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Abstract. Observation-based data of primary and secondary organic carbon in ambient particulate matter (PM)
are essential for model evaluation, climate and air quality research, health effect assessments, and mitigation
policy development. Since there are no direct measurement tools available to quantify primary organic (POC)
and secondary organic carbon (SOC) as separate quantities, their estimation relies on inference approaches using
relevant measurable PM constituents. In this study, we measured hourly carbonaceous components and major
ions in PM2.5 for a year and a half in suburban Hong Kong from July 2020 to December 2021. We differen-
tiated POC and SOC using a novel Bayesian inference approach. The hourly POC and SOC data allowed us
to examine temporal characteristics varying from diurnal and weekly patterns to seasonal variations, as well as
their evolution characteristics during individual PM2.5 episodes. A total of 65 city-wide PM2.5 episodes were
identified throughout the entire study period, with SOC contributions during individual episodes varying from
10 % to 66 %. In summertime typhoon episodes, elevated SOC levels were observed during daytime hours, and
high temperature and NOx levels were identified as significant factors contributing to episodic SOC formation.
Winter haze episodes exhibited high SOC levels, likely due to persistent influences from regional transport orig-
inating from the northern region to the sampling site. Enhanced SOC formation was observed with increase in
the nocturnal NO3 radical (indicated by the surrogate quantity of [NO2][O3]) and under conditions character-
ized by high water content and strong acidity. These results suggest that both NO3 chemistry and acid-catalyzed
aqueous-phase reactions likely make notable contributions to SOC formation during winter haze episodes. The
methodology employed in this study for estimating POC and SOC provides practical guidance for other loca-
tions with similar monitoring capabilities in place. The availability of hourly POC and SOC data is invaluable for
evaluating and improving atmospheric models, as well as understanding the evolution processes of PM pollution
episodes. This, in turn, leads to more accurate model predictions and a better understanding of the contributing
sources and processes.

Published by Copernicus Publications on behalf of the European Geosciences Union.



5804 S. Wang et al.: Bayesian inference-based estimation of hourly primary and secondary organic carbon

1 Introduction

Carbonaceous aerosol is a major component of PM2.5 (par-
ticulate matter with an aerodynamic diameter of less than
2.5 µm), accounting for 20 %–90 % of its total mass in am-
bient environment (Seinfeld and Pandis, 1998; Kroll et al.,
2011). It has been known to have adverse effects on regional
to global climate, air quality, and human health (Nel, 2005;
Bond et al., 2013; R. Huang et al., 2014). Carbonaceous
components can generally be classified into elemental car-
bon (EC) and organic carbon (OC). EC refers to the soot-like
amorphous carbon emitted directly from incomplete com-
bustion processes (Chow et al., 2010), while OC is a more
complex mixture of organic compounds that can be either
primarily emitted from anthropogenic sources (e.g., biomass
burning, fossil fuel combustion, and cooking) and biogenic
sources (e.g., plant debris) or secondarily formed through
oxidation reactions (Robinson et al., 2007; Hallquist et al.,
2009; Zhao et al., 2007; Christian et al., 2003). Therefore,
OC can be further grouped into primary OC (POC) and sec-
ondary OC (SOC). Accurately quantifying and estimating
POC and SOC through observation-based measurement is
the precondition for comprehending their unique character-
istics, such as relative contributions, temporal variations, and
chemical evolution. This knowledge is crucial for refining
atmospheric models and developing more targeted strategies
to reduce carbonaceous aerosol emissions, mitigate climate
change, and minimize human exposure.

