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Abstract. The partitioning of semi-volatile organic compounds (SVOCs) between gas and particle phases plays
a crucial role in their long-range transport and health risk assessment. However, the accurate prediction of the
gas–particle (G–P) partitioning quotient (K ′P) remains a challenge, especially for the light-molecular-weight
(LMW) SVOCs due to their upward deviation from equilibrium state. In this study, the phenomenon with the
influence of gaseous degradation on G–P partitioning was observed. Based on the diurnal study of concentrations
and K ′P values for methylated polycyclic aromatic hydrocarbons (Me-PAHs), it was found that the K ′P values of
methylated naphthalenes (Me-Naps; one type of LMW SVOC) during the daytime were higher than during the
nighttime, and the regression lines of log K ′P versus log KOA (octanol–air partitioning coefficient) for daytime
and nighttime were non-overlapping, which were different from other Me-PAHs. Compared with other diurnal
influencing factors, the higher gaseous degradation of Me-Naps in the daytime than in the nighttime should
partially explain their special diurnal variation in K ′P, which provided a new explanation for the non-equilibrium
behavior of K ′P for LMW SVOCs. Moreover, the influence of gaseous degradation on the deviation of K ′P from
equilibrium state was deeply studied based on the steady-state G–P partitioning model considering particulate
proportion in emission (φ0). The increasing times of K ′P influenced by the gaseous degradation deviated from
equilibrium state can be calculated by 1+ 13.2φ0× kdeg (kdeg, gaseous degradation rate). The increase in K ′P
along with the increase in kdeg proved that higher gaseous degradation in the daytime could increase the K ′P
value. Furthermore, an amplification in K ′P ranging from 1.11 to 5.58 times (90 % confidence interval: 1.01
to 14.4) under different φ0 values (0 to 1) in the temperature range of −50 to 50 °C was estimated by the
Monte Carlo analysis. In summary, it can be concluded that the influence of gaseous degradation should also
be considered in the G–P partitioning models of SVOCs, especially for the LMW SVOCs, which provided new
insights into the related fields.
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1 Introduction

The partitioning of semi-volatile organic compounds
(SVOCs) between gas and particle phases, known as gas–
particle (G–P) partitioning, is a crucial process for their
long-range atmospheric transport (Li et al., 2020; Zhu et al.,
2021b) and their entry pathway into the human body (Hu et
al., 2021). To investigate the G–P partitioning mechanism of
SVOCs, researchers have widely employed the correlation
between the G–P partitioning coefficient (KP) at equilibrium
state and the octanol–air partition coefficient (KOA) (Ma et
al., 2019; Harner and Bidleman, 1998). The prediction of
KP based on KOA was conducted in previous studies, which
deduced some G–P partitioning models (Qiao et al., 2020).
The Harner–Bidleman (H–B) model (Harner and Bidleman,
1998) and the Dachs–Eisenreich (D–E) model (Dachs and
Eisenreich, 2000) were successfully applied in the prediction
of KP for different SVOCs using the equilibrium-state the-
ory (Wang et al., 2011; Sadiki and Poissant, 2008). In addi-
tion, the Li–Ma–Yang (L–M–Y) model (Li et al., 2015) was
established based on the steady-state theory, which exhibited
good performance in predicting the G–P partitioning quotient
(K ′P) at steady state, particularly for high-molecular-weight
(HMW) SVOCs (Qiao et al., 2020; Li et al., 2017; Hu et al.,
2020).

