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Abstract. State-of-the-art chemistry–climate models (CCMs) still show biases compared to ground-level ozone
observations, illustrating the difficulties and challenges remaining in the simulation of atmospheric processes
governing ozone production and loss. Therefore, CCM output is frequently bias-corrected in studies seeking to
explore the health or environmental impacts from changing air quality burdens. Here, we assess four statistical
bias correction techniques of varying complexities and their application to surface ozone fields simulated with
four CCMs and evaluate their performance against gridded observations in the EU and US. We focus on two
time periods (2005–2009 and 2010–2014), where the first period is used for development and training and the
second to evaluate the performance of techniques when applied to model projections. We find that all methods
are capable of significantly reducing the model bias. However, biases are lowest when we apply more complex
approaches such as quantile mapping and delta functions. We also highlight the sensitivity of the correction
techniques to individual CCM skill at reproducing the observed distributional change in surface ozone. Ensemble
simulations available for one CCM indicate that model ozone biases are likely more sensitive to the process
representation embedded in chemical mechanisms than to meteorology.

1 Introduction

Surface ozone (O3) is both an air pollutant and a greenhouse
gas, formed in photochemical reactions involving precursor
substances such as nitrogen oxides (NOx) and volatile or-
ganic compounds (VOCs) of both anthropogenic origin and
non-anthropogenic origin (e.g., Checa-Garcia et al., 2018;
Lelieveld and Dentener, 2000; Monks et al., 2015). In ad-
dition to the availability of precursor gases, the NOx to VOC
ratio, solar radiation and ambient air temperature, control-
ling emissions of biogenic VOCs (BVOCs), and chemical
reaction rates play a crucial role for O3 formation (Chamei-
des et al., 1988; Sillman, 1999; Sillman et al., 1990). Tro-

pospheric O3 abundance is also substantially influenced by
stratospheric intrusions, which can, in certain regions or dur-
ing specific events, alter concentrations significantly (Akri-
tidis et al., 2010; Lin et al., 2015; Stohl et al., 2003). O3
is associated with a variety of detrimental human health ef-
fects, especially in the context of the respiratory and car-
diovascular systems, resulting in about 5 %–20 % of prema-
ture deaths attributable to ambient air pollution (Gu et al.,
2023; Malashock et al., 2022; Monks et al., 2015; Mur-
ray et al., 2020; Pozzer et al., 2023; Zhang et al., 2019).
In addition to its negative health effects, O3 can compro-
mise the metabolism of plants through stomatal uptake and
cause damage to leaf surfaces, thereby affecting biomass and
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crop production (Da et al., 2022; EEA, 2020; Fleming et al.,
2018; Mills et al., 2018; Monks et al., 2015). Consequently,
a large body of studies examines past, present and future de-
velopment of surface O3 burdens as well as resulting health
and ecological impacts on both regional and global scales
(e.g., Da et al., 2022; Meehl et al., 2018; Nolte et al., 2018;
Westervelt et al., 2019).

Studies exploring future changes in surface O3 bur-
dens and their implications for human health and the bio-
sphere rely on simulated fields of chemistry–climate models
(CCMs) and chemistry-transport models (CTMs). However,
despite ongoing development, these models show deficien-
cies in the adequate representation of ground-level O3 on re-
gional to local scales and changes therein when compared
to observations (e.g., Griffiths et al., 2021; Karlický et al.,
2024; Turnock et al., 2020; Young et al., 2018). This short-
coming raises questions regarding the reliability of the sim-
ulated surface ozone response to changes in precursors and
ambient climate. The number of possible reasons for the de-
viation of model output and observations increases with the
complexity of the models. However, the published literature
commonly suggests issues with emissions fed into the mod-
els, the applied chemical mechanism, meteorology and de-
position in addition to uncertainties associated with the spa-
tial resolution (e.g., Archibald et al., 2020; Liu et al., 2022;
Young et al., 2018). To overcome these issues, also as indi-
vidual experiments are computationally expensive similar to
climate studies, statistical bias correction techniques of dif-
ferent complexities are frequently applied to correct global
model fields. Such corrections allow for diagnosis of changes
in ambient meteorological conditions and ozone in isolation
or combination and for investigation of related impacts on
human health. Machine learning approaches are increasingly
being used for correction purposes (e.g., Liu et al., 2022).
These methods, however, usually have the disadvantage of
behaving like a “black box”; i.e., algorithms lack traceability
and thus physical insights as to the root cause of biases. To
date, no detailed comparison of different statistical bias cor-
rection techniques for surface ozone burdens has been per-
formed, and the present study aims to close this gap.

Here, we analyze historical simulations from three dif-
ferent global CCMs contributing to the Coupled Model In-
tercomparison Project Phase 6 (CMIP6), as well as a 13-
member ensemble of the Community Earth System Model 2
– Whole Atmosphere Community Climate Model version 6
(CESM2-WACCM6) for the European (EU) and contiguous
United States of America (US) domains. For an assessment
of model performance, we compare model outputs with grid-
ded observational datasets available for both domains. First,
we evaluate the ozone fields of the individual CCMs against
observations and contrast the magnitude, sign and seasonal-
ity of the bias among CCMs. Thereafter, we apply a set of
statistical bias correction techniques aiming for a reduction
of the initial bias, independent of its origin, and evaluate the

performance of these methods to identify whether a particu-
lar correction technique is preferable across models.

Since the model simulations are “free running” and thus
create their own meteorology internally, a direct day-to-day
comparison with the observations is not meaningful. Hence,
our analysis primarily aims to evaluate the distribution of the
O3 fields in a statistical sense. Given the detrimental impact
of ozone on human health, we focus on the upper tail of the
maximum daily 8 h average (MDA8) O3 distribution and the
frequency of occurrence of exceedance of health-related tar-
get values for Europe and the US.

2 Data and methods

2.1 Model and observational data

The O3 datasets explored in our analysis are hourly surface
O3 outputs from three CCMs (GFDL-ESM4, UKESM1-0-
LL and EC-Earth3) contributing to CMIP6 and a 13-member
ensemble simulation created with CESM2-WACCM6. For
most of our study, we use only the first ensemble member
of CESM2-WACCM6 to be analogous with the other CCMs,
given the overall heterogeneity in the number of members
available per model. In Sect. 3.4, we focus on the chemical
vs. meteorological driving of model biases and utilize the en-
tire CESM2-WACCM6 ensemble. We also obtain observed
MDA8 O3 with a spatial resolution of 1°× 1° per grid cell
for both the European domain and the US domain using an
extended dataset constructed using the methods of Schnell et
al. (2014, 2015) and Schnell and Prather (2017), which was
designed specifically to compare against gridded CCMs. The
dataset was constructed using an inverse distance weighted
interpolation method that includes a de-clustering compo-
nent similar to kriging; i.e., clustered (within 100 km) ob-
servation weights are reduced such that those stations (of-
ten located around urban centers) are not disproportionately
used in the interpolation. For the US domain, point-based ob-
servations that are used in the interpolation include the US
Environmental Protection Agency (EPA) Air Quality System
(AQS), the US EPA Clean Air Status and Trends Network
(CASTNET), and the Environment Canada National Air Pol-
lution Surveillance Program (NAPS); for the European do-
main we include the European Monitoring and Evaluation
Programme (EMEP) and the European Environment Agency
(EEA) AirBase network (excluding stations designated as
traffic). The exponent for the distance component is 2.5, and
a maximum distance of 500 km is used for the weights. Pa-
rameters were estimated using a leave-N-out cross-validation
technique. Estimations are made at 25 equally spaced points
within each 1°× 1° cell and trapezoidally averaged. Other re-
cent work has used this extended dataset (e.g., Ducker et al.,
2018; Garrido-Perez et al., 2019; Guo et al., 2018). Schnell
et al. (2014) estimated an RMSE of 6–9 ppb for individual
stations and 0–3 ppb for the grid cell averages; Ducker et
al. (2018) estimated a mean bias of 5–10 ppb with the up-
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dated dataset over their study locations. For the analysis here,
the interpolation is performed on hourly abundances, and the
MDA8 O3 is estimated using the interpolated hourly fields.
Note that we apply the nomenclature of the European Union
for the calculation of the MDA8 O3 values in both domains;
i.e., the 8 h average for a given hour is derived using the data
of that specific hour and the preceding 7 h (EUR-LEX, 2008).
For convenience, the data are provided on a public reposi-
tory; see “Data availability” section at the end of the paper.