The thermal–optical protocols have been widely used for
OC and EC measurements (Klingshirn et al., 2019; Chow et
al., 2001). However, accurately determining POC and SOC
remains challenging since there are no instrumental tools
available for the direct measurement of POC and SOC. Sev-
eral data treatment methodologies have been developed to es-
timate POC and SOC levels. One such approach is the chem-
ical mass balance (CMB) receptor model, which apportions
POC based on the chemical profile of individual known pri-
mary sources, and the unmapped mass is then referred to
as SOC (Pachon et al., 2010; Shi et al., 2011; Schauer and
Cass, 2000). However, the uncertainty is large due to lim-
ited or insufficient information on the SOC source profiles in
CMB simulations (Stone et al., 2009). Another widely used
receptor model, positive matrix factorization (PMF), appor-
tions the sources of OC based on the comprehensive chem-
ical speciation data (Ke et al., 2008; Jaeckels et al., 2007).
Studies have shown that PMF model output may underesti-
mate the contributions of secondary organic aerosols when
the specific molecular organic tracers are absent in the in-
put data matrix (Wang et al., 2017; Pachon et al., 2010).
These limitations compromise the applicability of receptor
models for accurately quantifying the POC and SOC mass.
Alternative approaches include the EC tracer method, which
relies on the EC-to-OC ratio (Day et al., 2015; Turpin and
Huntzicker, 1991), and the multiple linear regression (MLR)
model (Blanchard et al., 2008). The former assumes that

POC and EC share common combustion sources, allowing
the POC/EC ratio to serve as an indicator to identify the
primary sources, which can be determined by utilizing the
minimum ratio (MIN) method (Castro et al., 1999). This as-
sumption is less justified and compromised with naiveté, as
observed OC/EC ratios can span over an order of magni-
tude in ambient measurements, which could be affected by
measurement artifacts and fluctuate under different meteoro-
logical conditions (Yuan et al., 2006). Furthermore, the lack
of a widely accepted criterion for percentile selection can
bring up the bias to SOC estimation (Wu et al., 2019). The
minimum R-squared (MRS) method is a less arbitrary ap-
proach to determine the POC/EC ratio for primary sources.
In the MRS method, the optimal primary POC/EC ratio is
determined by minimizing the Pearson’s correlation coeffi-
cient between EC and deduced SOC (Wu and Yu, 2016).
The MRS method has been increasingly used in studies with
the hourly measurements in various environments (Wu et
al., 2019; Yao et al., 2020; Bian et al., 2018). However, it
has been proven that the MRS method inevitably yields a
POC/EC ratio that renders EC and deduced SOC completely
uncorrelated. This contradicts our expectation of a weak yet
not negligible correlation between EC and SOC, since some
SOC species could be formed from precursors co-emitted
with EC through combustion activities (Jathar et al., 2013;
Gentner et al., 2017; Deng et al., 2020), and both SOC and
EC are influenced by regional transport or changes in the
boundary layer height. On the other hand, the MLR model
is a powerful statistical tool to estimate SOC by consider-
ing highly associated variables rather than the difference be-
tween measured OC and estimated POC (Kim et al., 2012;
Pachon et al., 2010). Another approach, the secondary or-
ganic aerosol (SOA) tracer method, utilizes SOA tracer yield
data derived from chamber experiments to estimate the SOC
and SOA contributions from several precursors (Kleindienst
et al., 2012, 2007). However, the availability of SOA tracer
data is limited to only a small number of common precursors,
leading to a bias in the quantification of SOC mass (Cheng et
al., 2021).

Compared to the abovementioned approaches, our re-
search group has recently developed a novel Bayesian infer-
ence (BI) method that allows for the quantification of POC
and SOC based on measurement data of PM major compo-
nents (i.e., OC, EC, and major secondary inorganic ions).
This approach provides better agreement with tracer-based
PMF results than traditional techniques. The principle of this
approach can be found in Liao et al. (2023). Briefly, our
method differentiates POC and SOC by incorporating prior
knowledge and measurement data of major PM components
to make probabilistic inferences about the unknown POC and
SOC mass. This is achieved by considering the parameters as
random variables rather than constants, which distinguishes
it from the multiple linear regression model. This innovation
in methodology offers the potential for quantifying POC and
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SOC with higher accuracy and lower computational com-
plexity.