Previous studies had found that the K ′P deviated from the
equilibrium state for both HMW SVOCs (i.e., high log KOA
value) (Li et al., 2015; Li and Jia, 2014) and light-molecular-
weight (LMW) SVOCs (Ma et al., 2020; Dachs and Eisen-
reich, 2000). For the HMW SVOCs, the particulate SVOCs
were either deposited or removed through dry and wet depo-
sitions before reaching equilibrium state, as demonstrated by
both the theoretical study (L–M–Y model) and the monitor-
ing study (Mackay et al., 2019; Li et al., 2015), which can
be used to explain the deviation. For the LMW SVOCs, the
K ′P deviated upward from equilibrium state, and the devia-
tion could be multiple orders of magnitude, such as in LMW
polycyclic aromatic hydrocarbons (PAHs) (Ma et al., 2019,
2020). Several explanations have been proposed for this de-
viation of LMW SVOCs. First, the artifacts resulting from
the adsorption of gaseous PAHs onto particle filters during
atmospheric sampling can increase K ′P values (Zhang and
Mcmurry, 1991; Hart et al., 1992, 1994). In an early study,
the double-filter sampling method demonstrated that gas ad-
sorption onto filters would cause an overestimation of K ′P by
a factor of 1.2 to 1.6 times (Hart and Pankow, 1994). How-
ever, the overestimation is much lower than the deviation
with multiple orders of magnitude. Secondly, the enhanced
adsorption of gaseous SVOCs onto various phases (e.g., soot
phase and inorganic phases) within particles has been exten-
sively documented (Shahpoury et al., 2016; Dachs and Eisen-
reich, 2000). Some G–P partitioning models were established
with the consideration of the enhanced adsorption, such as
the D–E model and the poly-parameter linear free energy re-
lationships (pp-LFER) model (Shahpoury et al., 2016; Dachs

and Eisenreich, 2000). However, these models cannot fully
explain the deviation from equilibrium state for the LMW
SVOCs, such as some LMW PAHs (acenaphthylene (Acy),
acenaphthene (Ace) and fluorene (Flu)) (Ma et al., 2020).

A recent study delved into the non-equilibrium interplay
of G–P partitioning resulting from chemical reactions of
SVOCs (Wilson et al., 2021). The study found that when
the chemical loss of SVOCs in the gas or particle phase ex-
ceeded the replenishment from the particle or gas phase, the
K ′P values could deviate from equilibrium state (Wilson et
al., 2021). According to the findings, the upward deviation
of LMW SVOCs from equilibrium state might be caused by
the faster chemical loss of SVOCs in the gas phase than by
the replenishment from the particle phase. However, further
studies are required to confirm this hypothesis. Our previous
study provided new insights into the deviation from equilib-
rium state for several LMW PAHs by studying the diurnal
variation in K ′P values (Zhu et al., 2022). The study found
that the K ′P values for the three LMW PAHs (Acy, Ace and
Flu) were higher in the daytime than in the nighttime (Zhu
et al., 2022). In addition, the chemical reactions of SVOCs
were different between the daytime and the nighttime (Ohura
et al., 2013). Therefore, the study on the diurnal variation on
G–P partitioning between the daytime and the nighttime can
be regarded as a special case for a deep understanding of the
deviation of LMW SVOCs from equilibrium state.

In order to comprehensively investigate the deviation of
the K ′P value from equilibrium state for LMW SVOCs, the
diurnal variation in concentrations and K ′P values for methy-
lated PAHs (Me-PAHs) was calculated in this study. Further-
more, the influence of the gaseous degradation on the devia-
tion ofK ′P from equilibrium state was quantified based on the
theoretical model for both LMW Me-PAHs and PAHs, which
provided new insights into the G–P partitioning of SVOCs.

2 Materials and methods

2.1 Sampling method

The detailed information for the sampling method and site
can be found in our previous study (Zhu et al., 2021a, 2022).
In brief, the sampling program was conducted at an urban
location on the rooftop of a 14 m high building in Harbin
in northeastern China. Harbin has an obvious seasonal varia-
tion, with the heating season from 20 October to 20 April and
the non-heating season from 20 April to 20 October. A total
of 32 pairs of air samples were collected every 10 d during
the daytime (09:00 to 17:00 UTC+8) and nighttime (21:00
to 05:00 UTC+8) from December 2017 to November 2018,
which minimized the impact of heavy traffic. Glass fiber fil-
ters (GFFs) and polyurethane foam plugs (PUFs) were used
to collect particulate and gaseous samples, respectively, us-
ing an active air sampler (TE-1000, Tisch Environmental,
Ohio, USA) with an air flow rate of 0.24 SD m3 min−1. The
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GFFs and PUFs were carefully sealed and stored in a refrig-
erator at −20 °C prior to treatment.

