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Abstract. Carbonyl sulfide (COS), a trace gas in our atmosphere that leads to the formation of aerosols in
the stratosphere, is largely taken up by terrestrial ecosystems. Quantifying the biosphere uptake of COS could
provide a useful quantity to estimate gross primary productivity (GPP). Some COS sources and sinks still contain
large uncertainties, and several top-down estimates of the COS budget point to an underestimation of sources,
especially in the tropics. We extended the inverse model TM5-4DVAR to assimilate Michelson Interferometer
for Passive Atmospheric Sounding (MIPAS) satellite data, in addition to National Oceanic and Atmospheric
Administration (NOAA) surface data as used in a previous study. To resolve possible discrepancies among
the two observational data sets, a bias correction scheme is necessary and implemented. A set of inversions
is presented that explores the influence of the different measurement streams and the settings of the prior fluxes.
To evaluate the performance of the inverse system, the HIAPER Pole-to-Pole Observations (HIPPO) aircraft
observations and NOAA airborne profiles are used. All inversions reduce the COS biosphere uptake from a prior
value of 1053 GgS a−1 to much smaller values, depending on the inversion settings. These large adjustments
of the biosphere uptake often turn parts of Amazonia into a COS source. Only inversions that exclusively use
MIPAS observations, or strongly reduce the prior errors on the biosphere flux, maintain the Amazon as a COS
sink. Inclusion of MIPAS data in the inversion leads to a better separation of land and ocean fluxes. Over the
Amazon, these inversions reduce the biosphere uptake from roughly 300 to 100 GgS a−1, indicating a strongly
overestimated prior uptake in this region. Although a recent study also reported reduced COS uptake over the
Amazon, we emphasise that a careful construction of prior fluxes and their associated errors remains important.
For instance, an inversion that gives large freedom to adjust the anthropogenic and ocean fluxes of CS2, an
important COS precursor, also closes the budget satisfactorily with much smaller adjustments to the biosphere.
We achieved better characterisation of biosphere prior and uncertainty, better characterisation of combined ocean
and land fluxes, and better constraint of both by combining surface and satellite observations. We recommend
more COS observations to characterise biosphere and ocean fluxes, especially over the data-poor tropics.
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1 Introduction

Understanding sources and sinks of greenhouse gases is a
scientific challenge (Friedlingstein et al., 2020, 2022a, b).
One important climate-related process is the carbon uptake
by terrestrial ecosystems, named gross primary productiv-
ity (GPP). However, accurate estimation of GPP is difficult,
since the measured net flux of carbon at ecosystem level is
determined by both GPP and ecosystem respiration. In the re-
cent decade, GPP proxy methods have been developed with
the aim to improve GPP estimates (Campbell et al., 2008;
Wingate et al., 2010; Berry et al., 2013; Commane et al.,
2015; Koren, 2021).

Carbonyl sulfide (COS), a low-abundant and long-
lived trace gas with an average mixing ratio of about
500 pmol mol−1 in the Earth’s atmosphere (Montzka et al.,
2007; Kremser et al., 2016), is biochemically coupled with
CO2 (Stimler et al., 2010; Campbell et al., 2008; Berry
et al., 2013) and is a major contributor to stratospheric sul-
fur aerosols (Crutzen, 1976; Turco et al., 1980; Brühl et al.,
2012). The concentration of COS remains relatively constant
and shows small inter-annual variability, implying that the
sources and sinks of COS are roughly balanced (Montzka
et al., 2007). A recent study based on vertical column mea-
surements in the Network for the Detection of Atmospheric
Composition Change (NDACC) (Hannigan et al., 2022) re-
ported a slightly increasing tropospheric trend in free tro-
pospheric COS ranging from ∼ 0.0 to 1.55± 0.30% a−1 in
2002–2016 that appears correlated with estimates of anthro-
pogenic emissions (Hannigan et al., 2022). In the period
2016–2020, all NDACC stations showed a free tropospheric
decline in COS. Besides direct emissions of COS, carbon
disulfide (CS2) and dimethyl sulfide (DMS) are species that
potentially account for substantial chemical production of
COS in the troposphere (Chin and Davis, 1993; Watts, 2000;
Kettle et al., 2002; Ma et al., 2021; Jernigan et al., 2022).

COS is absorbed by terrestrial vegetation through photo-
synthesis sharing a similar pathway to CO2, but it is not emit-
ted from vegetation through respiration, which makes COS
a promising diagnostic tracer to improve estimates of GPP
globally (Wohlfahrt et al., 2012; Berry et al., 2013; Camp-
bell et al., 2017; Whelan et al., 2018). Recently, COS obser-
vations have been used to estimate regional GPP over arctic
North America and boreal regions (Hu et al., 2021) and over
Amazonia (Stinecipher et al., 2022) and to detect city-level
signals from the urban biosphere (Villalba et al., 2021). Be-
sides, isotopologue measurement and modelling studies are
being used to differentiate signals from various sources and
sinks (Hattori et al., 2020; Davidson et al., 2021; Baartman
et al., 2021; Nagori et al., 2022). In parallel, COS flux mea-
surements combined with land surface models improve our
understanding of the interaction of COS with plants and soils
(Kooijmans et al., 2017, 2019; Spielmann et al., 2019; Kooij-
mans et al., 2021; Maignan et al., 2021; Wu et al., 2015; Ogée
et al., 2016; Abadie et al., 2022). Inverse modelling to better

constrain the global COS budget is also readily progressing
(Suntharalingam et al., 2008; Berry et al., 2013; Wang et al.,
2016; Kuai et al., 2015; Ma et al., 2021; Remaud et al., 2022;
Stinecipher et al., 2022).

The COS abundance and variability in the atmosphere is
determined by multiple sources and sinks. Anthropogenic,
oceanic and biomass burning emissions are the major sources
of COS. The inventories of COS and CS2 anthropogenic
emissions are in the range of 223–586 GgS a−1 (Camp-
bell et al., 2015; Zumkehr et al., 2018). Specifically for
China, anthropogenic emission estimates were reported as
174 GgS a−1 in 2015 (Yan et al., 2019), of which 31 GgS a−1

was from domestic coal combustion (Du et al., 2016). Global
emissions from oceans of 600–800 GgS a−1 would be re-
quired to balance the global COS budget (Berry et al.,
2013; Glatthor et al., 2015; Kuai et al., 2015), but a mech-
anistic ocean box model and COS seawater measurements
suggest that direct COS oceanic emissions are unlikely to
fully account for the large missing source (Lennartz et al.,
2017, 2021, 2020). Biomass burning emissions of COS, esti-
mated as 60±37 GgS a−1 by Stinecipher et al. (2019) without
accounting for biofuel, is unlikely to account for the miss-
ing source as well. More recently, a new chemical product
of DMS oxidation known as hydroperoxymethyl thioformate
(HPMTF) was discovered and may play a role in accounting
for the missing sources of COS in the troposphere (Wu et al.,
2015; Veres et al., 2020; Fung et al., 2022; Jernigan et al.,
2022).

On the uptake part of the budget, the largest sink of
COS is uptake by terrestrial vegetation and soils, with es-
timates ranging from −500 to −1200 GgS a−1 (Campbell
et al., 2008; Suntharalingam et al., 2008; Berry et al., 2013;
Remaud et al., 2022). Kooijmans et al. (2021) recently up-
dated the COS biosphere uptake based on the Simple Bio-
sphere model (SiB4), and the estimate is from −922 to
−753 GgS a−1, by considering the linear dependency of the
flux on the atmospheric COS mole fraction and COS soil
production. This estimate is also in line with inverse mod-
elling studies, which report fluxes that range from −1053 to
−862 GgS a−1 (Ma et al., 2021). The uncertainty in COS bio-
sphere uptake introduced by the soil flux was large (Whelan
et al., 2013, 2016, 2018), and Abadie et al. (2022) reported
a global net soil sink of only −30 GgS a−1 over the 2009–
2016 period. Finally, chemical loss by OH-induced tropo-
spheric oxidation and stratospheric photolysis contribute re-
spectively about−100 GgS a−1 (Kettle et al., 2002; Montzka
et al., 2007; Ma et al., 2021; Remaud et al., 2022) and
−40 GgS a−1 (Barkley et al., 2008; Brühl et al., 2012;
Krysztofiak et al., 2015; Ma et al., 2021) to the COS sink.

Satellites capable of observing COS include the Michelson
Interferometer for Passive Atmospheric Sounding (MIPAS)
(Glatthor et al., 2017), the Tropospheric Emission Spectrom-
eter (TES) (Kuai et al., 2014), the Atmospheric Chemistry
Experiment (ACE-FTS) (Bernath et al., 2021) and the In-
frared Atmospheric Sounding Interferometer (IASI) (Vin-

Atmos. Chem. Phys., 24, 6047–6070, 2024 https://doi.org/10.5194/acp-24-6047-2024



J. Ma et al.: Constraining the COS global budget 6049

cent and Dudhia, 2017; Camy-Peyret et al., 2017; Cartwright
et al., 2021). MIPAS and TES ended their observational pe-
riod in April 2012 and January 2018 respectively, and IASI
and ACE are the only operational satellites, with the latter
sensing numerous gases including COS and its isotopologues
(Yousefi et al., 2019). In the past, TES data were assimilated
in the GEOS-Chem model to constrain atmospheric COS in
the tropics. The results pointed to a missing source over the
tropical oceans (Kuai et al., 2015). Recently, MIPAS data
were used in the same model to show that GPP over Amazo-
nia is likely in the lower range of previous estimates (Stineci-
pher et al., 2022). Satellite data have also served as valida-
tion data in COS modelling studies (Ma et al., 2021; Remaud
et al., 2022; Cartwright et al., 2023; Wang et al., 2023).