To allow for an optimal comparison, the model data are
re-gridded using an ordinary inverse distance weighting al-
gorithm to match the spatial extent of the observations. In
addition, all datasets are harmonized regarding their tempo-
ral resolution by removing days not included in any of the
other datasets, resulting in a 358 d calendar (30 d per month
except for February). MDA8 O3 is derived for each dataset
and time step according to the European nomenclature as
mentioned above. For the historical analysis, we use 2005–
2009 to evaluate the baseline bias of the individual CCMs
and establish the performance of individual bias correction
techniques. The time slice 2010–2014 is used subsequently
to evaluate the performance of our methods for model pro-
jections.

2.2 Bias correction methods

For statistical bias correction, we apply four different tech-
niques that are detailed below. Here, Mq and Oq denote
quantiles (q ∈ 1, . . .,N | 1=min, N =max) of the model
and observational distributions, respectively. The running in-
dex j marks individual MDA8 O3 model values. Addition-
ally, we use the indices “hist” and “proj” to differentiate be-
tween historical and projected data. Primed terms indicate
the bias-corrected model outputs.

2.2.1 Mean bias correction (MB)

1M =
1
N

∑(
Mhist

q − Ohist
q

)
=Mhist

q − Ohist
q (1)

M
′proj
q = M

proj
q − 1M ;M

′hist
q = Mhist

q − 1M (2)

The MB is a commonly used approach assuming a con-
stant offset between the model and observations. As an initial
step, we derive the average difference of the historical model
and observational percentiles. Alternatively, the difference
between the mean values of both empirical cumulative dis-
tribution functions (ECDFs) can be computed. Subsequently,
we subtract the result of Eq. (1) from each quantile of the pro-
jected model distribution to retrieve a bias-corrected model
ECDF (Eq. 2).

2.2.2 Relative bias correction (RB)

c =
1
N

∑(
Mhist
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q
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q

)
(3)

M
′proj
q = M

proj
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q (4)

Here, similar to the MB method, we assume that the model
and observations differ by a constant factor. In contrast to the
MB correction, however, we derive the average of the relative
deviation of the historic model and observational percentiles
(Eq. 3). The bias-corrected model projection (Eq. 4) is then
calculated as the difference between the raw model and the
observed quantiles times the correction term established in
Eq. (3).

2.2.3 Delta correction (DC)

1Mq =M
proj
q − Mhist

q (5)

M
′proj
q = Ohist

q + 1Mq (6)

The DC approach follows the methodology detailed in
Rieder et al. (2018). In contrast to the MB and RB methods,
it is assumed that while the individual model values may be
biased, the system response (i.e., change between two time
periods) is represented adequately by the model. Therefore
the deviation between future and base period model data is
calculated for all quantiles individually (Eq. 5). Finally, the
corrected model projection is derived as the observed distri-
bution plus the initially computed model change (Eq. 6).

2.2.4 Quantile mapping (QM)
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The term “quantile mapping” summarizes a variety of sim-
ilar bias correction approaches used within the climate re-
search community (e.g., Lehner et al., 2023). Here, however,
we follow the method described for CCM outputs in Rieder
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et al. (2015). In contrast to the other methods used in this
study, the QM is a multistep approach. The first steps, il-
lustrated in Eqs. (7) to (9), consist of the computation of a
bias-corrected historic model distribution. Next, the result
is used to create a bias-corrected future ECDF, similar to
the DC method (Eqs. 10 and 11), which is then employed
to derive the bias-corrected future model data (Eqs. 12 to
14). In contrast to Rieder et al. (2015), however, who sug-
gested a fixed apportionment for the quantiles to avoid non-
meaningful results by executing undefined operations, espe-
cially in Eqs. (7) and (12) (i.e., when the denominator equals
zero or both denominator and numerator equal zero), we em-
ploy here a variable algorithm to select the optimal number of
percentiles for each individual realization of the QM method.
This is achieved by fixing the minimum and maximum val-
ues of the model ECDF and allowing for all quantiles with
unique values within this range; i.e., if several quantiles share
the same value, which might be the case especially for nar-
row distributions, only the first quantile is used.

All four methods are applied to the ECDFs of the indi-
vidual CCM datasets (1) on a monthly basis within the base
time interval, (2) for each grid cell individually (in contrast
to Rieder et al., 2015, who used a regional approach), and
(3) for both the EU domain and US domain. While it is im-
plied that the model data differ from the observations by a
constant factor for the MB and RB methods, the DC and QM
techniques assume that the difference between the future and
reference periods is represented adequately in the individual
models, independent of the prevailing model bias. In contrast
to the QM method, which provides the opportunity to directly
correct individual daily MDA8 O3 values, the application of
the MB, RB (according to the methodology detailed above)
and DC techniques solely results in new model ECDFs. The
mapping algorithm detailed in Eqs. (7) to (9) is therefore ap-
plied further to the outputs of these three correction methods.
The model data are thereby mapped onto the bias-corrected
ECDFs, allowing for an optimal comparison of original and
bias-corrected model data with the observations and the re-
sults from the other correction techniques under investigation
here.

To quantify the initial biases as well as the remaining bias
after application of the individual correction techniques, we
derive the number of days above the target value for the pro-
tection of human health (120 µg m−3 in the EU – approxi-
mately 60 ppb – and 70 ppb in the US) and the residual bias
of the ECDFs on seasonal and annual timescales (EPA, 2015;
EUR-LEX, 2008, 2011).

3 Results

3.1 Model evaluation

We start by evaluating the performance of the global models
in representing the MDA8 O3 burden for the historical time
period (2005–2009). Figure 1a and b show the pooled MDA8

O3 probability density function for the models and gridded
observations for the EU and US domains. Pronounced dif-
ferences emerge between the individual models and observa-
tions for both domains. Generally, the models show a high
bias compared to observations, and the amplitude of the bias
varies substantially among models. One exception in this re-
gard is the EC-Earth3 model, which shows a high bias com-
pared to observations across the majority of the MDA8 O3
distribution but in contrast to other models has a low bias at
the upper tail.

We further investigate the magnitude of the model biases
in Fig. 1c and d by contrasting the annual average number
(and seasonal partitioning) of days above the target value to
protect human health, defined as 60 and 70 ppb for the EU
and US domains, respectively. For the observations, we find
a domain average number of exceedance days of the target
values of 8 d (5 for summer and 3 for spring) and 3 d (2
for summer and 1 for spring) for the EU and US domains
in 2005–2009. While the models agree with observations re-
garding a more frequent occurrence of non-attainment days
in summer, all models but EC-Earth3 substantially overesti-
mate the occurrence frequency of exceedance days. The do-
main average bias in non-attainment days for the EU ranges
between 5 d in EC-Earth3 and 113 d in UKESM1-0-LL. In
contrast, values for the US vary between 2 and 79 d. Over-
all, our findings indicate slightly better agreement in CCMs
regarding the policy-relevant metrics in the US than in the
EU, a fact which has to be taken with caution also given the
regional difference in the MDA8 O3 target value. Assuming
the same target threshold as for Europe, we find that the num-
ber of exceedance days ranges between 20 and 174. Table 1
provides a summary of the occurrence frequency of MDA8
O3 extremes for models and observations on annual and sea-
sonal bases (note that fall and winter are grouped together
(FW) due to the small number of exceedance days derived
for these seasons).

Next, we turn to model biases in the spatial domain. Fig-
ure 2 shows the difference in the average number of days
above the target value for individual models and observa-
tions (note that grey-shaded areas indicate a marginal differ-
ence of up to ± 2 d). The spatial distribution of differences
confirms the biases detailed above, showing regionally vary-
ing but distinct biases of the models examined. Of the mod-
els examined, the EC-Earth3 model performs best in both
domains, with a domain average bias of +7 (EU) and +3 d
(US). While pronounced differences in the magnitude of the
bias between individual models occur, the spatial patterns in
biases are quite similar. In particular, a north-to-south gradi-
ent emerges in the European domain with significantly higher
model biases in the Mediterranean region and small to negli-
gible biases in Scandinavia and the UK. For the US, we find
less pronounced biases across models in the Midwest, while
substantial biases emerge in the North, Southeast and South-
west.
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Table 1. Average number of exceedance days (i.e., the number of days above the target threshold of 60 (EU) and 70 ppb (US), respectively)
per grid cell derived from observations and individual raw model data for the EU and US (given in parenthesis) for spring (MAM), summer
(JJA), fall and winter (FW), and annually. Note that numbers in italics in the parentheses were derived by applying the EU threshold to the
US.