Hong Kong is located in southern China and is part of the
Guangdong–Hong Kong–Macau Greater Bay Area (GBA)
economic and business hub. Since the implementation of the
Clean Air Plan in 2013 by the Hong Kong Environment Bu-
reau, air pollution in Hong Kong has significantly improved
(Hong Kong Environment Bureau, 2013). Numerous studies
have been conducted to measure variations in chemical spe-
ciation components and potential sources over the past few
years, but these are mainly based on 24 h offline filter mea-
surements (Hu et al., 2010; Cao et al., 2003; Li et al., 2013).
As such, information on POC and SOC in PM2.5 is unavail-
able down to hourly timescales and for continuous and ex-
tended durations covering all seasons. The limited temporal
resolution of previous studies has prevented the exploration
of diurnal variations and rapid evolutionary processes, which
are crucial for understanding SOC formation in the ambi-
ent environment. Moreover, long-term continuous measure-
ments are limited in Hong Kong, hindering our comprehen-
sive understanding of episodic events occurring under differ-
ent seasonal synoptic conditions.

In this study, continuous online monitoring of atmospheric
PM2.5 and carbonaceous components (i.e., OC and EC) was
carried out at a regional suburban site in Hong Kong for
nearly a year and a half from 16 July 2020 to 31 Decem-
ber 2021. The objectives of this study are threefold: (1) to
identify the optimal method setup and to derive hourly POC
and SOC using the novel Bayesian inference approach; (2) to
characterize variations in POC and SOC at multi-temporal
scales, including diurnal, weekday–weekend, and seasonal
variations, and identify factors influencing SOC formation;
and (3) to investigate SOC variations during city-wide high-
PM2.5 episodes under different seasonal synoptic conditions.
The methodology of this work could serve as a valuable
guide for other locations with similar monitoring capabili-
ties. The observation-based POC and SOC data and insights
gained regarding pollution processes will provide valuable
observation constraints for improving air quality models for
our region and other locations.

2 Methodology

2.1 Aerosol sampling and measurement

The aerosol measurements were conducted at the Hong
Kong University of Science and Technology Air Quality Re-
search Supersite (HKUST supersite), which is located on
the HKUST campus. A detailed description of this site can
be found in our previous papers (Q. Wang et al., 2022; Li
et al., 2022). Briefly, The HKUST supersite is situated on
the hillside of Clear Water Bay in the eastern coastal area
of Hong Kong (22.33° N, 114.27° E, Fig. S1 in the Sup-
plement). It is ∼ 17 km north of the city center and 2.2 km
south of the nearby commercial and urban center of Tse-

ung Kwan O. The sampling site experiences outflow from
urban areas in the northwest and southwest directions dur-
ing 35 % of the sampling period. This location represents a
typical suburban site. Surrounding the sampling site are ever-
green broadleaved woods that are known to emit high levels
of biogenic volatile organic compounds (VOCs) (Tsui et al.,
2009). The site is characterized as low to moderately pol-
luted, with limited local anthropogenic emissions originating
from a nearby construction site for a dormitory and a small
canteen. The construction site operates from Monday to Sat-
urday between 09:00 and 18:00 LT. However, it is important
to note that the canteen’s operations were scaled down to
minimum levels during the study period due to the ongoing
pandemic.

The sampling period lasted for nearly a year and a half
from 16 July 2020 to 31 December 2021. Multiple online in-
struments of hourly time resolution or higher were deployed
to measure the PM2.5 levels, its major components, and
gaseous pollutants and meteorological parameters. Briefly,
PM2.5 mass concentrations were measured by a SHARP
monitor (Model 5030i; Thermo Fisher Scientific, USA), ma-
jor water-soluble inorganic ions (sulfate, nitrate, and ammo-
nium) were monitored by a monitor for aerosols and gases
in ambient air (MARGA 1S; Metrohm AG, Switzerland),
and carbonaceous components (organic carbon, OC, and el-
emental carbon, EC) were determined by a semicontinuous
OC/EC analyzer (model RT-3179; Sunset Laboratory Inc.,
USA). Gaseous pollutants (O3, NO, and NOx) were mea-
sured by gas analyzers (Teledyne API 400A, USA; Ecotech
Serinus 40, USA, respectively). Meteorological parameters,
including temperature, relative humidity (RH), wind speed
(WS), and wind direction (WD) were measured by the 10 m
automatic weather station (AWS tower, Model 6000, Belfort
Instrument Company, USA). The output data from all the
abovementioned instruments were averaged to a resolution
of 1 h and appropriately aligned for the subsequent analysis.
Hourly SHARP PM2.5 concentrations at the HKUST super-
site were corrected due to the measurement bias; for further
discussion, see Q. Wang et al. (2022), Wang et al. (2023), and
Sect. S1 in the Supplement. The PM2.5 levels and gas pollu-
tant data in a nearby rural station (Tap Mun, MB) ∼ 15 km
to the northeast were used as reference for days before Octo-
ber 2020 and after November 2021, during which the respec-
tive instruments at our sites were either unavailable or under
maintenance. The details in treatment for the missing data
can be found in our previous studies (Q. Wang et al., 2022).