In our previous inverse modelling study (Ma et al., 2021),
we found that COS inverse modelling is an under-determined
problem caused by the scarcity of ground-based observa-
tions, specifically in tropical areas. In that light, it would be
of particular interest to investigate the application of satellite
data to improve the global inversion of COS. In this study,
we explore the use of MIPAS data in addition to the National
Oceanic and Atmospheric Administration (NOAA) surface
observation network for COS. Specifically, we will present
inversions based on MIPAS only, NOAA only, and the com-
bined data set. We attempt to explore a variety of data assim-
ilation approaches to better separate the sources and sinks of
COS. In addition, we explore the need for a bias correction
scheme to account for the different measurement principles
of the data streams and for potential biases in the model. Pre-
vious studies implemented and explored bias correction in
the TM5-4DVAR system (Basu et al., 2013; Houweling et al.,
2014). In this paper, we will introduce the observations and
inverse model in Sects. 2 and 3, and we will analyse inver-
sion performance, validation and the COS global budget in
Sect. 4. The discussion and conclusions follow in Sects. 5
and 6.

2 Observations of COS

2.1 NOAA surface network

The Global Monitoring Laboratory (GML) of the National
Oceanic and Atmospheric Administration (NOAA) conducts
continuous surface measurements at many sites globally and
provides long-term ground-based measurement data that are
suitable for inverse modelling studies. COS has been mea-
sured over 14 observational sites since 2000 to the present
day (Montzka et al., 2007). The sites are depicted in Fig. 1.

Among the 14 measurement sites, 10 of them are located
in the Northern Hemisphere (NH) and 4 in the Southern
Hemisphere (SH). Of these sites, 3 are purely oceanic sites
(MLO, KUM and SMO) suitable to sample oceanic emis-
sions. SMO is located in the middle of the South Pacific
between Hawaii and New Zealand. Another important sta-
tion, MLO, is located on the north side of Mauna Loa vol-

cano, Hawaii, at an elevation of 3397 m a.s.l. The KUM sta-
tion also samples air from the ocean at Hawaii, but at sea
level. From the perspective of inverse modelling, locations in
the SH or over oceans are important because they measure
COS mole fractions from pristine areas or from the marine
atmosphere. In contrast, sites over land are useful to trace
COS observations influenced by the biosphere or soil ex-
change and to trace sources from anthropogenic emissions
and biomass burning. The COS measurements are taken on
a weekly or bi-weekly timescale, with an average measure-
ment error of less than 8 pmol mol−1 (Montzka et al., 2007).
The measurements are calibrated to maintain data consis-
tency amongst NOAA sites. It is worth noting that the cover-
age of the NOAA surface network for COS is sparse, which
leads to challenges for inverse modelling. The total error
used in inverse modelling includes the measurement error,
the station-dependent representation error and the flux error
(Ma et al., 2021).

2.2 MIPAS satellite

The Michelson Interferometer for Passive Atmospheric
Sounding (MIPAS) was a Fourier-transform spectrometer
that flew on the Environmental Satellite (Envisat) mission.
MIPAS was a limb sounder, designed to detect a wide range
of gases between the upper troposphere and lower ther-
mosphere. The data sets retrieved by the European Space
Agency from calibrated MIPAS spectra include profiles of
temperature, H2O, O3, CH4, N2O, HNO3 and NO2 (Fis-
cher et al., 2008). The MIPAS COS data set used here
(V5R_OCS_221/222) was retrieved with the level-2 data
processor developed and operated by the Institute for Meteo-
rology and Climate Research (IMK) in cooperation with the
Instituto de Astrofìsica de Andalucìa (IAA). COS retrievals
from MIPAS data were characterised and compared with
other data sets, showing that COS retrievals from MIPAS
are good-quality measurements that reveal COS surface ex-
change processes (Glatthor et al., 2015, 2017). The data sets
from MIPAS are available from 1 July 2002 to 8 April 2012.

The MIPAS COS data consist of volume mixing ratio pro-
files, averaging kernels and geophysical information (tem-
perature, latitude, longitude, altitude, etc.). To compare mod-
elled COS mixing ratios to MIPAS soundings the averaging
kernel is applied as

xconv = xprior+A(xmodel− xprior), (1)

where A is the MIPAS averaging kernel (AK, with dimen-
sion 60×60) matrix that contains information about the ver-
tical sensitivity, xmodel is the profile sampled from a transport
model, xprior is the prior profile and xconv is the model pro-
file convolved with the AK. In practice, the prior for MIPAS
COS retrieval is a zero profile, so Eq. (1) simplifies to

xconv = Axmodel. (2)
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6050 J. Ma et al.: Constraining the COS global budget

Figure 1. Measurement data locations in this study. HIPPO campaigns 1–3 are shown as coloured flight tracks. NOAA airborne data are
shown as red crosses. NOAA stations are marked on the map with station names.

Figure 2. Filtered MIPAS satellite data annual mean in 2009. (a) The selected MIPAS mean averaging kernel rows, coloured by their
representative altitudes. (b) Selected MIPAS COS mean mole fractions on MIPAS levels (6, 8, 9, 11 and 13). (c) MIPAS mean COS vertical
profile. (d) Number of valid measurements on selected MIPAS levels after data quality control.

The convolved COS mixing ratios are compared to MIPAS
retrievals and then included in the cost function for inverse
modelling. In this study with a focus on tropospheric COS,
we only use the ninth level of the MIPAS COS retrievals. To
make best use of the MIPAS data, we applied data quality
control, and soundings that match one of the following crite-
ria were removed. The purposes are indicated below.

1. To avoid cloud contamination, soundings with a MIPAS
visibility flag of zero are discarded.

2. To avoid low sensitivity indicated by the AK, soundings
with a diagonal element of the ninth AK row smaller
than 0.03 are removed.

Atmos. Chem. Phys., 24, 6047–6070, 2024 https://doi.org/10.5194/acp-24-6047-2024
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3. To avoid artefacts due to orography, soundings with a
difference of more than 6000 Pa between the MIPAS re-
ported surface pressure and the TM5 surface pressure
are removed.

Figure 2 shows filtered MIPAS data analysis based on the
annual mean of 2009. Panel (a) demonstrates that the ninth
row of the AK roughly peaks at around 200 hPa, indicating a
retrieval sensitivity to the troposphere, at least in the tropics.
To motivate our selection for the ninth MIPAS level, panel (b)
shows the latitudinal distribution of the MIPAS COS mole
fraction at levels 6, 8, 9, 11 and 13. The MIPAS measure-
ments for levels 6, 8 and 9 are relatively similar, but COS
mole fractions drop quickly for level 11 and above, due to
enhanced sensitivity to stratospheric COS, as shown in the
mean COS profile in panel (c). Panel (d) shows the total num-
ber of valid MIPAS data after applying the data quality con-
trol. It is evident that the number of valid MIPAS soundings
drops when the level is closer to Earth’s surface, due to the
influence of clouds. In summary, the ninth MIPAS level is
chosen to best represent tropospheric COS while still retain-
ing a substantial number of valid measurements.

2.3 Validation observations

Since the COS inverse problem is data-constrained, indepen-
dent data are crucial to further validate the inversion results,
particularly with respect to the modelled vertical distribution.
This is particularly true when assimilating surface observa-
tions combined with MIPAS data, which have the highest
sensitivity in the upper troposphere. For clarification, inde-
pendent or validation data refers to observations that are not
assimilated in the inverse model. In principle, evaluation with
independent observations can help in pinpointing potential
model errors or poorly estimated flux adjustments.

HIAPER Pole-to-Pole Observations (HIPPO) data provide
valuable and well-calibrated COS concentrations between
January 2009 and September 2011, a period with valid MI-
PAS data. HIPPO data were collected during several cam-
paigns (see Fig. 1) between the surface and the tropopause
and from the NH to the SH (Wofsy, 2011; Wofsy et al.,
2017). HIPPO COS measurements were evaluated to be con-
sistent with the NOAA surface network. We use data from
HIPPO campaigns 1–3 to validate the inversion results. Next
to HIPPO data, we use NOAA airborne profile data that are
routinely collected. Most profile measurements are taken in
North America, shown in Fig. 1 as red crosses.

3 Inverse model

Inverse modelling is a widely used mathematical technique
to estimate surface fluxes of trace gases, constrained by con-
centration observations at ground level or from space. The
inverse model usually consists of a transport model and an
observational system, coupled to an optimiser that minimises

the difference between observations and model results by
changing the emissions. The transport model describes phys-
ical and chemical processes: advection in three dimensions,
parameterisation of deep convection and other sub-grid-scale
mixing processes, and chemistry (Krol et al., 2005). The ob-
servational system in this study includes the NOAA surface
network and MIPAS data, and these data provide constraints
to estimate surface fluxes of COS and CS2. Note that we do
not optimise DMS surface fluxes in this study.

3.1 Prescribed surface fluxes of COS, CS2 and DMS

In the model implementation, we used the prior surface
fluxes of the three tracers from Ma et al. (2021). Here, four
categories are predefined for COS surface fluxes: anthro-
pogenic, biosphere, ocean and biomass burning. We briefly
describe these fluxes below, and prior flux information is
listed in Table 1.

