

Supplement of

Measurement report: Optical characterization, seasonality, and sources of brown carbon in fine aerosols from Tianjin, North China: year-round observations

Zhichao Dong et al.

Correspondence to: Chandra Mouli Pavuluri (cmpavuluri@tju.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

		Annual		Summer		Autumn		Winter		Spring	
		Range	Median								
Concentr	ations										
WSOC (µ	.g m ⁻³)	0.69 - 16.0	2.56	1.14 - 3.12	1.74	1.16-7.68	3.13	1.37 - 16.0	4.19	0.69 - 4.03	2.44
WIOC (µ	3 m ⁻³)	0.00 - 8.93	1.01	0.00 - 1.33	0.38	0.21 - 5.07	1.39	0.00 - 8.93	3.33	0.23 - 2.62	0.73
Optical p	arameters										
	$\mathrm{Abs}_{365}(\mathrm{Mm}^{-1})$	0.49 - 36.7	2.94	0.49 - 3.16	1.23	0.55-13.5	3.09	2.35-36.7	8.27	0.66 - 13.3	2.94
	$MAE_{365}(m^2 g^{-1})$	0.38 - 3.41	1.14	0.38 - 1.98	0.64	0.40 - 1.76	1.02	0.90 - 3.08	2.02	0.52 - 3.41	1.34
	AAE(300–500 nm)	3.85-7.99	5.65	3.90-6.88	4.90	5.12-7.99	6.17	4.50-7.39	5.88	3.85-7.57	5.27
	E_2/E_3	3.30-7.66	5.18	3.64-7.66	5.74	4.61-7.66	5.59	4.18-6.22	5.15	3.30-6.25	4.80
Und all	FI	1.13-1.63	1.37	1.16 - 1.49	1.32	1.36 - 1.61	1.45	1.29 - 1.44	1.37	1.13 - 1.63	1.37
Wabru	BIX	0.79 - 1.39	1.03	0.79 - 1.04	0.91	0.83 - 1.26	1.06	1.03 - 1.39	1.19	0.82 - 1.24	1.00
	XIH	1.72-4.17	2.86	2.47 - 3.98	3.00	2.11-4.17	2.97	1.72-3.72	2.48	1.84 - 3.76	2.87
	k365	0.017 - 0.149	0.050	0.017 - 0.086	0.028	0.018 - 0.077	0.044	0.039 - 0.134	0.088	0.023 - 0.149	0.058
	$SFE_{Abs300-400}({\rm w~g}^{-1})$	0.60-5.13	1.74	0.60 - 2.99	0.97	0.81-5.13	1.55	1.40 - 4.76	3.14	0.62 - 2.71	2.00
	$SFE_{Abs300-700} (w g^{-1})$	0.98-13.1	4.50	1.22-10.5	2.95	1.48–12.5	3.30	3.75-13.1	7.56	0.98-6.36	4.99
	$\mathrm{Abs}_{365}(\mathrm{Mm}^{-1})$	0.32-25.0	1.54	0.40 - 1.26	0.71	0.32 - 11.0	2.08	2.85-25.0	9.45	0.44 - 11.3	1.36
	$MAE_{365}(m^2 g^{-1})$	0.18-7.05	2.26	0.89-7.05	1.66	0.18-4.70	1.50	2.01 - 3.42	2.71	0.42 - 5.81	1.96
	AAE(300-500 nm)	2.08-12.9	5.99	4.27–9.19	5.05	2.08 - 12.9	5.72	5.49-6.76	6.29	3.94 - 8.38	6.30
	E_2/E_3	3.32-24.1	6.16	4.32-9.58	6.58	3.32-10.1	5.31	5.28-7.73	6.11	4.50-24.1	6.96
-IW	FI	1.29 - 2.24	1.59	1.34 - 1.92	1.58	1.48 - 1.73	1.57	1.61 - 2.24	1.71	1.29–1.77	1.51
MSBrC	BIX	0.83-1.76	1.27	0.92 - 1.65	1.36	0.83 - 1.36	1.05	1.20 - 1.62	1.42	0.94 - 1.76	1.22
	HIX	0.11-2.38	0.59	0.11 - 0.49	0.25	0.30 - 2.38	1.34	0.62 - 1.79	1.44	0.11 - 1.26	0.34
	k365	0.0080.307	0.098	0.039 - 0.307	0.072	0.008 - 0.205	0.065	0.0870.149	0.118	0.018 - 0.253	0.087
	$SFE_{Abs300-400}(w{\rm g}^{-1})$	0.64 - 8.84	2.89	0.60 - 2.99	0.97	0.75 - 7.01	2.34	3.04-5.29	4.15	0.64 - 8.84	2.94
	$SFE_{Abs300-700}({\rm W~g}^{-1})$	0.92-51.3	7.55	1.22 - 10.5	2.95	0.92-51.3	6.47	7.06-11.7	9.14	2.48–21.8	6.28

Table S1. Mass concentrations of WSOC, WIOC and absorbance efficiency of WSBrC and WI-MSBrC (Range & Median) in PM2.5 from Tianjin, North China.

Figure S1. Scatter plots of Abs_{365(WSBrC)} and Abs_{365(WI-MSBrC)} with the concentration of WSOC and WIOC in PM_{2.5} from Tianjin in each season during 2018–2019. The WSOC and WIOC data is obtained from (Dong et al., 2021).

Figure S2. Scatter plots of $Abs_{365(WSBrC)}$ and $Abs_{365(WI-MSBrC)}$ with K⁺ and Cl⁻ in PM_{2.5} from Tianjin in each season during 2018–2019. The concentration of K⁺ and Cl⁻ from (Dong et al., 2021).

Figure S3. Temporal variations in imaginary refractive index (k) of WSBrC and WI-MSBrC in PM_{2.5} from Tianjin in each season during 2018–2019.

Reference:

Dong, Z. C., Pavuluri, C. M., Xu, Z. J., Wang, Y., Li, P. S., Fu, P. Q., and Liu, C. Q.: Year-round observations of bulk components and ¹³C and ¹⁵N isotope ratios of fine aerosols at Tianjin, North China – Data set, https://doi.org/10.5281/zenodo.5140861, 2021.