2.2 Analysis procedure of Me-PAHs

The analysis procedure for Me-PAHs was identical to that
of PAHs (Zhu et al., 2021a, 2022). In brief, the Soxhlet
extraction and active silica gel column were used to ex-
tract and purify the GFF and PUF samples. Prior to extrac-
tion, four surrogates (naphthalene-D8, fluorene-D10, pyrene-
D10 and perylene-D12) were added to all samples. The fi-
nal extractions were solvent-exchanged into isooctane and
concentrated to 1 mL in GC vials with 200 ng quantita-
tion standard (phenanthrene-D10). A total of 49 Me-PAHs
were analyzed by an Agilent 7890B gas chromatograph cou-
pled with an Agilent 5977 mass spectrometer detector, with
the electron impact ionization and selected ion monitoring
mode. Chromatographic resolution was achieved with a DB-
5ms capillary chromatographic column (60 m× 0.25 mm i.d.
× 0.25 µm film thickness, J&W Scientific). Ultrapure he-
lium gas (> 99.9999 %) was used as the carrier gas at a
constant flow rate of 1 mL min−1. An aliquot (2 µL) of the
sample was injected into the multi-mode inlet of the GC–
MS at 280 °C via the pulsed splitless mode. The column
oven temperature program was as follows: hold at 100 °C
for 1 min, ramp to 200 °C at 40 °C min−1, hold for 13 min,
ramp to 300 °C at 80 °C min−1, hold for 22 min, ramp to 310
at 50 °C min−1, hold for 11 min with the post-run of 310 °C
and hold for 3 min. The transfer line temperature was main-
tained at 280 °C. For the mass spectrometer, the MS source
and quadrupole temperatures were set at 230 and 150 °C, re-
spectively. Detailed information and mass spectrometry pa-
rameters for the 49 Me-PAHs are summarized in Table S1 in
the Supplement. A representative chromatogram is depicted
in Fig. S1 in the Supplement.

2.3 Quality assurance/quality control

In order to minimize the errors, rigorous quality assur-
ance/quality control procedures were implemented in the
present study. Prior to sampling, GFFs were subjected to
a cleaning process involving baking at 450 °C for 6 h,
while PUFs were extracted via Soxhlet extraction using
dichloromethane for 24 h and hexane for an additional 24 h.
All glassware utilized in the experimental process was
cleaned with dichloromethane and hexane prior to use. Field
blanks were conducted on a monthly basis, and laboratory
blanks were added for every 11 samples. The quantitation
standard was utilized to correct fluctuations in the corre-
sponding instrument signal. The average recoveries of the
four surrogates ranged from 70 % to 110 % for all samples,
which were deemed acceptable for the utilization of concen-
tration data without correction via surrogate recoveries. The
instrument detection limit (IDL) was calculated as 3 times
the signal to noise, with IDLs for all Me-PAHs ranging from

0.0154 to 0.951 ng (Table S1 in the Supplement), utilizing
a constant injection volume of 2 µL. Concentrations below
IDLs were excluded from further calculations. The recover-
ies of all Me-PAHs with spiked blank samples ranged from
94 % to 107 %. The final reported concentrations were cor-
rected by the blanks but not corrected with recoveries of
spiked blank samples and surrogates. A five-point calibra-
tion curve was established using concentrations of 5, 10, 50,
100 and 500 ng mL−1, with the correlation coefficient (r2)
exceeding 0.99.

2.4 G–P partitioning quotient

The K ′P (m3 µg−1) was calculated based on the following
equation:

K ′P = CP/ (CG×TSP) , (1)

where CP and CG are the concentrations (ng m−3) of Me-
PAHs in the particle phase and gas phase, respectively, and
TSP is the concentration of the total suspended particles in
air (µg m−3).

In general, the value of log KOA can be calculated using
the following equation:

logKOA = A+B/T , (2)

where T is the ambient temperature (K) and A and B are
constants.

For most Me-PAHs, the values of A and B were estimated
through the utilization of the pp-LFER equation, which re-
lied on the solute descriptors obtained from the UFZ-LSER
database (Baskaran et al., 2021; Ulrich et al., 2017). The cal-
culation methods and corresponding parameters have been
concisely summarized in Tables S2 and S3 in the Supple-
ment. By utilizing the values of A and B, the value of KOA
for Me-PAHs can be obtained by Eq. (2) at any temperature.

2.5 Data analysis method

The statistical analysis was conducted using the SPSS soft-
ware (version 24.0). Prior to analysis, the normal distribu-
tion test was performed via the one-sample Kolmogorov–
Smirnov Test. The paired-sample t test was utilized for dif-
ference analysis in datasets exhibiting normal distribution,
while the Wilcoxon signed-rank test was employed for the
non-normal distribution datasets. Results were regarded as
statistically significant if the p value was less than 0.05.