2005–2009

Obs. EC-Earth3 CESM2-WACCM6 GFDL-ESM4 UKESM1-0-LL

MAM 3 (1; 7) 1 (0; 4) 4 (2; 17) 4 (2; 10) 43 (18; 63)
JJA 5 (2; 12) 4 (2; 12) 13 (10; 29) 27 (18; 42) 57 (51; 78)
FW 0 (0; 2) 0 (0; 4) 1 (1; 5) 4 (2; 8) 13 (10; 33)
Annual 8 (3; 21) 5 (2; 20) 18 (13; 51) 35 (22; 60) 113 (79; 174)

2010–2014

MAM 1 (0; 5) 0 (0; 2) 3 (1; 15) 2 (1; 6) 39 (10; 58)
JJA 3 (1; 8) 1 (1; 6) 9 (7; 24) 29 (17; 40) 54 (37; 72)
FW 0 (0; 2) 0 (0; 2) 1 (1; 6) 4 (1; 8) 14 (6; 27)
Annual 4 (1; 15) 1 (1; 10) 13 (9; 45) 35 (19; 54) 107 (53; 157)

To investigate the consistency of the spatial bias in mod-
els compared to observations, we expand the analysis to the
2010–2014 time period (Figs. S1 and S2). Although slight
variations are found for individual seasons, overall the result
for this time period resembles the results obtained for 2005–
2009 in both the US domain and the EU domain (see Fig. S1).
This result provides further confidence in the robustness of
our assessment of general model biases in the MDA8 O3 dis-
tribution and the modeled frequency of non-attainment days.

3.2 Bias correction for the base period, 2005–2009

Having illustrated the model biases for the past, we turn
next to bias correction. To this end, we apply the individ-
ual bias correction methods to model outputs for 2005–2009
and evaluate their performance for the MDA8 O3 distribution
and the number of non-attainment days. The DC method rep-
resents an exception in this case as applying this method, by
definition, would yield “perfect” agreement with the obser-
vational ECDF. Accordingly, any potential deviations from
observed ECDF would be a mere result of uncertainties as-
sociated with implementation, in particular with the mapping
algorithm and rounding, and thereby do not represent the
performance of the DC method in the context of the base
dataset. The performance of the DC method will, however,
be assessed along with the other methods when applied to
the evaluation period of 2010–2014.

Figure 3 shows the distribution of the grid-cell-level bias
in the number of exceedance days for the European (pan-
els a–d) and US (panels e–h) domains. All methods reduce
the bias substantially. The MB and RB methods yield similar
results. Both methods tend to overcorrect the bias, yielding
residual biases for individual grid cells varying between−22
to +8 d (EU) and −10 to +6 d (US), with MB performing
slightly better. In contrast, the QM method yields almost per-
fect agreement (comparable to the DC method as detailed

above) with observations. Residual biases are between −2
and +1 d for Europe and 0 d for the US.

Spatial distributions of the anomaly on exceedance days
are illustrated in Figs. S3 and S4. We find that the applica-
tion of a particular method yields similar spatial patterns of
improvement independent of the model to which it is applied
and independent of the initial model bias. For the MB and
RB approaches, the spatial gradient in the bias identified in
the raw models remains for the EU domain, although with
reversed sign for the majority of applications, i.e., stronger
overcorrection in central Europe and the Mediterranean than
in the northern parts of the EU domain. For the US, the MB
and RB methods perform better compared to Europe. This
finding, however, is attributable to the higher target thresh-
old rather than to the actual performance of these methods,
as shown in Sect. 3.1. The QM method best captures the ob-
servations in both domains.

We examine the PDFs of the bias-corrected model data for
conformity with the observations (see Fig. S5). While all cor-
rection methods lower the bias across the whole distribution,
the MB and RB approaches still deviate from the observa-
tions. In contrast, the distribution of the QM-corrected data
is almost perfectly aligned with the observational PDF, inde-
pendent of the model and domain. In summary, our evalua-
tion for the baseline period indicates a clear preference for
the QM (or the DC) method.

3.3 Bias correction performance in the evaluation
period, 2010–2014

Next, we turn the focus to the results obtained with individ-
ual bias correction techniques during the evaluation time pe-
riod (2010–2014). We apply the adjustment methods to the
MDA8 O3 outputs of the individual models but treat the data
as independent realizations in order to assess the method per-
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Figure 1. Probability density function (PDF) of observed (black) and modeled (colored) MDA8 O3 during 2005–2009 in the EU (a) and US
(b) domains. Average number of days above the MDA8 O3 target value per grid cell for summer (JJA – red) and spring (MAM – orange) as
well as fall and winter months (FW – yellow) during 2005–2009 in the EU (c) and US (d) domains. In panels (a) and (b), dashed vertical
lines indicate the target value for the protection of human health. The annual average number of exceedance days in (c) and (d) is given by
the sum of the individual segments, i.e., the total height of the bars.

formances for their applicability to future projections (see
Sect. 2).

Figure 4 shows the distribution of the residual grid-cell-
level mean bias compared to observations for the number
of exceedance days of the target value. Here we find a
larger residual bias in the European domain, ranging between
−17 and +11 exceedance days (Fig. 4a–d), than in the US
(Fig. 4e–h) where the bias after correction varies between−5
and +5 d across grid cells. Furthermore, contrasting the per-
formance of the individual bias correction techniques yields a
curious result, as we no longer identify an individual correc-
tion technique as optimal across models and spatial domains.

We further explore the spatial distribution of the resid-
ual bias. Compared to the base period, the MB- and RB-
corrected (see panels a–d and e–h in Figs. S6–S7) models
show improved agreement compared to observations. While
the spatial patterns of bias distributions are similar to the
2005–2009 period (except for the GFDL-ESM4 model), an
improvement compared to the base period is found for north-
ern and eastern European countries as well as for the South-
east US. The residual bias worsens in the central EU and the
Mediterranean as well as the Southwest US when applied to
the GFDL-ESM4 model. For the DC and QM approaches
(see panels i–l and m–p in Figs. S6–S7), on the other hand,
we find a significantly increased residual bias (of both posi-
tive and negative sign) independent of model and domain.

Although all methods applied are still capable of signifi-
cantly reducing the bias, these results, in contrast to those for
the base period, no longer allow the identification of a sole

ideal correction method, indicating changes in the underlying
processes contributing to the bias. Our findings show that the
correction approach yielding the lowest residual bias varies
strongly across models and spatial domains. For example,
while the QM method performs best for CESM2-WACCM6
in the EU domain (Fig. 4b), the RB method yields a smaller
residual bias in the US (Fig. 4f).

These results are supported by the analysis of the PDFs of
the bias-corrected model output (Fig. S8). While conformity
with observations remains widely similar for the majority of
the distribution, the adjustment of the high tail yields slightly
better results in the context of the MB and RB methods when
compared to the base period. Contrarily, the distributions of
both the DC and QM methods show good agreement with
the low tail and the midsection of the observational PDF. The
performance, however, deteriorates towards the high tail, par-
tially resulting in an overestimation of the monitored distri-
bution, especially in the European domain.

To further investigate this curious result, we examine, on a
quantile basis across the MDA8 O3 distributions, (i) the error
resulting from the initial bias correction of the base period
(EB) and (ii) the error resulting from the deviation of the
model change between the base and evaluation periods when
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Figure 2. Difference in the average number of days above the MDA8 O3 target value in CCM simulations (EC-Earth3 – a and e, CESM2-
WACCM6 – b and f, GFDL-ESM4 – c and g, and UKESM1-0-LL – d and h) compared to gridded observations for the EU (left) and US
domains (right). All panels show differences during 2005–2009. Red numbers in the upper- or lower-left corner indicate the grid cell average
anomaly. Grey shading indicates differences within ± 2 exceedance days.
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Figure 3. Box plots of the average residual bias in exceedance
days pooled across grid cells in the individual CCMs in 2005–
2009: (a) EC-Earth3, (b) CESM2-WACCM6, (c) GFDL-ESM4 and
(d) UKESM1-0-LL models in the EU domain; panels (e)–(h) are as
(a)–(d) but for the US domain. Blue, green and red colors indicate
the MB, RB and QM correction methods, respectively.

compared to observations (E1).