2.2 Estimation of secondary and primary organic
carbon by the Bayesian inference approach

In this study, the estimation of POC and SOC were per-
formed by the Bayesian inference approach, which is newly
developed in our group (Liao et al., 2023). This method re-
lies on only major chemical composition data that are com-
monly measured. Specifically, the concentrations of primary

https://doi.org/10.5194/acp-24-5803-2024 Atmos. Chem. Phys., 24, 5803–5821, 2024



5806 S. Wang et al.: Bayesian inference-based estimation of hourly primary and secondary organic carbon

and secondary OC are calculated based on Eqs. (1) and (2):

OC= EC×K1+SIA×K2, (1)
POC= EC×K1, and SOC= SIA×K2, (2)

where OC and EC are the measured hourly concentrations of
OC and EC, respectively; SIA represents one of the major
secondary inorganic ions (i.e., SO4

2−, NO3
−, and NH4

+);
and K1 and K2 are the POC/EC ratio and SOC/SIA ratio
that are yet to be deduced using Eq. (3), respectively.

π (K1,K2|Data)=
L(Data|K1,K2)p(K1,K2)∫

L(Data|K1,K2)p(K1,K2)dK1dK2
, (3)

where p(K1,K2) is the prior distribution of (K1,K2),
L(Data|K1,K2) is the likelihood function of observation
data, and π (K1,K2|Data) is the posterior distribution to be
determined. The BI principle is rooted in Bayes’ theorem and
embodied in Eq. (3). With the aim of determining the pos-
terior distribution, we first find out the likelihood function
L(Data|K1,K2) of the observation data with respect to the
parameters we want to estimate and the prior distribution of
such parameters Equation (4) gives the likelihood function in
our Bayesian model by assuming a normally distributed error
term.

OC∼N
(
EC×K1+SIA×K2,σ

2
EC×K

2
1 + σ

2
SIA

×K2
2 + σ

2
OC
)

(4)

In the above equation, σEC, σOC, and σSIA are the uncertain-
ties for EC, OC, and SIA, respectively. The prior distribu-
tions of K1 and K2 are set following Eq. (5), signifying the
prior knowledge of these two ratios before analyzing the ob-
servation data.

K1 ∼N (2.0,1.02), and K2 ∼N (0.4,0.22) (5)

Liao et al. (2023) recommend setting these two prior dis-
tributions fairly wide to avoid unnecessary constraints, and
the influence from different prior distributions becomes neg-
ligible when there are adequate observation data according
to their sensitivity analysis. Based on our experience of ap-
plying Bayesian inference to estimate POC and SOC, when
there are around 10 or more observations in one data set, the
estimated posterior distribution of (K1, K2) will be robust
enough regardless of the prior distribution. Given that the
posterior distribution of (K1, K2) cannot be solved analyti-
cally, we resort to Markov chain Monte Carlo (MCMC) sam-
pling for numerical estimation, where we construct a Markov
chain whose limit distribution is the same as the posterior
distribution of interest. The mean values of (K1, K2) from
such sampling are then used to deduce POC and SOC using
Eq. (2).

Finally, from basic error propagation analysis, we further
define the uncertainties of POC and SOC (i.e., σPOC and

σSOC) as per Eq. (6):

σPOC = POC×

√(σEC

EC

)2
+

(
σK1

K1

)2

, and

σSOC = SOC×

√(σSIA

SIA

)2
+

(
σK2

K2

)2

. (6)

Compared to other statistical methods (i.e., the MIN, MRS,
and MLR methods), the BI method allows greater flexibility
in model establishment and comprehensive consideration of
all measurement uncertainties.