3 Results and discussion

3.1 Diurnal variation in concentration

Among the 49 Me-PAHs, 30 Me-PAHs were frequently de-
tected with detection rates exceeding 30 % (Table S1 in the
Supplement), and they were considered for further discus-
sion. As depicted in Fig. 1, the total concentrations of 30
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Me-PAHs (6Me-PAHs) in total phase (particle phase+ gas
phase) were compared between the daytime and the night-
time in different seasons. A clear diurnal variation with
higher concentrations of Me-PAHs during the nighttime than
during the daytime was observed. The geometric mean (GM)
concentrations (range of 25th % to 75th %) of 6Me-PAHs
were 12.0 ng m−3 (4.51 to 34.6 ng m−3) and 23.6 ng m−3

(7.97 to 69.9 ng m−3) in the daytime and in the nighttime,
respectively. Furthermore, the concentrations of 6Me-PAHs
in total phase during the nighttime were significantly higher
than those during the daytime (p<0.05), with the GM value
of nighttime / daytime (N /D) ratios of 1.97 for the whole
sampling period. Although studies on the diurnal variation
in Me-PAHs are limited, similar diurnal variations have also
been observed in some previous studies for other PAHs, such
as PAHs, chlorinated PAHs, nitrated PAHs and oxygenated
PAHs (Cao et al., 2018; Ohura et al., 2013; Zhang et al.,
2018; Zhu et al., 2022). It was found that the diurnal vari-
ations in emission sources, emission intensity, atmospheric
reactions and meteorological effects were responsible for the
diurnal variation in SVOC concentrations (Ohura et al., 2013;
Zhang et al., 2018).

Moreover, it is noteworthy that distinctly diurnal varia-
tions were observed among different phases (gas and parti-
cle) and different seasons (heating and non-heating) (Fig. 1).
Notably, a significant increase in concentrations during the
nighttime compared to during the daytime was observed for
the gas phase (p<0.01), while no significant diurnal varia-
tion was observed for the particle phase in all seasons and in
the heating season. Additionally, the N /D ratios were higher
in the non-heating season compared to the heating season.
For instance, in the non-heating season, the GM N /D ra-
tios were 2.14 and 2.15 for the total and gas phases, respec-
tively. However, in the heating season, the GM N /D ratios
were 1.80 and 1.96 for the total and gas phases, respectively.
These findings suggested that gaseous Me-PAHs exhibited
more obviously diurnal variation than particulate Me-PAHs
and that Me-PAHs in the non-heating season displayed more
prominent diurnal variation than in the heating season.

Furthermore, it is interesting to note that individual Me-
PAHs also exhibited different diurnal variations. The N /D
ratios and the GM values of N /D ratios for individual Me-
PAHs are presented in Table S4 and Fig. S2 in the Sup-
plement. The GM values of N /D ratios varied consider-
ably among different Me-PAHs, ranging from 0.347 to 7.30.
Regarding the seasonal differences in diurnal variation (Ta-
ble S4 in the Supplement), the results for most individual Me-
PAHs were consistent with those for6Me-PAHs, with higher
GM values of N /D ratios in the non-heating season than in
the heating season. With respect to the phase differences in
diurnal variation (Table S4 and Fig. S2 in the Supplement),
the GM values of N /D ratios in the gas phase for methylated
naphthalenes (Me-Naps; one type of LMW Me-PAHs) were
higher than those in the particle phase in all seasons. This re-
sult was consistent with that of 6Me-PAHs, which could be

attributed to the high contribution of Me-Naps to6Me-PAHs
(mean value: 63 %). However, for other Me-PAHs (Table S4
and Fig. S2 in the Supplement), the N /D ratios in the parti-
cle phase were similar to or even a little higher than those in
the gas phase.