EB =M
′hist
q − Ohist

q (15)

EF = M
′proj
q − O

proj
q

=

(
M
′hist
q + 1Mq

)
−

(
Ohist

q + 1Oq

)
= EB+ 1Mq − 1Oq = EB+ E1 (16)

The results of this analysis are exemplarily shown in Fig. 5
for the CESM2-WACCM6 model for the EU (panels a–c) and

the US (panels d–f; note that the illustrations for the other
models are included in the Supplement as Figs. S9–S10).
Here, the red shading indicates the minimum to maximum
range of the residual bias across grid cells for the base pe-
riod after bias correction (EB; Eq. 15), and the solid red line
shows the domain average of this bias in the individual quan-
tiles concerned. In contrast, the grey shading illustrates the
minimum to maximum range of the differences in the change
between the base and evaluation period of the raw model and
observations, respectively (E1; Eq. 16). The solid black line
marks the domain average of this bias in individual quan-
tiles. The residual bias for the evaluation period EF (or by
analogy, any other future time period) comprises the sum of
these errors (base bias and response bias) and is illustrated
for the domain average as the dashed yellow line. We note
that as the DC method by definition yields no initial error in
the base period, only E1 is relevant in the evaluation period,
which is illustrated by the grey shading and the solid black
line in all panels of Fig. 5 (as well as Figs. S9–S10).

For the base period, it is apparent that the QM correc-
tion technique, in contrast to the RB and MB corrections,
yields only minor differences across the MDA8 O3 distribu-
tion when compared to the observations in both spatial do-
mains. For the evaluation period, we see that the difference
in response between models and observations dominates the
raw performance of the individual correction techniques and
that the residual bias depends strongly on the region and
model concerned (see Figs. 4–5 and Supplement Figs. S9–
S10). Given this result, we assume that the correction per-
formance depends strongly on models being able to repre-
sent precursor emission changes over time as seen in obser-
vations.

All models show distinct biases in reproducing observed
ozone changes between the two time periods, with a par-
ticularly pronounced magnitude in the tails of the distribu-
tions. Although both error terms and the resulting net error
are found to be rather small in the domain average (roughly
± 5 ppb), they might have a strong influence on the individ-
ual grid-cell level (see shading). Especially for the MB and
RB techniques, the individual errors might compensate for
each other, as illustrated by the improved results relative to
the base period. The DC and QM approaches, on the other
hand, strongly depend on the quality of the model response
in time. Here, we find that pronounced errors in the model
change offset (at least in part) the benefits illustrated for the
base period (see Fig. 4).

3.4 The influence of meteorology on the bias in the
CESM2-WACCM6 ensemble

Having illustrated the MDA8 O3 biases of various CMIP6
models, the performance of various statistical bias techniques
and the influence of the model response to changes in, for
instance, emissions on the performance of bias correction,
we turn our focus to shedding light on the underlying cause
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Figure 4. As Fig. 3 but for the 2010–2014 time period. Blue, green,
orange and red colors indicates the MB, RB, DC and QM correction
methods, respectively.

of biased MDA8 O3 model outputs. To this end, we ana-
lyze the 13 members of the CESM2-WACCM6 ensemble in
more detail in order to examine the individual realizations
for consistency as well as to find a possible dominant cause
for the bias in the modeled surface ozone fields. Here, two
likely prime candidates exist: (1) issues with the sensitivity
in chemical mechanisms to local and/or regional precursor
emissions (note that anthropogenic emissions are consistent

across individual models) and (2) issues in meteorology sim-
ulated by the free-running CCM. For the latter, we further
include three key climatological drivers of ozone produc-
tion/accumulation in our analysis, i.e., daily maximum tem-
perature (TSMX), daily average downwelling shortwave ra-
diation (FSDS) and daily average wind speed (WSPD), in
order to discern whether the bias is predominantly driven
by sensitivity to meteorology or to chemistry. As chemi-
cal covariates, we include monthly averages of NO, NO2
and HCHO; the latter we consider a bulk proxy for VOCs
(e.g., Shen et al., 2019; Zhu et al., 2017).

Figures 6 and 7 illustrate the PDFs of MDA8 O3, NO,
NO2, HCHO, TSMX, FSDS and WSPD for the individual
ensemble members during spring and summer in 2005–2009
(the PDFs for 2010–2014 are shown in Supplement Figs. S11
and S12). MAM and JJA MDA8 O3 (Fig. 6a and e) shows a
very similar distribution across ensemble members for both
domains. For example, the median MDA8 O3 value across
ensemble members ranges roughly between 50 to 52 ppb
(MAM) and 45 to 47 ppb (JJA) in the EU. For the US, the
median MDA8 O3 values were found to be slightly higher
than in the EU, but the differences within the ensemble lie
in the same narrow range (53 to 55 ppb for MAM and 54 to
55 ppb for JJA). Similarly, compact PDFs across the ensem-
ble are found for NO, NO2 and HCHO. Interestingly, differ-
ences emerge for HCHO in the US but not in Europe, which
represents a larger influence of biogenic emissions.

Similar results are found for the meteorological variables.
Although slight variations occur for surface temperature, ra-
diation and wind speed (which one would expect from a
model generating its own meteorology), the PDFs are widely
homogenous across the ensemble, thereby explaining the
similarity of surface ozone distributions within the ensemble
in both domains (as all ensemble members are driven by the
same set of precursor emissions). The analysis of the MDA8
O3, NO, NO2, HCHO, TSMX, FSDS and WSPD distribu-
tions over the second time period (2010–2014; Figs. S11 and
S12) yields similar results, thereby providing confidence in
the robustness of our findings.

The strong similarity across ensemble members indicates
that the MDA8 O3 bias identified in CESM2-WACCM6 most
likely stems from sensitivities in the chemical mechanism
and/or emissions and not from meteorological drivers and
their variability. As the models use the same anthropogenic
emissions, the differences are more likely to stem from the
chemistry, which could include different mixes of emitted
VOCs. Previous research has shown that temperature biases
are rather small and that a significant overestimation of the
temperature in the troposphere occurs solely in the Southern
Hemisphere polar region, a region which is not investigated
here (Danabasoglu et al., 2020; Gettelman et al., 2019). Nev-
ertheless, we note that small deviations in temperature have
been found to explain biases of 5–15 ppb for surface O3 in
former model generations (Rasmussen et al., 2012). While
the presented ensemble analysis is, due to data availability,
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Figure 5. Error components of the CESM2-WACCM6 model during the evaluation period for the MB (a, d), RB (b, e) and QM (c, f) methods
in the EU (left column) and the US (right column) domains. The red shading gives the minimum to maximum range, and the solid red line
is the domain average of the residual bias in the base period (EB). The grey shading gives the minimum to maximum range, and the solid
black line is the domain average of the differences in the change between the base and evaluation period of the raw model and observations
(E1). The resulting domain average error of the evaluation period (EF) is indicated by the dashed yellow line (note that for the DC method
EB = 0 and hence EF = E1).

only possible for CESM2-WACCM6, the results provide a
first-order estimate of the dominant model component re-
sponsible for surface ozone biases. Future work should con-
firm that this finding holds for other global models, and thus
an ensemble strategy for model experiments is recommended
for future model intercomparison activities such as CCMI
and CMIP.

4 Summary and conclusions

In this study, we evaluate the bias in surface ozone burdens
for four global CCMs contributing to CMIP6 (EC-Earth3,
CESM2-WACCM6, GFDL-ESM4 and UKESM1-0-LL) and
present the first comprehensive comparison of the perfor-
mance of four different statistical bias correction techniques
to derive CCM-based ozone metrics with relevance for pub-
lic health and policy. While all models show biases when

compared to observations, the bias magnitude of the raw, un-
corrected MDA8 O3 outputs differs strongly within the pool
of models analyzed.

The evaluation of the four bias correction techniques for
the base period (2005–2009), where techniques are tuned to
observations, illustrates that all methods are capable of low-
ering the bias. The MB and RB methods, however, are less
accurate when contrasted with the results obtained from the
DC or QM approaches. Furthermore, when applying the MB
and RB methods, the model output fields might even be over-
corrected for individual grid cells; i.e., the resulting ozone
distributions might become biased low. This is not surpris-
ing as both techniques apply a single average value for the
correction of the whole distribution function, which is a dis-
advantage – especially when it comes to the tails of the dis-
tribution – if the bias is not constant across the ECDF.
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Figure 6. CESM2-WACCM6 spring (MAM) and summer (JJA) PDFs of (a) MDA8 O3, (b) NO, (c) NO2 and (d) HCHO for the EU domain
in 2005–2009. Panels (e)–(h) are as (a)–(b) but for the US domain. Note that a value of 2 has been added to summertime concentrations of
NO, NO2 and HCHO to allow for visual separation of the seasonal PDFs.