The reported anthropogenic COS emissions range be-
tween 223–586 GgS a−1 (Zumkehr et al., 2018) in the pe-
riod 2000–2012. Specifically for 2009, the focus year of this
study, the emissions amount to 354.2 GgS a−1. The anthro-
pogenic sources are available as monthly estimates on a high
spatial resolution of 0.1°× 0.1°. Furthermore, the Zumkehr
et al. (2018) inventory reports direct COS and CS2 emissions,
and we used the CS2-to-COS ratios of the various emission
types to split emissions into direct COS emissions and indi-
rect CS2 emissions following Table 1 of Lee and Brimble-
combe (2016). In addition, a small amount of DMS emis-
sions over land (6 GgS a−1) is also regarded as an indirect
COS source. DMS and CS2 are treated as separate tracers
that are quickly oxidised to COS (see below). The biosphere
flux is the largest sink for COS and includes uptake by plants
and soil at the surface. Here, we use the output generated by
the SiB4 model (Kooijmans et al., 2021) from 2000 to 2020
to drive the TM5 model, in order to account for the inter-
annual variability in biosphere uptake. These fluxes are still
evaluated assuming a constant atmospheric COS mole frac-
tion of 500 pmol mol−1. This leads to a prior flux estimate of
−1053 GgS a−1. Fluxes are provided as monthly fields on a
1°× 1° resolution. Ocean fluxes of COS, CS2 and DMS are
based on climatological fields (Kettle et al., 2002; Sunthar-
alingam et al., 2008; Lana et al., 2011). The COS oceanic flux
depends on sea surface temperature and can thus be either
a source or a sink, depending on the season. COS biomass
burning emissions considered biomass burning and biofuel
use, with an amount of 136 GgS a−1 (Ma et al., 2021).

3.2 Chemistry

The chemical conversion of CS2 and DMS is handled as de-
scribed in Ma et al. (2021). Briefly, CS2 is converted to COS
through a reaction with OH assuming a yield of 0.83 (Stickel
et al., 1993). DMS is converted to COS using a yield of 0.007
(Barnes et al., 1994) assuming an exponential decay to COS

https://doi.org/10.5194/acp-24-6047-2024 Atmos. Chem. Phys., 24, 6047–6070, 2024
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Table 1. Description of inversion settings, prior fluxes and prior bias correction. Italics are used to show the sources and sinks of COS. These
are the sum of all sources or sinks.

Prior flux Model flux abbv. Budget Hor. res. (°) Temp. res. Reference
(GgS a−1)

Direct oceanic COS COS ocean +40 2.5× 2 Climatology Kettle et al. (2002);
Suntharalingam et al. (2008)

Indirect oceanic CS2 as COS CS2 ocean +81 2.5× 2 Climatology Kettle et al. (2002);
Suntharalingam et al. (2008)

Indirect oceanic DMS as COS DMS ocean +156 2.5× 2 Climatology Kettle et al. (2002);
Suntharalingam et al. (2008)

Direct anthropogenic COS COS anthr +155 0.1× 0.1 Monthly Zumkehr et al. (2018)

Indirect anthropogenic CS2 as COS CS2 anthr +188 0.1× 0.1 Monthly Zumkehr et al. (2018)

Indirect anthropogenic DMS as COS DMS land +6 1× 1 Monthly Zumkehr et al. (2018)

Biomass burning COS biobr +136 0.25× 0.25 Monthly Ma et al. (2021)

Sources – +762

Destruction by OH – −101 6×4 Monthly Ma et al. (2021)

Destruction by photolysis – −40 6× 4 Monthly Ma et al. (2021)

Uptake by plants and soil COS biosp −1053 0.5× 0.5 Monthly Kooijmans et al. (2021)

Sinks – −1194

Net total – −432

Prior bias – 1± 0.003 16 lat bins Monthly This study
(unitless)

with a timescale of 1.2 d (Khan et al., 2016). Recent studies
found a new DMS oxidation product, HPMTF, which poten-
tially plays a role in COS production (Wu et al., 2015; Veres
et al., 2020; Fung et al., 2022; Jernigan et al., 2022). Here,
we still use the assumption of a 0.7 % yield from DMS ox-
idation (Barnes et al., 1994). Note that the reaction rate of
COS and OH quoted in Ma et al. (2021) contained a typo.
Here we give the correct equation:

COS+OH→ products
[
kOH = A× exp

(
−1200
T

)]
, (R1)

where T is temperature in K and A is pre-exponential factor
of the Arrhenius equation (1.13×10−13 cm3 s−1 molecule−1)
for the reaction of COS with OH (Cheng and Lee, 1986).
As in Ma et al. (2021) we used the OH climatology by Spi-
vakovsky et al. (2000) multiplied by 0.92 in the troposphere.

3.3 TM5-4DVAR system

TM5-4DVAR is an offline global inverse model using
4DVAR data assimilation techniques (Krol et al., 2005, 2008;
Meirink et al., 2008; Bergamaschi et al., 2010). The 3 h me-
teorological fields from the European Centre for Medium-
Range Weather Forecasts (ECMWF) ERA-Interim reanaly-
sis is employed to drive the offline TM5 model (Dee et al.,

2011). The TM5 transport model describes the physical
transport of tracers by atmospheric winds and their chemi-
cal loss and production. The model settings are identical to
Ma et al. (2021). The difference is that the MIPAS observa-
tions are assimilated into the inverse system and that a bias
correction scheme is implemented.

The forward model consists of a transport operator and an
observation operator that acts on a state vector x:

y =H (x). (3)

The TM5 model (H ) simulates the mole fraction of COS,
after which the misfit between model and measurement (sur-
face and/or satellite) is calculated, co-sampled in space and
time. In this study the operator is linear, and Eq. (3) can be
written as Hx. The value of the cost function J (Eq. 4) is cal-
culated with the forward model, and the derivative of the cost
function with respect to the state vector elements is calcu-
lated with the adjoint model HT . An optimisation algorithm
is used to minimise the cost function up to a predefined gradi-
ent reduction. Equation (4) is a classic form of a cost function
in an inverse system (Tarantola, 2005; Brasseur and Jacob,

Atmos. Chem. Phys., 24, 6047–6070, 2024 https://doi.org/10.5194/acp-24-6047-2024
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2017):

J (x)=
1
2

(x− xb)TB−1(x− xb)+
1
2

(Hx− y)T

R−1(Hx− y), (4)

and the derivative of the cost function with regard to the state
vector x reads

∇xJ (x)= B−1(x− xb)+HTR−1(Hx− y), (5)

where x is the state vector to be optimised and xb is the prior
state vector. The covariance matrix B describes the uncer-
tainty statistics associated with the state vector. The covari-
ance matrix R describes errors related to the misfit between
observations and the model (Hx− y). While R is (often) as-
sumed to be diagonal, off-diagonal elements of B are deter-
mined by user-prescribed spatial and temporal correlations
of the fluxes (details of the correlation lengths used can be
found in Ma et al., 2021). The inverse of B is not explic-
itly calculated owing to its huge size, but it is dealt with dur-
ing pre-conditioning and eigenvalue decomposition (Meirink
et al., 2008).

Our implementation of TM5-4DVAR runs on a spatial res-
olution of 6× 4° horizontally and on 25 pressure levels ver-
tically. Fluxes are optimised on a monthly timescale. In this
study, we focus on a 3-year inversion from 1 January 2008 to
1 January 2011. The initial condition is based on a previous
3-year inversion in which atmospheric COS was spun up us-
ing atmospheric surface observations. The inversion model
optimises all COS and CS2 fluxes but keeps the DMS fluxes
constant, as per scenario S1 described in Ma et al. (2021).
Since the inverse system remains linear, including the com-
parison to MIPAS satellite data, we use the CONGRAD al-
gorithm (Lanczos, 1950) to optimise the fluxes until the gra-
dient norm is reduced by a factor of 10−7. We found that,
with this convergence criterion, the leading eigenvalue of the
Hessian of the cost function is close to 1.0, which implies
that both the fluxes and the posterior errors can be reliably
interpreted (Meirink et al., 2008). Using the posterior covari-
ance matrix, the error reduction (ER, defined in Eq. 6) and
correlations of the optimised fluxes can be evaluated.

ER= 1−
errorposterior

errorprior
, (6)

where errorprior and errorposterior are the errors of posterior
and prior fluxes and are also the diagonal elements in the B
matrix defined in Eq. (4). According to Meirink et al. (2008),
the posterior error must be smaller than the prior error, lead-
ing to an error reduction for an inverse system. We report cor-
relations and error reductions of COS and CS2 fluxes based
on error aggregation over NH lands, NH oceans, SH lands
and SH oceans during the period of 2009 in Sect. 4.5. The
first six months in 2008 and the last six months in 2010 are
considered as spin-up and spin-down periods respectively.

At the beginning of the inversion, the optimised fluxes may
be affected by the uncertain initial condition. At the end of
the inversion, there are fewer observational data to constrain
fluxes. We believe that the spin-up and spin-down approach
improves the statistics of the inversion.