3.2 Diurnal variation in G–P partitioning

In general, the different diurnal variations in the concentra-
tions of SVOCs between the gas phase and the particle phase
could cause the diurnal variations in K ′P values. As depicted
in Fig. 2, compared with other Me-PAHs, several LMW Me-
PAHs (such as Me-Naps) exhibited significantly higher log
K ′P values in the daytime than in the nighttime (p<0.05).
However, the other Me-PAHs, like 3-MeBcP, 5,6,4-MeChr
and 3,5-MeBaA, had higher log K ′P values in the nighttime
than in the daytime (p<0.05). The special diurnal variations
in the log K ′P of Me-Naps can be attributed to the different
diurnal variations in their concentrations between the two
phases. For example, the N /D ratios of concentrations in
the gas phase were significantly higher than in the particle
phase for Me-Naps, which were different from other Me-
PAHs (Fig. S2 in the Supplement).

In order to deeply investigate the diurnal variations in the
G–P partitioning quotient, the regression lines of log K ′P
against log KOA were compared between the daytime and
nighttime. In general, the diurnal variations were also ob-
served for the relationships between log K ′P and log KOA for
Me-Naps. Interestingly, for these Me-Naps, the regression
lines also had obvious diurnal variations that were higher
during the daytime compared to during the nighttime (Fig. 3).
In contrast, no significant differences were observed in the
regression lines for the total Me-PAHs (Fig. S3 in the Supple-
ment) and other individual Me-PAHs (Fig. S4 in the Supple-
ment) between the daytime and nighttime. Given the lower
ambient temperatures during the nighttime, higher K ′P val-
ues during the nighttime compared to the daytime and the
overlap of the two regression lines between the daytime and
nighttime were expected, just like the total Me-PAHs (Fig. S3
in the Supplement) and other individual Me-PAHs (Fig. S4 in
the Supplement). However, the different phenomenon with
the regression lines of log K ′P against log KOA was observed
for Me-Naps (Fig. 3).

The specific relationships with concentrations between the
daytime and nighttime for these Me-Naps can be elucidated
by the following equation:

CP,N/CP,D < CG,N/CG,D→ CP,N/CG,N < CP,D/CG,D, (3)

where CP,N and CP,D are the particulate concentrations dur-
ing the nighttime and daytime, respectively, and CG,N and
CG,D are the gaseous concentrations during the nighttime and
daytime, respectively.

In addition, no significant difference was observed for
TSP concentrations between the daytime and nighttime (GM:
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Figure 1. Comparison with the concentrations of 6Me-PAHs between the daytime and nighttime in different seasons for different phases
(note: ∗ and ∗∗ represent that the differences are significant at the 0.05 and 0.01 level, respectively; NS represents no significant difference;
N /D represents the geometric mean value of the nighttime / daytime ratio for concentration).

Figure 2. Comparison of the values of log K ′P for individual Me-PAHs between the daytime and nighttime (note: ∗ and ∗∗ represent that the
differences are significant at the 0.05 and 0.01 level, respectively).

94.5 µg m−3 in the daytime and 90.5 µg m−3 in the night-
time). Therefore, the following relationship can be derived:

CP,N/CG,N/TSPN < CP,D/CG,D/TSPD→K ′P,N <K
′
P,D, (4)

where TSPN and TSPD are the TSP concentrations during the
nighttime and daytime, respectively, and K ′P,N and K ′P,D are
theK ′P values during the nighttime and daytime, respectively.

When Eqs. (3) and (4) are considered together, it can be
found that the higher N /D ratios of concentrations in the
gas phase than those in the particle phase could cause higher
K ′P values during the daytime than during the nighttime.
Therefore, the higher log K ′P values in the daytime than in
the nighttime for Me-Naps (Fig. 2) can be explained by the
findings with the values of N /D ratios between the particle
phase and gas phase (Fig. S2 in the Supplement). The clari-
fication of the influencing factors on the special diurnal vari-
ation in the concentrations for these Me-Naps would help us
to understand the diurnal variation in G–P partitioning.

As noted in previous studies, the concentrations of SVOCs
are influenced by emission intensity, atmospheric reactions
and meteorological effects (Ohura et al., 2013; Zhang et al.,
2018). In general, emission intensity can impact the concen-
tration of SVOCs in the total phase (gas phase plus parti-
cle phase), while it cannot affect the distribution between the
two phases when the steady state has been reached. In other
words, this factor cannot cause the diurnal variation in the G–
P partitioning for Me-Naps. Among meteorological parame-
ters, temperature is the key factor in the G–P partitioning of
SVOCs, which could result in the higher K ′P values during
the nighttime than during the daytime. However, the oppo-
site results were observed for Me-Naps in this study, which
suggested the influence of other factors. As mentioned in pre-
vious studies, the higher atmospheric reactions in the day-
time resulted in lower concentrations of SVOCs in the day-
time than in the nighttime (Ohura et al., 2013; Reisen and
Arey, 2005), which might also be responsible for the spe-
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Figure 3. The regression lines of log K ′P against log KOA between the daytime and nighttime for Me-Naps.