2.3 Aerosol liquid water content and acidity estimation

The aerosol water content (AWC) and acidity (pH) were
calculated by the thermodynamic equilibrium model ISOR-
ROPIA II (Fountoukis and Nenes, 2007). The calculation is
performed based on the assumption that the aerosol is in
metastable state and at chemical equilibrium between the
aerosol and gas phase. The model is set in forward mode,
with the inputs from MARGA measured species of aerosol-
phase Na+, K+, Mg2+, Ca2+, NH4

+, NO3
−, SO4

2−, gas-
phase HCl, HNO3, NH3, ambient temperature, and RH. De-
tailed information and validation of the model calculation are
presented in Sect. S2.

3 Results and discussion

3.1 Determination of POC and SOC using the BI
method

Considering the emission sources and secondary formation
processes would vary from season to season, we quanti-
fied POC and SOC in each individual season to account for
seasonal variations. The division of seasons was based on
upper-level wind direction, sea level pressure, and dew point
(Yu, 2002; Wong et al., 2022), as shown in Fig. S4. Specif-
ically, the seasons were 2020 summer (16 July–28 Septem-
ber 2020), 2020 fall (8 October–23 November 2020), 2020–
2021 winter (24 November 2020–28 February 2021), 2021
spring (1 March–2 May 2021), 2021 summer (3 May–7 Oc-
tober 2021), 2021 fall (8 October–24 November 2021), and
2021 winter (25 November–31 December 2021). Within each
season, the data were further divided into 24 (h)×4 (wind di-
rections) groups by hour and wind direction (i.e., northwest-
ern, northeastern, southwestern, southeastern) to account for
the diurnal and wind direction variations. The BI model was
then applied to each group of data. The BI method’s inher-
ent advantage allows for this fine division of measurement
data, which ensures relatively constant K1 and K2 within
each group.

Regarding the selection of the optimal SIA species for
tracking SOA in the BI method, Liao et al. (2023) found
that the simulation results using sulfate or ammonium as the
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SOC tracer yielded better agreement with the reference re-
sults compared to using nitrate. This discrepancy could be at-
tributed to larger measurement artifacts associated with evap-
oration loss of nitrate in the offline measured data set. For
the online measurements, the simulation results using nitrate
were also inferior to those using sulfate or ammonium, as the
formed SOA is largely retained in the fine particles, while
nitrate has propensity to partition onto coarse particles. To
further determine the optimal SOC tracers, an uncertainty
analysis utilizing an error estimation method was conducted.
As shown in Fig. S5a, the absolute concentration and uncer-
tainty of POC were highly correlated and showed minimal
difference between BI-SO4

2− and BI-NH4
+, whereas the un-

certainties for SOC were much larger for BI-SO4
2− than BI-

NH4
+. The relative uncertainty, calculated as the uncertainty

divided by the concentration, yielded comparable values for
POC with both indicators (Fig. S5b), while BI-NH4

+ gen-
erated larger relative uncertainties for SOC compared to BI-
SO4

2−. This suggests that sulfate is a better tracer for quan-
tifying SOC levels in our data set. This conclusion is further
supported by a statistical criterion, the Bayesian information
criterion (BIC), which is universally used in model selection.
Lower BIC values indicate better modeling results. The BIC
values for the three SOC tracers were calculated for each in-
dividual season, with sulfate consistently yielding the low-
est value (Table S1 in the Supplement). Thus, the BI-derived
POC and SOC using sulfate as the SOC tracer are considered
to provide more accurate data with lower uncertainties and
are consequently adopted in the subsequent analysis. By in-
corporating the uncertainties of model estimations into data
closure, BIC is designed to help evaluate performance among
different models applied to the same data set. In future appli-
cations of the BI model, where specific tracers for aerosol
sources are unavailable, the use of PMF may not be feasible.
In such cases, we recommend relying on BIC as a reliable
method to choose the most suitable SOC tracer.