3.4 Bias correction

A bias may exist amongst different measurement streams,
e.g. between the NOAA surface network and the MIPAS
satellite data. This bias may be due to different instruments or
calibration methods. In addition, since some of the sensitivity
of the MIPAS data extents to the stratosphere (see Fig. 2a),
some bias may be introduced by incorrect transport to, and
chemistry in, the stratosphere. A bias correction scheme may
successfully correct for systematic satellite measurement bi-
ases (Monteil et al., 2013; Houweling et al., 2014). To correct
for potential biases, we implemented a bias correction to MI-
PAS data with monthly and latitudinal variations. The prior
values of the bias correction are assumed to be 1.0, i.e. no
bias existing between different measurement systems. The
cost function of the state vector of surface fluxes can be ex-
tended with a bias correction as

J (x,β)=
1
2

(x− xb)TB−1(x− xb)+
1
2

(β −βb)
TB−1

β

(β −βb)+
1
2

(Hx− yNOAA)TR−1
NOAA

(Hx− yNOAA)+
γ

2
(Hx− yMIPASβ)TR−1

MIPAS

(Hx− yMIPASβ), (7)

γ =
1
ei
. (8)

The derivative of the cost function with respect to the bias
terms, β, then becomes

∇βJ (x,β)= B−1
β (β −βb)− γR−1

MIPAS

(Hx− yMIPASβ)yMIPAS. (9)

In these equations, RMIPAS and RNOAA are the error co-
variance matrices associated with NOAA surface observa-
tions and MIPAS data respectively. β is the bias correction
parameter assigned to MIPAS measurements, and γ is a reg-
ularisation factor, which scales the MIPAS data part of the
cost function. Equation (8) relates the MIPAS error inflation
to γ . The assumption here is that NOAA surface observations
and MIPAS profiles are all independent so that the error co-
variance matrix for all data in Eq. (4) is diagonal and can be
separated into two matrices. The regularisation factor is sim-
ilar to the terminology defined in Brasseur and Jacob (2017).
In our case, the number of MIPAS measurements (127 243
in 2009 after data quality control) overwhelms the number of
NOAA surface observations (490 in 2009), and the error in-
flation is a factor that limits the weight of MIPAS data in the
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cost function. Note that the error inflation can also account
for potential correlations between the various MIPAS sound-
ings. We determined that an error inflation of

√
10 leads to a

reasonable balance between MIPAS and NOAA terms in the
cost function.

The derivative with regard to β (Eq. 9) is implemented in
the data assimilation system, such that β is simultaneously
optimised along with the fluxes. As discussed in Sect. 2, we
selected the ninth level of MIPAS data near 200 hPa to be as-
similated in the system. In the assimilation, a mass conserva-
tion mapping algorithm is used to map the 25 TM5 pressure
levels to the 60 MIPAS levels.

The bias parameters β are multiplied with the MIPAS ob-
servations (Eq. 7). The prior values of bias parameters are set
to 1.0± 0.003 as shown in Table 1. The small error assigned
to bias parameters is to prevent the MIPAS data from being
adjusted too strongly. We furthermore assume that the MI-
PAS bias depends on month and latitude, not on longitude.
The monthly and latitudinal bias corrections are assumed to
be correlated by decay functions that fall off in space and
time. For the latitudinal variations, a Gaussian decay func-
tion is selected:

corrh(ilat,jlat)= exp
(
−(ilat · bin− jlat · bin)2

2L2

)
, (10)

where ilat and jlat are the two correlated latitude indices and
bin is the bin size that determines how many bins are taken
into account. For MIPAS we take into account the latitude
range from 80° S to 80° N, and 16 latitude bins are applied, so
bin is equal to 10°. L is the spatial correlation length, which
is set to 5°. For the temporal correlation, an exponential de-
cay is assumed:

corrt (imonth,jmonth)= exp
(
−|imonth− jmonth|

τ

)
, (11)

where imonth and jmonth are the two correlated month indices
and τ is the temporal correlation length, taken as 9.5 months.
Finally, the covariance matrix Bβ is written as a Kronecker
product of Eqs. (10) and (11).

3.5 Evaluation metrics

To evaluate the performance of the inverse system, it is im-
portant to compare the model with assimilated and unassim-
ilated data, e.g. either ground-based observations or satellite
observations. We use the statistical metrics χ2 to characterise
the performance of the inversions by comparing the surface
network observations and inversion results.

When the observations are assumed independent, χ2 is
twice of the cost function (Tarantola, 2005):

χ2
N = (x− xb)TB−1(x− xb)+

N∑
k=1

(Hx− y)2

σ 2 . (12)

In a well-balanced inverse problem, χ2
N is equal to the

number of observations N . Since the background part of the
cost function is usually small, and we are interested in the
performance of the inversion at different stations, we pre-
fer to use the station-based χ2 to characterise the perfor-
mance of inversions. For comparison between model results
and NOAA stations, the station-based χ2 is defined as

χ2
=

1
N

N∑
i=1

(Hx− yi)2

σ 2
i

, (13)

where i denotes the ith station and N is the number of ob-
servations at that station. Note that a χ2 of 1 denotes a sta-
tistically good fit to the available observations; i.e. the dif-
ference between the model result and measurements is the
same size as the spread of the observations. For comparison
between model and satellite data, χ2 is also used to compare
the modelled and MIPAS-measured COS without taking the
error inflation in order to avoid small values of the satellite
χ2.

In this study we also analyse regional correlation and er-
ror reduction on various spatial and temporal scales, as out-
lined in Sect. 3.3. Aggregation to different scales is per-
formed by accounting for the covariance from the full prior
and posterior covariance matrices. Results will be presented
in Sect. 4.4 and 4.5.

3.6 Overview of inversions

To explore various model settings and simulation scenarios,
we have designed a set of inversions, shown in Tables 2
and 3. The inversion scenario labelled S1 represents a sim-
ilar setting to that used in Ma et al. (2021), with 50 % prior
errors for the COS biosphere fluxes and for the COS and CS2
ocean fluxes. To investigate the impact of the prior error set-
tings on the posterior biosphere fluxes, in scenario S0 the
biosphere error was reduced to 10 %, while the COS anthro-
pogenic and biomass burning emission errors were increased
from 10 % to 50 %. For scenario S1, we assimilate only
NOAA surface observations (NOAA-only_S1), only MIPAS
data (MIPAS-only_S1), and both observational data sets with
(MIPAS+NOAA_bias=0.3 %_S1) and without bias correc-
tion (MIPAS+NOAA_no-bias_S1). For scenario S0, we only
consider assimilation of NOAA and MIPAS data with bias
correction (MIPAS+NOAA_bias=0.3 %_S0). Since we do
not know the “true” MIPAS bias, a bias-corrected MIPAS-
only inversion is difficult to perform and is not presented.

4 Results

4.1 Posterior fit to observations

To demonstrate the performance of each inversion, we first
evaluate the posterior fit at the 14 NOAA surface stations.
Figure 3 compares the various inversions at 6 selected sta-
tions. At Alert (ALT; Fig. 3a), MIPAS-only_S1 severely
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Table 2. Prior errors applied in the inversion scenarios in this study. The percentage is the prior error assigned to the prior fluxes. DMS
remains the prior value and is not adjusted during optimisations. Note that the absolute grid-scale flux error also depends on the flux quantity,
which means that 10 % error to the biosphere is larger than the same error to anthropogenic COS.

Scenario Biosphere Ocean COS Ocean CS2 Biomass burning Anthropogenic COS and CS2 DMS

S1 50 % 50 % 50 % 10 % 10 % Prior
S0 10 % 50 % 50 % 50 % 50 % Prior

Table 3. Inversions carried out in this study. The parameters are presented as MIPAS or NOAA assimilation, bias correction and bias error.
The inversion names are used to denote the experiment throughout the paper.

Inversion MIPAS assimilation NOAA assimilation Bias correction Bias error Scenario

NOAA-only_S1 No Yes No No S1
MIPAS-only_S1 Yes No No No S1
MIPAS+NOAA_no-bias_S1 Yes Yes No No S1
MIPAS+NOAA_bias=0.3 %_S1 Yes Yes Yes 0.3 % S1
MIPAS+NOAA_bias=0.3 %_S0 Yes Yes Yes 0.3 % S0

overestimates COS observations, while the other inversions
that assimilate NOAA data match the observations well. The
same pattern is found at station LEF (Fig. 3b). However,
the posterior fit is not as good at oceanic stations MLO and
SMO (Fig. 3c and d). Here, the best results are obtained for
the NOAA-only_S1 inversion, which is logical because only
NOAA surface data are assimilated. When MIPAS data are
also assimilated, the model fit at MLO and SMO deterio-
rates, which implies trade-offs between assimilation of sur-
face and MIPAS data. At the Antarctica stations SPO and
PSA (Fig. 3e and f) the model fit improves again. Overall, the
MIPAS-only_S1 inversion overestimates COS mixing ratios
at all surface stations. This is the result of the low sensitivity
of MIPAS to COS that resides close to the surface. It also
indicates that MIPAS information is highly biased within the
TM5-4DVAR system. As outlined above, this might imply a
lack of observations to constrain the model or a bias in the
model transport and chemistry. However, a true bias of MI-
PAS compared to NOAA observations cannot be excluded.
Glatthor et al. (2017) also found positive differences of MI-
PAS retrievals compared to ACE-FTS profiles in the upper
troposphere and lower stratosphere.

To evaluate the performance of the various inversions (ex-
cept for MIPAS-only_S1) at each NOAA station, Fig. 4
shows χ2 per station (Eq. 13). The stations are sorted from
south to north. As expected, the best performance is found for
NOAA-only_S1 (in blue). Values of χ2 close to 1 are found
for CGO, LEF and MHD. Reasonable results are obtained
at the other stations, with χ2 values less than 5. Although
the agreement with observations improves considerably with
regard to the prior (not shown), this could indicate that er-
ror settings for these stations were too conservative, possibly
related to unaccounted processes that influence the COS bud-
get. Indeed, we note considerable variability at remote ocean

stations, such as MLO and SMO (see Fig. 3), that is not re-
produced well by the model.

In Fig. 4, the worst performance is found for inver-
sion MIPAS+NOAA_no-bias_S1 (excluding the MIPAS-
only inversion), with a deteriorated model fit especially at
SMO and MLO. When bias correction is applied in in-
version MIPAS+NOAA_bias=0.3 %_S1, the model fit im-
proves at all NOAA stations. When the prior errors are
reduced for the biosphere flux (and increased for the an-
thropogenic and biomass burning fluxes in inversion MI-
PAS+NOAA_bias=0.3 %_S0), the posterior fit degrades at
most stations, except for MLO. This indicates that adjust-
ments of the biosphere fluxes play an important role in the
goodness of the posterior fit. However, alternative choices of
the prior error setting (e.g. scenario S0) still lead to satisfac-
tory results.