cial diurnal variations in theK ′P values of Me-Naps. Previous
studies also suggested that, when the rate of chemical loss
is faster than the process of G–P partitioning (or the degra-
dation in the gas phase exceeds the replenishment from the
particle phase), the G–P partitioning may deviate from equi-
librium state (Wilson et al., 2021). In addition, the value of
K ′P increased along with the increase in the chemical loss
rate (Wilson et al., 2021). Therefore, it can be concluded that
the higher gaseous degradation during the daytime than dur-
ing the nighttime might result in higher K ′P values during
the daytime. The observation of the higher K ′P for these Me-
Naps in the daytime than in the nighttime provided new in-
sight into the deviation of K ′P from the equilibrium state for
LMW SVOCs.

3.3 Influence of gaseous degradation on K ′
P

of LMW
SVOCs

In this section, the new steady-state G–P partitioning model
(Zhu et al., 2023) was applied for better understanding the
impact of gaseous degradation on the deviation of K ′P from
equilibrium state. Based on the model, for the LMW SVOCs,
the K ′P values can be obtained using the following simplified
equation, and more detailed information about the equation
is presented in Text S1 in the Supplement.

logK ′P-NS = logKP-HB+ log
(
1+ 13.2φ0× kdeg

)
, (5)

where K ′P-NS is the predicted G–P partitioning quotient of
the new steady-state G–P partitioning model, KP-HB is the
G–P partitioning coefficient calculated from the H–B model
(the equilibrium-state model, log KP-HB = log KOA+ log
fOM− 11.91, where fOM is the organic matter in the par-
ticle) (Harner and Bidleman, 1998), φ0 is the particulate
proportion of SVOCs in emission and kdeg is the degradation
rate of SVOCs in gas phase (h−1).

Based on Eq. (5), the value of K ′P will increase along
with the increase in kdeg. As mentioned above, the gaseous
degradation in the daytime was higher than in the nighttime.
Therefore, the application of Eq. (5) can demonstrate that the
gaseous degradation of Me-Naps could be part of the reason
for the higher K ′P in the daytime than in the nighttime.

Furthermore, the deviation with log K ′P from equilibrium
state (log KP-HB) caused by the gaseous degradation for
LMW SVOCs can be estimated using the equation of log
(1+ 13.2φ0× kdeg), which is related to kdeg and φ0. The kdeg
values under 25 °C for the Me-Naps and the three LMW
PAHs (Acy, Ace and Flu) were calculated using their half-
lives from the Estimation Programs Interface (EPI) Suite (Ta-
ble S5 in the Supplement). Then, the kdeg values under dif-
ferent temperatures (−50 and 50 °C) were calculated using
the following equation (Breivik et al., 2006):

kdeg_T = kdeg_0exp

 EaA

R
(

1
T0
−

1
T

)
 , (6)

where kdeg_T is the kdeg value at temperature T , kdeg_0
is the kdeg value at 25 °C, EaA is the activation energy
in air (10 000 J mol−1), R is the universal gas constant
(8.314 J K mol−1), and T and T0 (25 °C) are temperature (K).
The minimum and maximum kdeg values for these PAHs un-
der different temperature are summarized in Table S5 in the
Supplement.

The increasing times of K ′P influenced by the gaseous
degradation deviated from equilibrium state can be calcu-
lated based on the equation 1+ 13.2φ0× kdeg. To evaluate
the impact of the gaseous degradation on the K ′P deviated
from equilibrium state, the sensitivity analysis at conditions
of −50 and 50 °C was separately conducted by the Monte
Carlo analysis with 100 000 trials employing the commer-
cial software package Oracle Crystal Ball. Consequently, the
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Figure 4. The impact of the gaseous degradation on K ′P deviation from equilibrium state estimated based on the Monte Carlo analysis at
−50 °C (a) and 50 °C (b). The following variables with their distribution patterns and confidence factors (CFs) were considered: φ0 (uniform
distribution, 0 to 1), kdeg (lognormal distribution) and CF= 3 (Wania and Dugani, 2003).

