferential sampling for ozone time series: The upper panel shows the

magnitude of monthly sampling bias between full sampling (black) and once-per-week sampling on Friday

(purple). The lower panel is based on the same scheme, but under the assumption of no sampling bias in

monthly means over Mar-Apr-May (green). Trends and associated uncertainty estimates are meteorologically

adjusted. This example indicates that if we deliberately enhance sampling during certain months, imbalanced

sampling can result in a stronger bias in the overall trend.
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Figure S14: Same as Figure S13, but replacing Friday with Sunday.
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Figure S15: Same as Figure S14, but replacing MAM with other seasons.
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Figure S16: Monthly mean bias (in units of ppbv) for Strategy D: Result is based on at most 3 samples

per week scenario and different tolerance ranges (MLO nighttime ozone, 1990-2021).

Figure S17: MLO ozone trends based on Hilo ozonesonde sampling dates (labeled as +0), where +1

indicates the trends based on data taken from one day after Hilo ozonesonde sampling dates, and so on.
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Figure S18: (a) Measurement correlation between individual Hilo ozonesondes (680 hPa) and their colocated

MLO nighttime average over 1991-2021; and (b) the Hilo trend profiles, along with the MLO trends (full or

colocated record), with or without the meteorological adjustments.
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