Next we evaluate the posterior fit to MIPAS data. The
posterior model fit with MIPAS data for inversion MI-
PAS+NOAA_bias=0.3 %_S1 is shown in Fig. 5. The mis-
match (panel c) shows that the model, after bias correc-
tion, still slightly underestimates MIPAS COS mixing ra-
tios at high latitudes and overestimates values over tropi-
cal regions. As expected from assimilated observations, the
probability density function (panel d) indicates that the av-
erage modelled COS mixing ratio is relatively close to the
MIPAS average. However, due to the large error on in-
dividual MIPAS soundings, the distribution of MIPAS is
much wider. Supplement Figs. S1 and S2 show the posterior
model fit with MIPAS data for inversion MIPAS-only_S1 and
MIPAS+NOAA_no-bias_S1, respectively, where the bias
correction scheme is not applied. In the case of MIPAS-
only_S1, the MIPAS-based χ2 amounts to 16.4, and, in
the case of MIPAS+NOAA_no-bias_S1, the χ2 increased to
17.33. This implies that when both NOAA and MIPAS are
assimilated, the fit is deteriorated to some extent. Interest-
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Figure 3. NOAA surface measurements at selected stations and modelled COS mole fractions of inversions. The NOAA surface observations
are plotted as red dots with their total error, and modelled COS mole fractions are plotted as solid lines. The first and last 6 months are shaded
in blue as spin-up and spin-down periods respectively.

ingly, in the case of MIPAS+NOAA_bias=0.3 %_S1, the fit
to MIPAS improved (χ2

= 14.8). In general, inversion MI-
PAS+NOAA_bias=0.3 %_S1 reached an acceptable poste-
rior model fit both at NOAA surface stations and to MIPAS
data that are sensitive to the upper troposphere.

4.2 Optimised bias correction parameters

Figure 6 shows the posterior bias parameters as a
function of month and latitude for inversion MI-
PAS+NOAA_bias=0.3 %_S1. The posterior bias parameters
are in the range 0.94–1.00, indicating that bias correction
slightly reduces MIPAS observations in order to reconcile
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Figure 4. Inversion metric χ2 (Eq. 13) at each NOAA surface station for all inversions except MIPAS-only_S1. The red line denotes χ2
= 1.

Figure 5. Comparison of the MIPAS observations with the results of inversion MIPAS+NOAA_bias=0.3 %_S1. (a) Modelled COS at MIPAS
level 9. (b) Bias-corrected MIPAS observations in the upper troposphere (MIPAS level 9). (c) Mismatch derived from panel (a) minus panel
(b). (d) Probability density function of the modelled and MIPAS COS mole fractions.

the fit to surface observation. In the tropics, only a small
bias correction is found, while higher latitudes show larger
corrections. At these latitudes there is also a slight seasonal
cycle in the bias parameters, with larger corrections in
local winter. Since in local winter high-latitude MIPAS
observations are mostly sensitive to the stratosphere, this

could indicate potential model errors in transporting COS
to the stratosphere. The other inversion scenario (S0, not
shown) shows similar posterior bias parameters within the
range of 0.94–1.0 with similar seasonal and latitudinal
variations. The bias correction parameters are not adjusted
to reduce biases in tropical regions, and the reasons could be
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Figure 6. Optimised bias correction parameters for inversion MIPAS+NOAA_bias=0.3 %_S1.

Table 4. Breakdown of the cost functions of the five inversions. The costs are given for the NOAA network, MIPAS satellite data and the
background term respectively.

Inversion NOAA network Satellite Background Total cost function

NOAA-only_S1 2144.3 0.0 347.1 2491.4
MIPAS-only_S1 0.0 33 678.0 314.2 33 992.0
MIPAS+NOAA_no-bias_S1 2640.6 35 655.0 765.0 39 060.0
MIPAS+NOAA_bias=0.3 %_S1 2254.3 30 531.0 2515.7 35 301.0
MIPAS+NOAA_bias=0.3 %_S0 2488.1 30 755.0 3136.6 36 380.0

as follows: (1) mixing is fast in the tropics, and transport and
chemistry errors are much smaller. (2) At higher latitudes,
MIPAS samples pressure levels in the stratosphere, where
the air is older. Thus, transport errors and errors in modelled
COS breakdown become more important. (3) The MIPAS
data quality is better over the tropics.

To show the overall performance of all inversions, Ta-
ble 4 breaks down the cost function in terms of background
costs, NOAA costs, and MIPAS costs. The background part
contains both the flux part and the costs associated with
bias correction (see Eq. 7). Inversion NOAA-only_S1 has
the smallest posterior cost, since only deviations with sur-
face observations are taken into account. For this inver-
sion, the background costs are 15 % of the model–data mis-
match. Whenever MIPAS data are assimilated, the satellite
cost function becomes the dominant part, even though an er-
ror inflation of

√
10 is considered. It is instructive to look

at the increase in the background term when bias correc-
tion is considered (MIPAS+NOAA_bias=0.3 %_S1 and MI-

PAS+NOAA_bias=0.3 %_S0). As expected within an inverse
modelling framework, this increase in background costs is
more than compensated by reductions in both the MIPAS
costs and surface costs. It also shows that additional adjust-
ments to the fluxes are made to comply with both the surface
and satellite data.

4.3 Validation with HIPPO and NOAA airborne profiles

In this section, independent HIPPO and NOAA airborne pro-
file observations are used to evaluate the inversions. The eval-
uation of HIPPO campaigns 1–3 is shown in Fig. 7. No-
tably, as can be seen in the first two rows of Fig. 7, the
NOAA-only_S1 inversion underestimates COS in the tropo-
sphere, while inversion MIPAS-only_S1 generally overesti-
mates COS in the lower troposphere. The other inversions
that assimilate MIPAS data decrease the bias against HIPPO
observations. One remarkable feature in the comparison with
HIPPO campaign 1 in January 2009 is the model overes-
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Figure 7. Comparison of inversions with HIPPO observations as a function of latitude and altitude. The plotted results are modelled COS
minus HIPPO observations. The rows denote the five inversions labelled in the left-hand column.

timation around the Equator that gets reduced in inversion
MIPAS+NOAA_bias=0.3 %_S0. This is caused by smaller
biosphere flux adjustments that are the result of the tighter
error settings (prior error reduced from 50 % to 10 %; see
Table 2). The HIPPO 1 air samples were taken close to Ama-
zonia (Fig. 1). This indicates that the adjustments to the bio-
sphere over Amazonia in scenario S1 are likely too large.
This will be addressed further in Sect. 4.4.

The vertical distributions of inversions and HIPPO obser-
vations are shown in Figs. S3 and S4. In HIPPO campaign
1, the vertical profiles of the inversions are in good agree-
ment with HIPPO vertical distribution, with differences less
than 20 pmol mol−1 below 10 km. For HIPPO campaigns 2
and 3, there is a negative bias between the inversions and the
HIPPO observations. This points to underestimated oceanic
contributions, as HIPPO campaigns 2 and 3 mainly covered
the Pacific Ocean.

The evaluation against NOAA airborne profiles is pre-
sented in Fig. 8. Note that the data were grouped into two
regions, Alaska and the rest of North America, as shown
in Fig. 1. All inversions (except for MIPAS-only_S1) fit the
profiles relatively well. Again, inversion MIPAS-only_S1 (in
green) overestimates NOAA airborne observations signifi-
cantly. Other inversions are generally slightly lower than the

NOAA airborne observations, with slightly larger deviations
when MIPAS bias correction is applied. The NOAA airborne
profiles were mainly acquired over continents, where the in-
versions seem generally well-constrained by the NOAA sur-
face network. Assimilation of MIPAS data does not strongly
influence the agreement with the observed profiles. As shown
in Fig. S5, we still find a low bias in our inversions, which,
however, remains well below 20 pmol mol−1 over North
America.

4.4 The global and Amazonia COS budget

The global COS budgets of all inversions are graphically
summarised in Fig. 9. Furthermore, the regional prior and
posterior COS and CS2 fluxes, errors, and error reductions
are listed in Table 5.

The prior COS budget is not in balance with a net ex-
cess sink of −432 GgS a−1, as described in Ma et al. (2021).
The net fluxes of all inversion experiments are close to zero,
which demonstrates the capability of the inverse model to
close the gap in the global budget. All inversions reduce the
biosphere uptake, albeit with different amounts depending
on the inversion settings. Sometimes the biosphere sink even
turns into a source, e.g. over Amazonia (Fig. S6 from in-

https://doi.org/10.5194/acp-24-6047-2024 Atmos. Chem. Phys., 24, 6047–6070, 2024



6060 J. Ma et al.: Constraining the COS global budget

Figure 8. Comparison of inversions with NOAA airborne profiles. The NOAA airborne data were separated into two regions: Alaska and
North America. The airborne profiles are averaged vertically in 500 m intervals. The grey shading is the standard deviation of the NOAA
airborne measurements within each vertical interval.

version NOAA-only_S1). Although the MIPAS-only_S1 in-
version overestimates COS both at the surface (Fig. 3) and
in the lower troposphere (Fig. 8), the tropical biosphere re-
mains a sink in this inversion (Fig. 10). When NOAA and
MIPAS data are co-assimilated, the tropical biosphere still
turns locally into a source but less strongly than for inver-
sion NOAA-only_S1 (Fig. 10). From Table 5, it is clear that
most of the error reduction is obtained for the biosphere flux.
Ocean fluxes of both COS and CS2 only see marginal er-
ror reductions of a few percent at most. The error reduction
on anthropogenic emissions is also small for the S1 inver-
sions. However, as expected, error reductions become larger
when their prior errors are increased from 10 % to 50 % in
scenario S0. For instance, error reductions on the biomass
burning emissions are increased from 0.4 % in scenario S1 to
31.0 % globally in scenario S0.