The independent evaluation of the four techniques over the
second time period (2010–2014) focusing on the bias cor-
rection of model projections yields less distinct results. Al-
though the model-to-observation agreement is improved for
all MDA8 O3 metrics in the corrected models compared to

their raw counterparts, no single, optimal correction tech-
nique can be identified. Our results illustrate that technique
performance depends strongly on the model selected and its
MDA8 O3 evolution over time and thus on the response to
boundary condition changes. This at first surprising result,

https://doi.org/10.5194/acp-24-5953-2024 Atmos. Chem. Phys., 24, 5953–5969, 2024



5964 C. Staehle et al.: An assessment of the performance of statistical bias correction techniques

Figure 7. CESM2-WACCM6 spring (MAM) and summer (JJA) PDFs of (a) TSMX, (b) FSDS and (c) WSPD for the EU domain in 2005–
2009. Panels (d)–(f) are as (a)–(c) but for the US domain.

however, can be explained by the examination of the compo-
sition of the residual model error.

The residual error for future projections is comprised of
two parts: (1) the residual error of the base period EB and
(2) the error attributable to the model response to changes in
boundary conditions (emissions, climate, etc.) between both
time periods, E1. The magnitude of E1 was found to ex-
ert a dominant influence on the overall correction perfor-
mance, which raises some concerns regarding the robustness
of model responses and thus the reliability of model projec-
tions (not only in the context of surface O3). In contrast to
E1,EB depends on the quality of the initial base period bias
correction. Here, our results clearly show that EB is substan-
tially larger for the MB and RB methods than for the QM
and DC methods. When applying the correction techniques,
E1 and EB might compensate for individual grid cells, re-
sulting in a low residual bias. On the contrary, the strong

performance for the base period obtained with the QM and
DC approaches is attributable to a very low EB, which might
deteriorate in projections if E1 is large. Thus, we conclude
that under the assumption of an adequate model response to
changing boundary conditions (and thus low E1), the QM
and DC methods outperform the MB and RB techniques. If
a decision has to be made as to whether the DC or QM ap-
proach is used for bias correction, given that differences be-
tween the results obtained with both techniques are negligi-
ble, we would argue for DC correction due the comparably
easy numerical implementation.

To obtain further insights into the root cause(s) of the sur-
face ozone bias in models, we explored the MDA8 O3 out-
put of the 13-member CESM2-WACCM6 ensemble together
with information on NO, NO2 and HCHO and key meteo-
rological covariates for ozone production, i.e., daily maxi-
mum temperature, daily mean incoming shortwave radiation

Atmos. Chem. Phys., 24, 5953–5969, 2024 https://doi.org/10.5194/acp-24-5953-2024



C. Staehle et al.: An assessment of the performance of statistical bias correction techniques 5965

and daily mean wind speed. Here, our analysis showed only
small variations within the CESM2-WACCM6 ensemble for
core meteorological drivers (and chemical covariates) of sur-
face ozone. This suggests, given that emissions are consistent
across models, a dominant influence of the chemical mecha-
nism on the bias in the O3 fields rather than a prominent role
of model meteorology. Investigating whether this finding can
be generalized to other CCMs requires future community ef-
forts in the provision of additional ensemble simulations for
individual CCMs contributing to the CCMI or CMIP frame-
works.

Data availability. CMIP6 datasets are publicly available at https://
esgf-data.dkrz.de/projects/cmip6-dkrz/, last access: 1 March 2023.
Processed data can be made available by the corresponding author
upon reasonable request. The gridded MDA8 O3 datasets are avail-
able at https://doi.org/10.5281/zenodo.10832955 (Staehle, 2024).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/acp-24-5953-2024-supplement.

Author contributions. CS: conceptualization, formal analysis,
methodology, visualization and writing – original draft preparation.
HER: conceptualization, methodology, resources, supervision and
writing – review and editing. AMF: resources, supervision and writ-
ing – review and editing. JLS: data curation and writing – review
and editing.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. The statements, findings, conclusions, and recom-
mendations are those of the author(s) and do not necessarily reflect
the views of NOAA or the US Department of Commerce.

Publisher’s note: Copernicus Publications remains neutral
with regard to jurisdictional claims made in the text, published
maps, institutional affiliations, or any other geographical represen-
tation in this paper. While Copernicus Publications makes every
effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. The authors are grateful to the EC-Earth3,
GFDL-ESM4 and UKESM1-0-LL modeling teams for provid-
ing the ensemble simulations at https://esgf-data.dkrz.de/projects/
cmip6-dkrz/ (last access: 1 March 2023). The authors are grateful
to Ramiro Checa-Garcia for fruitful discussions and comments. The
authors thank the two anonymous reviewers for their valuable com-
ments on an earlier version of this paper.

Financial support. This research was supported in part by the
Klima und Energiefonds under grant agreement no. ACRP11
KR18AC0K14686 to BOKU University. This research was
supported in part by the NOAA cooperative agreement no.
NA22OAR4320151 for the Cooperative Institute for Earth System
Research and Data Science (CIESRDS). Christoph Staehle was sup-
ported in part by an OeAD Marietta Blau Fellowship grant.

Review statement. This paper was edited by Andrea Pozzer and
reviewed by two anonymous referees.

References

Akritidis, D., Zanis, P., Pytharoulis, I., Mavrakis, A., and Kara-
costas, T.: A deep stratospheric intrusion event down to the
earth’s surface of the megacity of Athens, Meteorol. Atmos.
Phys., 109, 9–18, https://doi.org/10.1007/s00703-010-0096-6,
2010.

Archibald, A. T., Neu, J. L., Elshorbany, Y. F., Cooper, O. R.,
Young, P. J., Akiyoshi, H., Cox, R. A., Coyle, M., Derwent,
R. G., Deushi, M., Finco, A., Frost, G. J., Galbally, I. E.,
Gerosa, G., Granier, C., Griffiths, P. T., Hossaini, R., Hu, L.,
Jöckel, P., Josse, B., Lin, M. Y., Mertens, M., Morgenstern, O.,
Naja, M., Naik, V., Oltmans, S., Plummer, D. A., Revell, L.
E., Saiz-Lopez, A., Saxena, P., Shin, Y. M., Shahid, I., Shall-
cross, D., Tilmes, S., Trickl, T., Wallington, T. J., Wang, T.,
Worden, H. M., and Zeng, G.: Tropospheric Ozone Assess-
ment Report: A critical review of changes in the tropospheric
ozone burden and budget from 1850 to 2100, Elementa, 8, 1–53,
https://doi.org/10.1525/elementa.2020.034, 2020.

Chameides, W. L., Lindsay, R. W., Richardson, J., and Kiang, C.
S.: The Role of Biogenic Hydrocarbons in Urban Photochem-
ical Smog: Atlanta as a Case Study, Science, 241, 1473–1475,
https://doi.org/10.1126/science.3420404, 1988.

Checa-Garcia, R., Hegglin, M. I., Kinnison, D., Plum-
mer, D. A., and Shine, K. P.: Historical Tropospheric
and Stratospheric Ozone Radiative Forcing Using the
CMIP6 Database, Geophys. Res. Lett., 45, 3264–3273,
https://doi.org/10.1002/2017GL076770, 2018.

Da, Y., Xu, Y., and McCarl, B.: Effects of Surface Ozone and Cli-
mate on Historical (1980–2015) Crop Yields in the United States:
Implication for Mid-21st Century Projection, Environ. Resour.
Econ., 81, 355–378, https://doi.org/10.1007/s10640-021-00629-
y, 2022.