Figure 1 shows the distribution and seasonal variations
in K1 and K2 values determined for the 24× 4 groups.
The POC/EC ratio (K1) is influenced by the predominant
primary sources and meteorological conditions. Due to the
monsoon shift in Hong Kong, air pollution during summer
is primarily under the control of local emissions, while re-
gional transport from the continent to the north has a dom-
inant influence in cold seasons. Hence, different predomi-
nant sources for POC and EC in Hong Kong are expected.
Additionally, many POC species in PM2.5 are semi-volatile
and are subject to gas-phase partitioning equilibrium, lead-
ing to more POC retained in the particle phase at lower tem-
peratures. These factors contribute to a higher K1 values in
winter compared to summer (Fig. 1a) (p < 0.01) and a more
pronounced diurnal pattern in summer (Fig. 1b). The diurnal
variations of K1 in Fig. 1b align closely with the local rush
hours, during which vehicular emissions exert a dominant in-
fluence among all primary sources. In comparison to non-
vehicular primary sources, carbonaceous materials originat-

ing from vehicular sources exhibit much higher levels of EC,
resulting in a lower OC/EC ratio. During periods of heavy
traffic, the overall POC/EC ratio decreases, approaching the
typical OC/EC ratio observed for vehicular emissions. On
the other hand, the SOC/SIA ratio (K2) is influenced by the
sources of their precursors, the strength of secondary forma-
tion in the atmosphere, and meteorological parameters. Fig-
ure 1a shows that K2 is higher (larger mean values) and less
variable (smaller inter-quantile ranges) in winter (p < 0.01),
and Fig. 1b demonstrates that hourlyK2 values are more sta-
ble in winter compared to summer. The long-range regional
transport during winter could account for the reduced vari-
ability in K2 during cold seasons.

During the periods of 2020–2021 winter and 2021 spring,
we have conducted source apportionment analysis using
PMF based on a suite of elemental and molecular tracer data
in PM2.5. The PMF results provide an independent means to
determine POC and SOC. Detailed discussions on the win-
tertime SOC and POC from PMF are documented in our
previous publication (Wang et al., 2023). Figure S6 com-
pares POC and SOC estimates obtained from the BI ap-
proach versus the PMF method. Good agreements were ob-
served between the two methods for POC in both seasons
(Rp = 0.664–0.766). The correlations for SOC simulation
showed even stronger agreement with the reference PMF
results in winter (Rp = 0.859–0.875). However, in spring,
the correlations for SOC exhibited a lower correlation co-
efficient, and comparable results were obtained when using
SO4

2− and NH4
+ as tracers for SOC (Fig. S6b). The dis-

crepancy observed in spring could be attributed to the fact
that the majority of PMF-resolved SOC was associated with
the biogenic secondary organic aerosols factor rather than the
secondary sulfate factor.

It is important to highlight that while the BI model demon-
strates improved compatibility with PMF results compared
to other conventional models, it may not precisely replicate
PMF outcomes due to the distinct reaction pathways and
formation time spans of SIA and certain SOC components.
Considering the similarities in formation pathways, the BI-
SO4

2− model would yield more accurate estimations when
regional transport has a stronger influence compared to local
formation processes. Conversely, when SOC formation path-
ways are significantly disconnected in time and in space from
those of sulfate, the performance of the BI-SO4

2− model
would be less satisfactory. For example, in clean regions like
the southeastern US and Amazon where SOA measurements
were dominated by fast local oxidation chemistry of biogenic
VOCs (Xu et al., 2015; Riemer et al., 1998; Langford et al.,
2022), sulfate may not serve as a good tracer to track SOA in
the BI-SO4

2− model. In urban areas where daytime photo-
chemical processing may play a significant role in SOA for-
mation, e.g., summertime Beijing (Duan et al., 2020), sulfate
may also fail as a proper tracer. Thus, an integrative eval-
uation of available PM composition, along with related air
pollutant and meteorological conditions, is recommended to
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Figure 1. (a) Box plot of K1 and K2 values across different seasons (the squares and horizontal lines in the box denote the average and
median, respectively; the lower and upper boundaries of the boxes represent the 25th and 75th percentile values, respectively; and the upper
and lower whiskers are the 10th and 90th percentile values, respectively). (b) The diurnal variations inK1 andK2 in individual seasons (solid
lines represent the average values, while the shaded area indicates standard deviation).

aid identification of a suitable SOC tracer in implementing
the BI method and assessing the interpretability of the BI
method-derived POC and SOC data.