In scenario S1, by far the largest adjustments are made to
the tropical biosphere to close the COS budget. It is ques-
tionable, however, whether positive fluxes from Amazonia
are realistic. In inversion MIPAS+NOAA_bias=0.3 %_S0,
the biosphere remains a sink, as shown in Fig. 10. By re-
ducing the prior error on the biosphere from 50 % to 10 %,
the global biosphere prior error of 191.2 GgS a−1 in sce-
nario S1 decreased to 38.2 GgS a−1 in scenario S0 (Table 5).
To leverage the decrease in freedom, the biomass burning
and anthropogenic errors were increased to 50 % in S0. In-
terestingly, despite the need for a tropical source, biomass
burning emission showed a decrease from 126.6± 27.5 to
95.8± 18.9 GgS a−1 in scenario S0. This might imply that

biomass burning is not responsible for the COS budget gap,
in line with findings from Stinecipher et al. (2019). Instead,
the budget is closed by increasing the anthropogenic CS2 and
COS emissions and the CS2 ocean emissions. For instance,
the global CS2 ocean source increased from 83.0± 12.0 to
171.2±11.6 GgS a−1. Note that direct COS ocean emissions
decreased in all scenarios (except for MIPAS-only_S1) be-
cause COS ocean exchange occurs mostly at high latitudes.
Note also that many of the adjustments, especially in scenario
S0, are large compared to the error settings. For instance, the
global biosphere COS flux is adjusted from −1053.0± 38.2
to−686.5±22.9 GgS a−1. A similar large adjustment is seen
for the oceanic CS2 emissions. This points to prior error set-
tings that are too tight in scenario S0. However, the inversion
system has to correct for the missing tropical source, which
might be a structural model error (i.e. missing processes or
incorrect regional or temporal correlation settings of sources
and sinks). Adjusting the tropical fluxes outside the prede-
fined prior error ranges is the only way to close the budget. In
scenario S1 the error settings seem more realistic. However,
as discussed above, the biosphere often turns into a source in
the S1 scenario. These results underscore the importance of a
proper quantification of the prior fluxes and their associated
errors in inverse systems.

To investigate how well the different fluxes can be sep-
arated in our inversions, Fig. 11 shows posterior correla-
tions of total COS fluxes aggregated over the different re-
gions. In defining the fluxes, we quantified positive spa-
tial and temporal correlations in the prior fluxes. After in-
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Table 5. Prior and posterior fluxes and their error reductions for all inversions. Fluxes are given as flux ± error GgS a−1 (error reduction
in %). The flux errors are aggregated for each region and flux category using the posterior covariance matrix. Note that DMS fluxes are not
listed, since they are not optimised. The land and ocean fluxes are not strictly separated because the 6°×4° grid cells in coastal regions cover
both land and ocean.

Category Region S1 APRI NOAA-only_S1 MIPAS-only_S1 MIPAS+NOAA_ MIPAS+NOAA_ S0 APRI MIPAS+NOAA_
no-bias_S1 bias=0.3 %_S1 bias=0.3 %_S0

COS anthr

Global 156.1± 7.8 162.0± 7.6 (2.8 %) 169.7± 7.7 (1.2 %) 137.8± 7.6 (3.0 %) 155.2± 7.6 (3.1 %) 156.1± 39.2 186.5± 27.5 (29.9 %)
NH land 124.6± 6.9 129.8± 6.7 (2.8 %) 136.4± 6.8 (1.2 %) 108.5± 6.7 (3.0 %) 123.8± 6.7 (3.1 %) 124.6± 34.5 150.9± 24.2 (30.0 %)
SH land 8.4± 0.4 8.4± 0.4 (0.0 %) 8.6± 0.4 (0.0 %) 8.3± 0.4 (0.0 %) 8.3± 0.4 (0.0 %) 8.4± 2.2 7.9± 2.2 (1.4 %)
NH ocean 15.8± 0.8 16.5± 0.8 (2.3 %) 17.0± 0.8 (1.0 %) 14.0± 0.8 (2.5 %) 15.8± 0.8 (2.6 %) 15.8± 4.2 20.9± 3.2 (24.3 %)
SH ocean 3.6± 0.2 3.6± 0.2 (0.1 %) 3.7± 0.2 (0.0 %) 3.5± 0.2 (0.1 %) 3.6± 0.2 (0.1 %) 3.6± 0.8 4.2± 0.8 (2.2 %)

COS ocean

Global 40.6± 17.3 −0.3± 12.7 (26.3 %) 135.8± 16.5 (4.9 %) −117.1± 12.4 (28.3 %) −25.4± 12.2 (29.3 %) 40.6± 17.3 −34.9± 10.7 (38.4 %)
NH land 2.6± 0.7 1.7± 0.6 (8.3 %) 3.4± 0.7 (0.6 %) 0.1± 0.6 (8.1 %) 1.3± 0.6 (8.2 %) 2.6± 0.7 1.8± 0.6 (13.2 %)
SH land 1.1± 0.3 0.9± 0.3 (10.8 %) 2.2± 0.3 (2.8 %) −0.1± 0.3 (11.9 %) 0.8± 0.3 (12.1 %) 1.1± 0.3 0.8± 0.3 (16.2 %)
NH ocean 15.7± 8.7 7.4± 7.8 (10.3 %) 29.4± 8.7 (0.8 %) −21.4± 7.8 (10.4 %) 0.2± 7.8 (10.9 %) 15.7± 8.7 5.4± 7.4 (15.6 %)
SH ocean 20.6± 13.9 −10.8± 9.1 (34.7 %) 99.7± 12.9 (7.2 %) −95.6± 8.6 (38.0 %) −28.2± 8.5 (38.3 %) 20.6± 13.9 −43.4± 6.1 (56.2 %)

COS biosp

Global −1053.0± 191.2 −597.3± 22.9 (88.0 %) −761.0± 25.1 (86.9 %) −405.2± 20.8 (89.1 %) −570.0± 20.8 (89.1 %) −1053.0± 38.2 −686.5± 22.9 (40.2 %)
NH land −506.4± 100.3 −366.3± 17.3 (82.8 %) −380.9± 16.7 (83.4 %) −296.6± 16.1 (84.0 %) −334.9± 15.8 (84.3 %) −506.4± 20.1 −395.7± 14.5 (27.9 %)
SH land −391.4± 102.5 −179.4± 20.3 (80.2 %) −256.0± 16.0 (84.4 %) −87.5± 15.0 (85.3 %) −189.2± 15.0 (85.4 %) −391.4± 20.5 −191.7± 11.4 (44.3 %)
NH ocean −82.1± 16.9 −19.6± 6.8 (59.5 %) −64.9± 6.4 (61.8 %) −15.1± 6.2 (63.5 %) −20.6± 6.1 (64.2 %) −82.1± 3.4 −52.0± 2.7 (19.3 %)
SH ocean −61.0± 13.1 −15.5± 8.5 (35.5 %) −47.7± 6.6 (50.0 %) 3.8± 7.2 (44.8 %) −11.2± 6.9 (47.2 %) −61.0± 2.6 −35.8± 2.2 (15.3 %)

COS biobr

Global 126.6± 5.5 122.5± 5.5 (0.4 %) 124.2± 5.5 (0.3 %) 119.9± 5.5 (0.4 %) 120.0± 5.5 (0.4 %) 126.6± 27.5 95.8± 18.9 (31.0 %)
NH land 59.0± 2.7 56.6± 2.7 (0.4 %) 58.5± 2.7 (0.2 %) 55.6± 2.7 (0.4 %) 55.9± 2.7 (0.4 %) 59.0± 13.4 30.7± 11.6 (13.5 %)
SH land 43.9± 2.7 42.9± 2.7 (0.2 %) 42.8± 2.7 (0.3 %) 41.5± 2.7 (0.4 %) 41.5± 2.7 (0.3 %) 43.9± 13.5 43.1± 9.2 (32.1 %)
NH ocean 7.8± 0.4 7.5± 0.4 (0.3 %) 7.7± 0.4 (0.2 %) 7.5± 0.4 (0.3 %) 7.5± 0.4 (0.3 %) 7.8± 2.0 6.4± 1.7 (12.3 %)
SH ocean 15.0± 1.1 14.6± 1.1 (0.1 %) 14.3± 1.1 (0.2 %) 14.4± 1.1 (0.2 %) 14.3± 1.1 (0.2 %) 15.0± 5.4 14.9± 4.0 (26.2 %)

COS total

Global −729.7± 192.3 −313.1± 18.5 (90.4 %) −331.3± 17.5 (90.9 %) −264.6± 16.2 (91.5 %) −320.2± 16.3 (91.5 %) −729.7± 63.7 −439.2± 34.3 (46.1 %)
NH land −320.3± 100.6 −178.2± 15.8 (84.3 %) −182.7± 15.1 (85.0 %) −132.4± 14.6 (85.5 %) −153.9± 14.4 (85.7 %) −320.3± 42.1 −212.2± 27.7 (34.3 %)
SH land −338.1± 102.6 −127.3± 20.1 (80.4 %) −202.4± 15.8 (84.6 %) −37.9± 14.9 (85.5 %) −138.6± 14.9 (85.5 %) −338.1± 24.7 −140.0± 10.6 (56.9 %)
NH ocean −42.8± 19.0 11.8± 9.5 (50.3 %) −10.7± 9.8 (48.6 %) −15.0± 9.3 (51.2 %) 2.9± 9.1 (52.4 %) −42.8± 10.5 −19.2± 8.2 (21.1 %)
SH ocean −21.7± 19.1 −8.1± 12.2 (36.0 %) 70.0± 13.0 (31.9 %) −73.8± 9.3(51.3 %) −21.4± 9.2 (52.1 %) −21.7± 15.1 −60.2± 7.4 (51.2 %)