Danabasoglu, G., Lamarque, J. F., Bacmeister, J., Bailey, D. A.,
DuVivier, A. K., Edwards, J., Emmons, L. K., Fasullo, J., Gar-
cia, R., Gettelman, A., Hannay, C., Holland, M. M., Large,
W. G., Lauritzen, P. H., Lawrence, D. M., Lenaerts, J. T. M.,
Lindsay, K., Lipscomb, W. H., Mills, M. J., Neale, R., Ole-
son, K. W., Otto-Bliesner, B., Phillips, A. S., Sacks, W., Tilmes,
S., van Kampenhout, L., Vertenstein, M., Bertini, A., Dennis,
J., Deser, C., Fischer, C., Fox-Kemper, B., Kay, J. E., Kinni-
son, D., Kushner, P. J., Larson, V. E., Long, M. C., Mickel-
son, S., Moore, J. K., Nienhouse, E., Polvani, L., Rasch, P. J.,
and Strand, W. G.: The Community Earth System Model Ver-
sion 2 (CESM2), J. Adv. Model Earth Sy., 12, e2019MS001916,
https://doi.org/10.1029/2019MS001916, 2020.

https://doi.org/10.5194/acp-24-5953-2024 Atmos. Chem. Phys., 24, 5953–5969, 2024

https://esgf-data.dkrz.de/projects/cmip6-dkrz/
https://esgf-data.dkrz.de/projects/cmip6-dkrz/
https://doi.org/10.5281/zenodo.10832955
https://doi.org/10.5194/acp-24-5953-2024-supplement
https://esgf-data.dkrz.de/projects/cmip6-dkrz/
https://esgf-data.dkrz.de/projects/cmip6-dkrz/
https://doi.org/10.1007/s00703-010-0096-6
https://doi.org/10.1525/elementa.2020.034
https://doi.org/10.1126/science.3420404
https://doi.org/10.1002/2017GL076770
https://doi.org/10.1007/s10640-021-00629-y
https://doi.org/10.1007/s10640-021-00629-y
https://doi.org/10.1029/2019MS001916


5966 C. Staehle et al.: An assessment of the performance of statistical bias correction techniques

Ducker, J. A., Holmes, C. D., Keenan, T. F., Fares, S., Goldstein,
A. H., Mammarella, I., Munger, J. W., and Schnell, J.: Syn-
thetic ozone deposition and stomatal uptake at flux tower sites,
Biogeosciences, 15, 5395–5413, https://doi.org/10.5194/bg-15-
5395-2018, 2018.

EEA: Air quality in Europe – 2020 Report (09/2020), https://www.
eea.europa.eu/publications/air-quality-in-europe-2020-report
(last access: 9 November 2023), 2020.

EPA: National Ambient Air Quality Standards for Ozone,
https://www.govinfo.gov/content/pkg/FR-2015-10-26/pdf/
2015-26594.pdf (last access: 16 November 2023), 2015.

EUR-LEX: Directive 2008/50/EC of the European parliament and
of the council of 21 May 2008 on ambient air quality and
cleaner air for Europe (2008/50/EC), https://eur-lex.europa.eu/
legal-content/EN/TXT/?uri=CELEX:32008L0050 (last access:
12 March 2023), 2008.

EUR-LEX: Commission Implementing Decision of 12 Decem-
ber 2011 laying down rules for Directives 2004/107/EC and
2008/50/EC of the European Parliament and of the Council
as regards the reciprocal exchange of information and report-
ing on ambient air quality (notified under document C(2011)
9068) (2011/850/EU), http://data.europa.eu/eli/dec_impl/2011/
850/2011-12-17 (last access: 10 September 2023), 2011.

Fleming, Z. L., Doherty, R. M., von Schneidemesser, E., Mal-
ley, C. S., Cooper, O. R., Pinto, J. P., Colette, A., Xu,
X., Simpson, D., Schultz, M. G., Lefohn, A. S., Hamad,
S., Moolla, R., Solberg, S., and Feng, Z.: Tropospheric
Ozone Assessment Report: Present-day ozone distribution
and trends relevant to human health, Elementa, 6, 177 pp.,
https://doi.org/10.1525/elementa.273, 2018.

Garrido-Perez, J. M., Ordóñez, C., García-Herrera, R., and
Schnell, J. L.: The differing impact of air stagnation on sum-
mer ozone across Europe, Atmos. Environ., 219, 117062,
https://doi.org/10.1016/j.atmosenv.2019.117062, 2019.

Gettelman, A., Mills, M. J., Kinnison, D. E., Garcia, R. R.,
Smith, A. K., Marsh, D. R., Tilmes, S., Vitt, F., Bardeen, C.
G., McInerny, J., Liu, H. L., Solomon, S. C., Polvani, L. M.,
Emmons, L. K., Lamarque, J. F., Richter, J. H., Glanville,
A. S., Bacmeister, J. T., Phillips, A. S., Neale, R. B., Simp-
son, I. R., DuVivier, A. K., Hodzic, A., and Randel, W. J.:
The Whole Atmosphere Community Climate Model Version
6 (WACCM6), J. Geophys. Res.-Atmos., 124, 12380–12403,
https://doi.org/10.1029/2019JD030943, 2019.

Griffiths, P. T., Murray, L. T., Zeng, G., Shin, Y. M., Abraham,
N. L., Archibald, A. T., Deushi, M., Emmons, L. K., Galbally,
I. E., Hassler, B., Horowitz, L. W., Keeble, J., Liu, J., Moeini,
O., Naik, V., O’Connor, F. M., Oshima, N., Tarasick, D., Tilmes,
S., Turnock, S. T., Wild, O., Young, P. J., and Zanis, P.: Tropo-
spheric ozone in CMIP6 simulations, Atmos. Chem. Phys., 21,
4187-4218, https://doi.org/10.5194/acp-21-4187-2021, 2021.

Gu, Y., Henze, D. K., Nawaz, M. O., and Wagner, U. J.: Response of
the ozone-related health burden in Europe to changes in local an-
thropogenic emissions of ozone precursors, Environ. Res. Lett.,
18, 114034, https://doi.org/10.1088/1748-9326/ad0167, 2023.

Guo, J. J., Fiore, A. M., Murray, L. T., Jaffe, D. A., Schnell, J.
L., Moore, C. T., and Milly, G. P.: Average versus high sur-
face ozone levels over the continental USA: model bias, back-
ground influences, and interannual variability, Atmos. Chem.

Phys., 18, 12123–12140, https://doi.org/10.5194/acp-18-12123-
2018, 2018.

Karlický, J., Rieder, H. E., Huszár, P., Peiker, J., and Sukhodolov, T.:
A cautious note advocating the use of ensembles of models and
driving data in modeling of regional ozone burdens, Air Quality,
Air Qual. Atmos. Hlth., 10 pp., https://doi.org/10.1007/s11869-
024-01516-3, 2024.

Lehner, F., Nadeem, I., and Formayer, H.: Evaluating skills and
issues of quantile-based bias adjustment for climate change
scenarios, Adv. Stat. Clim. Meteorol. Oceanogr., 9, 29–44,
https://doi.org/10.5194/ascmo-9-29-2023, 2023.

Lelieveld, J. and Dentener, F. J.: What controls tropo-
spheric ozone?, J. Geophys. Res.-Atmos., 105, 3531–3551,
https://doi.org/10.1029/1999JD901011, 2000.

Lin, M., Fiore, A. M., Horowitz, L. W., Langford, A. O., Olt-
mans, S. J., Tarasick, D., and Rieder, H. E.: Climate vari-
ability modulates western US ozone air quality in spring
via deep stratospheric intrusions, Nat. Commun., 6, 7105,
https://doi.org/10.1038/ncomms8105, 2015.

Liu, Z., Doherty, R. M., Wild, O., O’Connor, F. M., and Turnock, S.
T.: Correcting ozone biases in a global chemistry–climate model:
implications for future ozone, Atmos. Chem. Phys., 22, 12543-
12557, https://doi.org/10.5194/acp-22-12543-2022, 2022.

Malashock, D. A., Delang, M. N., Becker, J. S., Serre, M. L.,
West, J. J., Chang, K.-L., Cooper, O. R., and Anenberg, S. C.:
Global trends in ozone concentration and attributable mortal-
ity for urban, peri-urban, and rural areas between 2000 and
2019: a modelling study, Lancet Planet. Hlth., 6, e958–e967,
https://doi.org/10.1016/S2542-5196(22)00260-1, 2022.

Meehl, G. A., Tebaldi, C., Tilmes, S., Lamarque, J.-F., Bates,
S., Pendergrass, A., and Lombardozzi, D.: Future heat
waves and surface ozone, Environ. Res. Lett., 13, 064004,
https://doi.org/10.1088/1748-9326/aabcdc, 2018.

Mills, G., Pleijel, H., Malley, C. S., Sinha, B., Cooper, O. R.,
Schultz, M. G., Neufeld, H. S., Simpson, D., Sharps, K.,
Feng, Z., Gerosa, G., Harmens, H., Kobayashi, K., Saxena,
P., Paoletti, E., Sinha, V., and Xu, X.: Tropospheric Ozone
Assessment Report: Present-day tropospheric ozone distribu-
tion and trends relevant to vegetation, Elementa, 6, 46 pp.,
https://doi.org/10.1525/elementa.302, 2018.