range of impact resulting from the gaseous degradation was
calculated for individual PAHs, and the results are presented
in Fig. 4. It can be found that the mean impact caused by
the gaseous degradation onK ′P deviation for these PAHs was
in the range of 1.11 to 1.98 times (90 % confidence interval:
1.01 to 3.89) (Fig. 4a) and in the range of 1.54 to 5.58 times
(90 % confidence interval: 1.04 to 14.4) (Fig. 4b) at −50 and
50 °C, respectively. The influence of the gaseous degradation
on the deviation ofK ′P from equilibrium state could approach
1 order of magnitude, which cannot be ignored for the G–P
partitioning of SVOCs.

4 Implications

According to previous studies, adsorption of gaseous SVOCs
onto filters during sampling (Hart and Pankow, 1994) and
enhanced adsorption of gaseous SVOCs onto various phases
(e.g., soot phase) (Dachs and Eisenreich, 2000) can both in-
fluence the equilibrium state of G–P partitioning of SVOCs.
Additionally, the present study revealed that the gaseous
degradation also caused the deviation of K ′P from equilib-
rium state. Therefore, in the present study, the deviation of
K ′P from equilibrium state caused by these factors was es-
timated and compared in order to deeply understand the in-
fluence of gaseous degradation. As mentioned in the above
section, the mean deviation resulting from gaseous degrada-
tion was estimated (K ′P : 1.11 to 5.58 times increased). The
deviation caused by the influence of the soot phase within
the particles was estimated by averaging the difference be-
tween the predictions of the H–B model (Harner and Bidle-
man, 1998) and the D–E model (Dachs and Eisenreich, 2000)
for LMW SVOCs with the range of log KOA from 5 to 9.
The increasing times of K ′P caused by the influence of the
soot phase within the particles were in the range of 2.68 to

7.70 times. A previous study pointed out that the effect of the
adsorption of gaseous SVOCs onto filters could increase K ′P
about 1.2 to 1.6 times (Hart and Pankow, 1994). Therefore, it
can be found that the deviation of K ′P from equilibrium state
caused by the gaseous degradation was comparable with that
caused by the adsorption of the soot phase, and both were
higher than that caused by the adsorption of gaseous SVOCs
onto filters. Therefore, it can be concluded that the influence
of gaseous degradation should also be considered for the G–
P partitioning models of SVOCs, especially for the LMW
SVOCs.

5 Limitations

In this study, the gaseous degradation was speculated as the
reason for the difference in K ′P for Me-Naps between the
daytime and nighttime, which might result in the deviation
of K ′P from equilibrium state for LMW SVOCs. In addition,
the new steady-state G–P partitioning model was used, which
demonstrated that the gaseous degradation could deviate the
K ′P from equilibrium state. However, there were some limita-
tions in this study. Firstly, the different breakthrough values
might occur between the daytime and nighttime, consider-
ing their different temperature. The influence of the break-
through on K ′P was calculated, which could result in 1.20
to 1.27 times higher K ′P in the daytime than in the night-
time if the breakthrough (17 % to 21 %) only occurred in
the daytime and not in the nighttime. However, the increase
in K ′P caused by the breakthrough cannot fully explain the
observed diurnal variation in K ′P between the daytime and
nighttime in this study (2.95 to 4.65 times). Secondly, the
present study only considered the gaseous degradation re-
lated to the reaction with hydroxyl radicals. However, the
gaseous degradation routes, like the other atmospheric ox-
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idation pathways and photodegradation, were not included,
which may lead to an underestimation of the impact of the
total gaseous degradation. Thirdly, the previous studies have
demonstrated that PAHs can be entrapped within highly vis-
cous, partially forming secondary organic aerosol particles
during particle formation (Zelenyuk et al., 2012; Shrivas-
tava et al., 2017), which could cause the non-exchangeable
SVOCs within particles. However, the presence and influ-
ence of the non-exchangeable SVOCs within particles on the
G–P partitioning behavior were not considered in this study.
Therefore, it is imperative to conduct studies for other influ-
encing factors on the G–P partitioning behavior of SVOCs
in future, such as the total gaseous degradation, the non-
exchangeable SVOCs within particles and the advection of
air masses.
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