CS2 anthr

Global 189.0± 9.2 184.7± 9.0 (2.3 %) 200.3± 9.1 (1.3 %) 170.7± 9.0 (2.8 %) 182.9± 9.0 (2.7 %) 189.0± 46.2 245.5± 32.6 (29.4 %)
NH land 136.1± 7.1 132.6± 6.9 (2.4 %) 144.9± 7.0 (1.3 %) 122.0± 6.9 (2.9 %) 131.3± 6.9 (2.7 %) 136.1± 35.4 166.9± 25.0 (29.3 %)
SH land 6.5± 0.3 6.5± 0.3 (0.1 %) 6.6± 0.3 (0.1 %) 6.5± 0.3 (0.1 %) 6.5± 0.3 (0.1 %) 6.5± 1.6 11.9± 1.5 (2.0 %)
NH ocean 34.9± 1.9 34.2± 1.9 (2.1 %) 37.0± 1.9 (1.2 %) 30.9± 1.9 (2.6 %) 33.7± 1.9 (2.5 %) 34.9± 9.6 41.2± 7.0 (27.6 %)
SH ocean 9.0± 0.6 9.0± 0.6 (0.2 %) 9.2± 0.6 (0.1 %) 8.9± 0.6 (0.2 %) 9.1± 0.6 (0.2 %) 9.0± 3.2 24.8± 3.0 (4.2 %)

CS2 ocean

Global 83.0± 12.0 96.7± 11.9 (0.9 %) 116.1± 11.9 (1.0 %) 68.7± 11.8 (1.8 %) 117.9± 11.8 (1.6 %) 83.0± 12.0 171.2± 11.6 (3.3 %)
NH land 2.0± 0.4 2.0± 0.4 (0.2 %) 2.4± 0.4 (0.2 %) 2.1± 0.4 (0.4 %) 2.3± 0.4(0.4 %) 2.0± 0.4 3.4± 0.4 (0.6 %)
SH land 1.5± 0.3 1.5± 0.3 (0.4 %) 2.0± 0.3 (0.4 %) 1.8± 0.3 (0.8 %) 2.0± 0.3 (0.6 %) 1.5± 0.3 2.7± 0.3 (1.8 %)
NH ocean 33.3± 6.3 37.7± 6.3 (0.7 %) 43.2± 6.3 (0.6 %) 24.0± 6.2 (1.3 %) 42.2± 6.2 (1.3 %) 33.3± 6.3 66.8± 6.2 (1.4 %)
SH ocean 45.9± 7.8 55.2± 7.7 (1.2 %) 68.2± 7.7 (1.0 %) 40.3± 7.6 (1.9 %) 71.1± 7.6 (1.7 %) 45.9± 7.8 97.8± 7.5 (4.0 %)

CS2 total

Global 272.0± 15.1 281.3± 14.9 (1.5 %) 316.5± 14.9 (1.6 %) 239.4± 14.7 (3.0 %) 300.9± 14.7 (2.8 %) 272.0± 47.7 416.7± 34.0 (28.7 %)
NH land 138.1± 7.1 134.6± 6.9 (2.4 %) 147.3± 7.0 (1.4 %) 124.2± 6.9 (2.9 %) 133.6± 6.9 (2.8 %) 138.1± 35.4 170.3± 25.0 (29.4 %)
SH land 8.0± 0.4 8.0± 0.4 (0.2 %) 8.6± 0.4 (0.3 %) 8.3± 0.4 (0.5 %) 8.5± 0.4 (0.4 %) 8.0± 1.6 14.7± 1.6 (2.4 %)
NH ocean 68.2± 6.6 71.8± 6.5 (1.1 %) 80.1± 6.5 (1.0 %) 54.9± 6.4 (2.1 %) 75.8± 6.4 (2.1 %) 68.2± 11.5 108.0± 8.9 (22.1 %)
SH ocean 54.9± 7.8 64.2± 7.7 (1.2 %) 77.5± 7.7 (1.1 %) 49.3± 7.7 (2.0 %) 80.2± 7.7 (1.7 %) 54.9± 8.4 122.6± 8.0 (5.1 %)

version, however, the correlations often turn strongly nega-
tive when the inversions cannot properly separate the fluxes.
It can be inferred from Fig. 11 that the posterior fluxes
from NH land and ocean are less (negatively) correlated
than the fluxes from SH land and ocean. This implies that
the inverse model can better separate NH land and ocean
sources or sinks. This is because most NOAA surface obser-
vations are located in NH. The MIPAS-only_S1 and NOAA-
only_S1 show high anti-correlations (−0.67 and −0.65) be-
tween SH land and ocean, which indicates poor separation
of land and ocean fluxes. The cases MIPAS+NOAA_no-
bias_S1 and MIPAS+NOAA_bias=0.3 %_S0 decrease the
correlations between SH land and ocean to−0.55 and−0.38
respectively. This indicates that the inclusion of MIPAS
data in the inversion leads to a better separation of land
and ocean fluxes. Also, the prior error specification has a
large impact on the posterior correlations. Specifically, the
MIPAS+NOAA_bias=0.3 %_S0 inversion helps the separa-
tion of COS sources and sinks between land and ocean.

The posterior CS2 correlations generally remain similar to
the prior (see Fig. S7) because error reductions for CS2
fluxes are generally marginal, except in scenario S0 (MI-
PAS+NOAA_bias=0.3 %_S0).

Table 6 summarises the COS and CS2 budgets, calculated
for Amazonia. The Amazonia COS budgets are aggregated
by adding the regions South American Temperate and South
American Tropical of the 22 TransCom regions (Fig. 2 in
Feng et al., 2011). The prior biosphere flux of Amazonia
is −311.0 GgS a−1, and all the inversions tend to decrease
the COS uptake by the biosphere, implying an overestimated
prior biosphere sink or an unknown source over Amazonia.
Notably, inversion NOAA-only_S1 obtained a posterior bio-
sphere flux of−10.6±48.0 GgS a−1. Interestingly, a fraction
of northwestern Amazonia turned in a source (see Fig. 10)
that may be questioned in light of the overestimated HIPPO 1
samples (Fig. 7). Inversion MIPAS-only_S1 obtained a larger
posterior biosphere flux over Amazonia of −145.7 GgS a−1,
which is, however, still less than half of the prior sink. When
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Table 6. The same as Table 5 but for Amazonia based on the 22 TransCom regions (Fig. 2 in Feng et al., 2011). Amazonia fluxes are
calculated as the sum of South American Temperate and South American Tropical.

Category Region S1 APRI NOAA-only_S1 MIPAS-only_S1 MIPAS+NOAA_ MIPAS+NOAA_ S0 APRI MIPAS+NOAA_
no-bias_S1 bias=0.3 %_S1 bias=0.3 %_S0

Amazonia

COS anthr 2.2± 0.2 2.2± 0.1 (7.2 %) 2.2± 0.1 (25.5 %) 2.2± 0.1 (22.5 %) 2.2± 0.1 (21.4 %) 2.2± 0.8 2.2± 0.8 (5.7 %)
COS ocean 0.7± 0.3 0.8± 0.3 (12.9 %) 1.2± 0.2 (26.7 %) 0.7± 0.2 (27.3 %) 1.0± 0.2 (26.2 %) 0.7± 0.3 1.1± 0.3 (11.4 %)
COS biosp −311.0± 115.0 −10.6± 48.0 (58.3 %) −145.7± 28.4 (75.3 %) 15.5± 25.9 (77.5 %) −99.5± 26.3 (77.1 %) −311.0± 23.0 −108.2± 15.8 (31.4 %)
COS biobr 8.0± 0.6 7.8± 0.5 (8.2 %) 8.1± 0.4 (29.6 %) 8.2± 0.4 (26.0 %) 8.0± 0.4 (24.7 %) 8.0± 3.0 9.7± 2.7 (10.2 %)
COS total −300.1± 115.0 0.1± 48.0 (58.3 %) −134.2± 28.4 (75.3 %) 26.5± 25.9 (77.5 %) −88.4± 26.3 (77.2 %) −300.1± 23.2 −95.1± 15.9 (31.4 %)
CS2 anthr 3.3± 0.2 3.3± 0.2 (0.0 %) 3.4± 0.2 (0.0 %) 3.4± 0.2 (0.0 %) 3.3± 0.2 (0.0 %) 3.3± 1.0 4.2± 1.0 (0.2 %)
CS2 ocean 0.7± 0.2 0.8± 0.2 (0.1 %) 0.9± 0.2 (0.1 %) 0.9± 0.2 (0.3 %) 1.1± 0.2 (0.2 %) 0.7± 0.2 1.6± 0.2 (0.5 %)
CS2 total 4.0± 0.3 4.1± 0.3 (0.1 %) 4.3± 0.3 (0.1 %) 4.2± 0.3 (0.2 %) 4.4± 0.3 (0.1 %) 4.0± 1.0 5.8± 1.0 (0.3 %)

Figure 9. Global COS budgets for the different inversions. The er-
ror bars represent the prior or posterior errors which are aggregated
to the global scale. Note that the prior errors on the fluxes are not
plotted because scenarios S1 and S0 have different prior errors. Note
further that the CS2 and DMS budget terms are counted as indirect
COS fluxes.