Monks, P. S., Archibald, A. T., Colette, A., Cooper, O., Coyle, M.,
Derwent, R., Fowler, D., Granier, C., Law, K. S., Mills, G. E.,
Stevenson, D. S., Tarasova, O., Thouret, V., von Schneidemesser,
E., Sommariva, R., Wild, O., and Williams, M. L.: Tropospheric
ozone and its precursors from the urban to the global scale from
air quality to short-lived climate forcer, Atmos. Chem. Phys., 15,
8889–8973, https://doi.org/10.5194/acp-15-8889-2015, 2015.

Murray, C. J. L., Aravkin, A. Y., Zheng, P., Abbafati, C., Abbas, K.
M., Abbasi-Kangevari, M., Abd-Allah, F., Abdelalim, A., Ab-
dollahi, M., Abdollahpour, I., Abegaz, K. H., Abolhassani, H.,
Aboyans, V., Abreu, L. G., Abrigo, M. R. M., Abualhasan, A.,
Abu-Raddad, L. J., Abushouk, A. I., Adabi, M., Adekanmbi, V.,
Adeoye, A. M., Adetokunboh, O. O., Adham, D., Advani, S. M.,
Agarwal, G., Aghamir, S. M. K., Agrawal, A., Ahmad, T., Ah-
madi, K., Ahmadi, M., Ahmadieh, H., Ahmed, M. B., Akalu, T.
Y., Akinyemi, R. O., Akinyemiju, T., Akombi, B., Akunna, C. J.,
Alahdab, F., Al-Aly, Z., Alam, K., Alam, S., Alam, T., Alanezi,
F. M., Alanzi, T. M., Alemu, B. w., Alhabib, K. F., Ali, M., Ali,
S., Alicandro, G., Alinia, C., Alipour, V., Alizade, H., Aljunid,

Atmos. Chem. Phys., 24, 5953–5969, 2024 https://doi.org/10.5194/acp-24-5953-2024

https://doi.org/10.5194/bg-15-5395-2018
https://doi.org/10.5194/bg-15-5395-2018
https://www.eea.europa.eu/publications/air-quality-in-europe-2020-report
https://www.eea.europa.eu/publications/air-quality-in-europe-2020-report
https://www.govinfo.gov/content/pkg/FR-2015-10-26/pdf/2015-26594.pdf
https://www.govinfo.gov/content/pkg/FR-2015-10-26/pdf/2015-26594.pdf
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32008L0050
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32008L0050
http://data.europa.eu/eli/dec_impl/2011/850/2011-12-17
http://data.europa.eu/eli/dec_impl/2011/850/2011-12-17
https://doi.org/10.1525/elementa.273
https://doi.org/10.1016/j.atmosenv.2019.117062
https://doi.org/10.1029/2019JD030943
https://doi.org/10.5194/acp-21-4187-2021
https://doi.org/10.1088/1748-9326/ad0167
https://doi.org/10.5194/acp-18-12123-2018
https://doi.org/10.5194/acp-18-12123-2018
https://doi.org/10.1007/s11869-024-01516-3
https://doi.org/10.1007/s11869-024-01516-3
https://doi.org/10.5194/ascmo-9-29-2023
https://doi.org/10.1029/1999JD901011
https://doi.org/10.1038/ncomms8105
https://doi.org/10.5194/acp-22-12543-2022
https://doi.org/10.1016/S2542-5196(22)00260-1
https://doi.org/10.1088/1748-9326/aabcdc
https://doi.org/10.1525/elementa.302
https://doi.org/10.5194/acp-15-8889-2015


C. Staehle et al.: An assessment of the performance of statistical bias correction techniques 5967

S. M., Alla, F., Allebeck, P., Almasi-Hashiani, A., Al-Mekhlafi,
H. M., Alonso, J., Altirkawi, K. A., Amini-Rarani, M., Amiri,
F., Amugsi, D. A., Ancuceanu, R., Anderlini, D., Anderson, J.
A., Andrei, C. L., Andrei, T., Angus, C., Anjomshoa, M., Ansari,
F., Ansari-Moghaddam, A., Antonazzo, I. C., Antonio, C. A. T.,
Antony, C. M., Antriyandarti, E., Anvari, D., Anwer, R., Appiah,
S. C. Y., Arabloo, J., Arab-Zozani, M., Ariani, F., Armoon, B.,
Ärnlöv, J., Arzani, A., Asadi-Aliabadi, M., Asadi-Pooya, A. A.,
Ashbaugh, C., Assmus, M., Atafar, Z., Atnafu, D. D., Atout, M.
M. d. W., Ausloos, F., Ausloos, M., Ayala Quintanilla, B. P.,
Ayano, G., Ayanore, M. A., Azari, S., Azarian, G., Azene, Z.
N., Badawi, A., Badiye, A. D., Bahrami, M. A., Bakhshaei, M.
H., Bakhtiari, A., Bakkannavar, S. M., Baldasseroni, A., Ball, K.,
Ballew, S. H., Balzi, D., Banach, M., Banerjee, S. K., Bante, A.
B., Baraki, A. G., Barker-Collo, S. L., Bärnighausen, T. W., Bar-
rero, L. H., Barthelemy, C. M., Barua, L., Basu, S., Baune, B. T.,
Bayati, M., Becker, J. S., Bedi, N., Beghi, E., Béjot, Y., Bell, M.
L., Bennitt, F. B., Bensenor, I. M., Berhe, K., Berman, A. E., Bha-
gavathula, A. S., Bhageerathy, R., Bhala, N., Bhandari, D., Bhat-
tacharyya, K., Bhutta, Z. A., Bijani, A., Bikbov, B., Bin Sayeed,
M. S., Biondi, A., Birihane, B. M., Bisignano, C., Biswas, R. K.,
Bitew, H., Bohlouli, S., Bohluli, M., Boon-Dooley, A. S., Borges,
G., Borzì, A. M., Borzouei, S., Bosetti, C., Boufous, S., Braith-
waite, D., Breitborde, N. J. K., Breitner, S., Brenner, H., Briant,
P. S., Briko, A. N., Briko, N. I., Britton, G. B., Bryazka, D., Bum-
garner, B. R., Burkart, K., Burnett, R. T., Burugina Nagaraja, S.,
Butt, Z. A., Caetano dos Santos, F. L., Cahill, L. E., Cámera, L. L.
A. A., Campos-Nonato, I. R., Cárdenas, R., Carreras, G., Carrero,
J. J., Carvalho, F., Castaldelli-Maia, J. M., Castañeda-Orjuela,
C. A., Castelpietra, G., Castro, F., Causey, K., Cederroth, C. R.,
Cercy, K. M., Cerin, E., Chandan, J. S., Chang, K.-L., Charl-
son, F. J., Chattu, V. K., Chaturvedi, S., Cherbuin, N., Chimed-
Ochir, O., Cho, D. Y., Choi, J.-Y. J., Christensen, H., Chu, D.-T.,
Chung, M. T., Chung, S.-C., Cicuttini, F. M., Ciobanu, L. G., Cir-
illo, M., Classen, T. K. D., Cohen, A. J., Compton, K., Cooper,
O. R., Costa, V. M., Cousin, E., Cowden, R. G., Cross, D. H.,
Cruz, J. A., Dahlawi, S. M. A., Damasceno, A. A. M., Damiani,
G., Dandona, L., Dandona, R., Dangel, W. J., Danielsson, A.-
K., Dargan, P. I., Darwesh, A. M., Daryani, A., Das, J. K., Das
Gupta, R., das Neves, J., Dávila-Cervantes, C. A., Davitoiu, D.
V., De Leo, D., Degenhardt, L., DeLang, M., Dellavalle, R. P.,
Demeke, F. M., Demoz, G. T., Demsie, D. G., Denova-Gutiérrez,
E., Dervenis, N., Dhungana, G. P., Dianatinasab, M., Dias da
Silva, D., Diaz, D., Dibaji Forooshani, Z. S., Djalalinia, S., Do,
H. T., Dokova, K., Dorostkar, F., Doshmangir, L., Driscoll, T.
R., Duncan, B. B., Duraes, A. R., Eagan, A. W., Edvardsson,
D., El Nahas, N., El Sayed, I., El Tantawi, M., Elbarazi, I., El-
gendy, I. Y., El-Jaafary, S. I., Elyazar, I. R. F., Emmons-Bell, S.,
Erskine, H. E., Eskandarieh, S., Esmaeilnejad, S., Esteghamati,
A., Estep, K., Etemadi, A., Etisso, A. E., Fanzo, J., Farahmand,
M., Fareed, M., Faridnia, R., Farioli, A., Faro, A., Faruque, M.,
Farzadfar, F., Fattahi, N., Fazlzadeh, M., Feigin, V. L., Feldman,
R., Fereshtehnejad, S.-M., Fernandes, E., Ferrara, G., Ferrari, A.
J., Ferreira, M. L., Filip, I., Fischer, F., Fisher, J. L., Flor, L. S.,
Foigt, N. A., Folayan, M. O., Fomenkov, A. A., Force, L. M.,
Foroutan, M., Franklin, R. C., Freitas, M., Fu, W., Fukumoto,
T., Furtado, J. M., Gad, M. M., Gakidou, E., Gallus, S., Garcia-
Basteiro, A. L., Gardner, W. M., Geberemariyam, B. S., Gebres-
lassie, A. A. A. A., Geremew, A., Gershberg Hayoon, A., Geth-

ing, P. W., Ghadimi, M., Ghadiri, K., Ghaffarifar, F., Ghafouri-
fard, M., Ghamari, F., Ghashghaee, A., Ghiasvand, H., Ghith, N.,
Gholamian, A., Ghosh, R., Gill, P. S., Ginindza, T. G. G., Gius-
sani, G., Gnedovskaya, E. V., Goharinezhad, S., Gopalani, S. V.,
Gorini, G., Goudarzi, H., Goulart, A. C., Greaves, F., Grivna,
M., Grosso, G., Gubari, M. I. M., Gugnani, H. C., Guimarães,
R. A., Guled, R. A., Guo, G., Guo, Y., Gupta, R., Gupta, T.,
Haddock, B., Hafezi-Nejad, N., Hafiz, A., Haj-Mirzaian, A., Haj-
Mirzaian, A., Hall, B. J., Halvaei, I., Hamadeh, R. R., Hamidi, S.,
Hammer, M. S., Hankey, G. J., Haririan, H., Haro, J. M., Hasa-
ballah, A. I., Hasan, M. M., Hasanpoor, E., Hashi, A., Hassa-
nipour, S., Hassankhani, H., Havmoeller, R. J., Hay, S. I., Hayat,
K., Heidari, G., Heidari-Soureshjani, R., Henrikson, H. J., Her-
bert, M. E., Herteliu, C., Heydarpour, F., Hird, T. R., Hoek, H.
W., Holla, R., Hoogar, P., Hosgood, H. D., Hossain, N., Hos-
seini, M., Hosseinzadeh, M., Hostiuc, M., Hostiuc, S., Househ,
M., Hsairi, M., Hsieh, V. C.-r., Hu, G., Hu, K., Huda, T. M., Hu-
mayun, A., Huynh, C. K., Hwang, B.-F., Iannucci, V. C., Ibitoye,
S. E., Ikeda, N., Ikuta, K. S., Ilesanmi, O. S., Ilic, I. M., Ilic,
M. D., Inbaraj, L. R., Ippolito, H., Iqbal, U., Irvani, S. S. N.,
Irvine, C. M. S., Islam, M. M., Islam, S. M. S., Iso, H., Ivers,
R. Q., Iwu, C. C. D., Iwu, C. J., Iyamu, I. O., Jaafari, J., Jacob-
sen, K. H., Jafari, H., Jafarinia, M., Jahani, M. A., Jakovljevic,
M., Jalilian, F., James, S. L., Janjani, H., Javaheri, T., Javidnia,
J., Jeemon, P., Jenabi, E., Jha, R. P., Jha, V., Ji, J. S., Johans-
son, L., John, O., John-Akinola, Y. O., Johnson, C. O., Jonas,
J. B., Joukar, F., Jozwiak, J. J., Jürisson, M., Kabir, A., Kabir,
Z., Kalani, H., Kalani, R., Kalankesh, L. R., Kalhor, R., Kan-
chan, T., Kapoor, N., Karami Matin, B., Karch, A., Karim, M.
A., Kassa, G. M., Katikireddi, S. V., Kayode, G. A., Kazemi
Karyani, A., Keiyoro, P. N., Keller, C., Kemmer, L., Kendrick, P.
J., Khalid, N., Khammarnia, M., Khan, E. A., Khan, M., Khatab,
K., Khater, M. M., Khatib, M. N., Khayamzadeh, M., Khazaei,
S., Kieling, C., Kim, Y. J., Kimokoti, R. W., Kisa, A., Kisa, S.,
Kivimäki, M., Knibbs, L. D., Knudsen, A. K. S., Kocarnik, J.
M., Kochhar, S., Kopec, J. A., Korshunov, V. A., Koul, P. A.,
Koyanagi, A., Kraemer, M. U. G., Krishan, K., Krohn, K. J.,
Kromhout, H., Kuate Defo, B., Kumar, G. A., Kumar, V., Kurmi,
O. P., Kusuma, D., La Vecchia, C., Lacey, B., Lal, D. K., Lalloo,
R., Lallukka, T., Lami, F. H., Landires, I., Lang, J. J., Langan,
S. M., Larsson, A. O., Lasrado, S., Lauriola, P., Lazarus, J. V.,
Lee, P. H., Lee, S. W. H., LeGrand, K. E., Leigh, J., Leonardi,
M., Lescinsky, H., Leung, J., Levi, M., Li, S., Lim, L.-L., Linn,
S., Liu, S., Liu, S., Liu, Y., Lo, J., Lopez, A. D., Lopez, J. C. F.,
Lopukhov, P. D., Lorkowski, S., Lotufo, P. A., Lu, A., Lugo, A.,
Maddison, E. R., Mahasha, P. W., Mahdavi, M. M., Mahmoudi,
M., Majeed, A., Maleki, A., Maleki, S., Malekzadeh, R., Malta,
D. C., Mamun, A. A., Manda, A. L., Manguerra, H., Mansour-
Ghanaei, F., Mansouri, B., Mansournia, M. A., Mantilla Herrera,
A. M., Maravilla, J. C., Marks, A., Martin, R. V., Martini, S.,
Martins-Melo, F. R., Masaka, A., Masoumi, S. Z., Mathur, M.
R., Matsushita, K., Maulik, P. K., McAlinden, C., McGrath, J.
J., McKee, M., Mehndiratta, M. M., Mehri, F., Mehta, K. M.,
Memish, Z. A., Mendoza, W., Menezes, R. G., Mengesha, E.
W., Mereke, A., Mereta, S. T., Meretoja, A., Meretoja, T. J.,
Mestrovic, T., Miazgowski, B., Miazgowski, T., Michalek, I.
M., Miller, T. R., Mills, E. J., Mini, G. K., Miri, M., Mirica,
A., Mirrakhimov, E. M., Mirzaei, H., Mirzaei, M., Mirzaei, R.,
Mirzaei-Alavijeh, M., Misganaw, A. T., Mithra, P., Moazen, B.,

https://doi.org/10.5194/acp-24-5953-2024 Atmos. Chem. Phys., 24, 5953–5969, 2024



5968 C. Staehle et al.: An assessment of the performance of statistical bias correction techniques

Mohammad, D. K., Mohammad, Y., Mohammad Gholi Mez-
erji, N., Mohammadian-Hafshejani, A., Mohammadifard, N.,
Mohammadpourhodki, R., Mohammed, A. S., Mohammed, H.,
Mohammed, J. A., Mohammed, S., Mokdad, A. H., Molokhia,
M., Monasta, L., Mooney, M. D., Moradi, G., Moradi, M.,
Moradi-Lakeh, M., Moradzadeh, R., Moraga, P., Morawska, L.,
Morgado-da-Costa, J., Morrison, S. D., Mosapour, A., Mosser,
J. F., Mouodi, S., Mousavi, S. M., Mousavi Khaneghah, A.,
Mueller, U. O., Mukhopadhyay, S., Mullany, E. C., Musa, K.
I., Muthupandian, S., Nabhan, A. F., Naderi, M., Nagarajan, A.
J., Nagel, G., Naghavi, M., Naghshtabrizi, B., Naimzada, M. D.,
Najafi, F., Nangia, V., Nansseu, J. R., Naserbakht, M., Nayak,
V. C., Negoi, I., Ngunjiri, J. W., Nguyen, C. T., Nguyen, H. L.
T., Nguyen, M., Nigatu, Y. T., Nikbakhsh, R., Nixon, M. R.,
Nnaji, C. A., Nomura, S., Norrving, B., Noubiap, J. J., Nowak,
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