MIPAS and NOAA observations are co-assimilated, inver-
sion MIPAS+NOAA_no-bias_S1 reverses the biosphere sink
into a source of +15.5± 25.9 GgS a−1. The biosphere again
remains a sink when bias correction is applied. Scenarios
S1 and S0 with bias correction lead to a biosphere flux of
−99.5±26.3 and−108.2±15.8 GgS a−1 respectively. Com-
parison to HIPPO 1 (Fig. 7) shows the smallest biases for
scenario MIPAS+NOAA_bias=0.3 %_S0.

4.5 Error reduction

In this section, maps of the error reduction are analysed.
The error reduction on the grid scale of the model, ag-
gregated over all direct COS fluxes, is shown in Fig. 12.
For reference, the regional and global error reductions are
shown in parentheses in Table 5. Inversion MIPAS-only_S1
mainly reduces the prior error over tropical regions, cover-
ing the Amazonia region, Africa and Central Asia. In con-
trast, inversion NOAA-only_S1 reduces the error mostly over
the NH and mainly over North America, where the NOAA
surface network is more dense. On the grid scale, the SH
sees little error reduction, partly due to the lack of surface
observational constraints but also because the ocean sur-
face fluxes are distributed over a larger area compared to
the biosphere fluxes. Inversions MIPAS+NOAA_no-bias_S1
and MIPAS+NOAA_bias=0.3 %_S1 reduce the errors again
globally over the continents. This demonstrates the comple-
mentary effects of NOAA observations and MIPAS data on
constraining the COS budget. Concerning error reductions
for scenario S0, the error reduction is substantially smaller
because the prior error on the biosphere flux is lowered from
50 % to 10 %. This largely limits the degrees of freedom to
adjust the biosphere. It should be remembered that errors in
our inverse system are defined as a percentage of the fluxes
themselves. Biosphere fluxes are generally more localised
and larger than ocean fluxes. As a result, the error reduc-
tion of the COS flux over the oceans is small compared to
the error reduction of the land fluxes (see Fig. S8). Again,
this points to the need to carefully construct the prior error
covariance matrix B (Eq. 4). For instance, if we enlarge the
prior errors on the CS2 ocean emissions to 150 % based on
the S0 scenario (with a biosphere error of 10 %), we find that
the CS2 ocean emissions are enlarged to provide the required
tropical COS source (see scenario of SCS2X in Fig. S9).
In that solution, we find comparable agreement to indepen-
dent data with a global biosphere flux of −922.9± 28.7
(−178.4± 17.7 GgS a−1 over Amazonia). Although the sce-
nario is extreme (i.e. small freedom to adjust the tropical bio-
sphere flux and large freedom to adjust the ocean CS2 flux),
this inversion shows the need for accurate prior fluxes, in-
cluding realistic errors.

Atmos. Chem. Phys., 24, 6047–6070, 2024 https://doi.org/10.5194/acp-24-6047-2024



J. Ma et al.: Constraining the COS global budget 6063

Figure 10. The prior (APRI) and optimised (APOS) COS biosphere flux of all inversions. The flux represents the annual mean over 2009.

The error reduction in the CS2 total flux (Fig. S10) is sig-
nificantly smaller compared to COS (Fig. 12). Again, this
is attributed to the small prior errors shown in Fig. S11. In
scenario S0, in which the prior error on CS2 anthropogenic
emissions is increased to 50 %, larger error reductions are
seen over land, e.g. close to 30 % over NH land areas. In-
terestingly, the CS2 ocean fluxes roughly double in inversion
S0, however, with only a small error reduction. This is clearly
driven by the need for a tropical COS source and by the lim-
ited ability in scenario S0 to adjust the biosphere. It therefore
seems logical to increase the prior errors on ocean CS2 emis-
sions in future inversions.

5 Discussion

A general feature of inversion results is that the tropical bio-
sphere uptake is reduced, depending on the inversion set-
tings. Recently, Stinecipher et al. (2022) reported that a
smaller COS biosphere sink of −81.1± 28.1 GgS a−1 over
Amazonia (i.e. a low GPP model) leads to the best agree-
ment to MIPAS observations, which is consistent with our
findings. However, many of our inversions turn parts of Ama-
zonia into a net source, and we question the realism of this
result. This can potentially be the case that biosphere up-
take is overestimated or that emissions from anthropogenic

or biomass burning are underestimated. Indeed, we show
biases when we compare simulations using our optimised
fluxes to HIPPO 1 observations (Fig. 7), which disappear
in a scenario in which we reduce the freedom to adjust the
biosphere. This underscores the need to better characterise
the prior fluxes, including their error settings. Our scenario
S0 currently optimises fluxes well outside of the prior er-
ror settings. Specifically, a good balance should be found
in optimising the tropical fluxes from land and ocean. The
major challenge of inversions is how to improve the separa-
tion of ocean and land fluxes. The extra inversion SCS2X
in Fig. S9 show that the SCS2X leads to a better separa-
tion of ocean and land fluxes. In SCS2X the prior errors of
the ocean fluxes are increased to 150 %, and the prior errors
of the biosphere fluxes are reduced to 10 %. On the positive
side, we do find a similar result to Stinecipher et al. (2022),
who also found a largely reduced GPP flux based on the COS
proxy approach using MIPAS satellite data as climatological
constraints. There was COS biosphere flux over the Ama-
zon on a monthly timescale in 2008–2010. When the spin-
up and spin-down periods are removed, results are consistent
across the inversions. To further improve the robustness of
the source attribution, it would be necessary to extend the
time span of the inversions in future work. Adjustments of
the budget terms outside of the prior errors could also point

https://doi.org/10.5194/acp-24-6047-2024 Atmos. Chem. Phys., 24, 6047–6070, 2024



6064 J. Ma et al.: Constraining the COS global budget

Figure 11. Correlations of total COS fluxes between regions (NH lands and oceans, SH lands and oceans) for the prior and the inversions.
The top-left panel is the prior correlation between regions. The total COS flux is the sum of anthropogenic, oceanic, biomass burning and
biosphere fluxes.

to structural model errors, such as unaccounted processes.
For instance, enhanced production of COS from DMS oxi-
dation through the intermediate HPMTF as recently reported
(e.g. Jernigan et al., 2022) could be such a process. The dif-
ficulty of our inverse system to properly fit observations over
remote oceans (e.g. SMO and MLO; Fig. 3) might be in-
dicative of unresolved processes over the oceans. The en-
hanced CS2 flux could also come from DMS. Note that, given
the chemical mechanism of DMS oxidation, any COS from
DMS enhancement would not scale with the current prior
flux because, in some regions with large DMS emissions, the
atmospheric conditions almost exclude any COS production,
while in other regions (e.g. the tropical Pacific) the chemical
conditions tend to favour COS production.

One of the limitations of the assimilation of MIPAS data
in this work is that we only used one specific level of MIPAS
data to constrain the tropospheric COS mole fractions. We
could exploit the MIPAS data more, e.g. by assimilating other

levels. However, at higher latitudes the averaging kernels of
MIPAS level 9 already mix information from the stratosphere
(Fig. 2), which makes the comparison vulnerable to model er-
rors associated with transport and stratospheric removal. At
lower latitudes, there are much fewer useful observations af-
ter data quality control, especially missing observations over
the tropics. A recent paper exploited TES data to analyse the
seasonal cycle of COS over Amazonia (Wang et al., 2023).
Assimilation of TES data, for instance in combination with
MIPAS data, could be a possibility to further constrain the
tropical COS budget. Unfortunately, like MIPAS, the TES
instrument is no longer operational. Thus, more COS obser-
vations to better characterise COS concentrations and fluxes
are still urgently needed.
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Figure 12. Error reduction (in %) on the TM5 model grid scale for inversions as shown for the total COS flux. The total COS flux is the sum
of anthropogenic, oceanic, biomass burning and biosphere fluxes.

6 Conclusions and outlook

In this study we have implemented the combined data as-
similation of surface observations and MIPAS satellite data
within the TM5-4DVAR system. The major conclusions are
summarised as follows:

– 2008–2010 inversions show generally good agreement
with both NOAA observations and MIPAS data, partic-
ularly with the assistance of a bias correction scheme.
The optimised bias parameters show that the bias cor-
rection reduced MIPAS COS data at higher latitudes.

– In all inversions, the largest adjustments are made to
the biosphere fluxes. As a result, the required tropical
COS source is obtained by strongly reducing the tropi-
cal biosphere, e.g. over Amazonia. Although the large
flux adjustments over Amazonia are not always con-
sistent with independent HIPPO observations, a yearly
Amazonia COS uptake of 100 GgS is much smaller than
the SiB4-based prior flux of about−300 GgS a−1 and is
consistent with findings of a recent study by Stinecipher
et al. (2022).

– Analysis of the correlations between land and ocean
fluxes indicates that assimilation of MIPAS data im-
proves the separation between ocean sources and land
sinks. Analysis of the error reduction shows that MIPAS
data generally add information compared to a NOAA-
only inversion.

– A scenario in which the prior biosphere errors are re-
duced (S0) leads to a more realistic solution of the in-
verse problem. However, in this scenario, other fluxes
are often optimised outside of the error settings. This
could point to missing COS production terms in the
model (e.g. from DMS) but also underscores the need
to carefully construct the prior error covariance matrix
B (Eq. 4).

Overall, our study shows that, although MIPAS data pro-
vide useful additional information, closure of the COS bud-
get remains to some extent unresolved. Additional informa-
tion could come from assimilation of satellite data from TES,
ACE-FTS and IASI and of data from NDACC (Hannigan
et al., 2022). On top of that, additional characterisation of the
different COS sources (e.g. from oceans and DMS oxidation)
and sinks (e.g. soils and biosphere) is recommended.
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