3.2 Multi-temporal-scale variations in POC and SOC

3.2.1 Annual levels and seasonal variations

Figure 2a shows the time series of meteorological pa-
rameters, gaseous pollutants, PM2.5, and the carbonaceous
components, including OC, EC, POC, and SOC, over the
entire measurement period. The study-wide PM2.5 con-
centrations ranged from 1.0 to 94 µgm−3 with an aver-
age of 14.8± 8.8 µgm−3. The PM2.5 levels varied notably
from hour to hour, with 14 % exceeding 25 µgm−3. This
value (25 µgm−3) is the new PM2.5 annual Interim Target-
2 target of the “Air Quality Guidelines (AQG)” recom-
mended by the World Health Organization. It is also the
newly proposed “Air Quality Objective” for PM2.5 of the
Hong Kong Government (Hong Kong Environment Bu-

reau, 2021). The O3 and NOx concentrations throughout
the study period had an average value of 44± 19 and
8.9± 7.8 ppb, respectively. The concentrations of OC varied
from 0.06–15.7 µgCm−3 (avg. 2.8± 2.0 µgCm−3), and EC
ranged from 0.02–6.4 µg Cm−3 (avg. 0.76± 0.64 µgCm−3).
The average POC was 1.6± 1.3 µgCm−3 (range: 0.06 to
12.4 µgCm−3), approximately 2 times the average SOC
concentration (avg. 0.92± 0.74 µgCm−3; range: 0.02 to
6.8 µgCm−3). Past studies conducted at the same site us-
ing offline measurements of filter samples in 2011–2012
(X. H. H. Huang et al., 2014) and 2015 (Chow et al., 2022),
as well as online measurements during the winter of 2020
(Wang et al., 2023), also observed higher percentages of
POC. The SOC percentage contributions varied under differ-
ent environments due to the complex sources and formation
processes and the meteorological conditions. The percent-
age contribution of SOC at our sampling site was lower than
those measurements in urban Hong Kong and other urban
cities (Zhou et al., 2014; Zhu et al., 2021; Li et al., 2020) but
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comparable to a similar suburban site in Shanghai (M. Wang
et al., 2022; S. Wang et al., 2022).

As a sub-tropical region in the southeastern coastal region
of China, the sampling site is under the influence of the sea-
sonal evolution of the East Asian Monsoon system, exhibit-
ing distinctive season-dependent air pollution characteristics.
During the summertime, the prevailing wind is from south-
ern oceanic areas, while northwesterly winds dominated in
the winter. Spring and autumn are transitional seasons. The
RH levels were > 80 % in spring and summer, considerably
higher than in fall (∼ 70 %) and winter (∼ 60 %). The wind
speeds during winter and fall were higher compared to sum-
mer and spring, with the prevailing airflow coming from the
northwest (Fig. 2b). These meteorological conditions would
favor the transport and dispersion of air pollutants over a
larger scale in winter over summer. The seasonal variations
in PM2.5 showed higher levels in winter and fall compared
to spring and summer. NOx showed the highest levels in the
summer and fall of 2021 due to the accumulation of local
vehicle emissions from nearby construction activity, while
O3 showed distinct variations, with the lowest levels gener-
ally being in summer. The summer low ozone is attributed
to the prevailing southerly flow introduced by the summer
monsoon, which brings less O3 and/or O3 precursor (So and
Wang, 2003). In addition, the strong ozone titration effects of
higher NOx levels could be also responsible for the decreased
O3 levels in summer (Zhang et al., 2013). The seasonal vari-
ation trends of OC and EC were consistent with higher con-
centrations in winter, followed by fall, spring, and summer.
Similarly, POC and SOC levels were highest in winter and
lowest in summer, showing a difference of ∼ 3 times (2.9 vs.
0.8 µgCm−3 and 1.5 vs. 0.5 µgCm−3, respectively) between
the two seasons. With regards to the interannual variations,
the levels of PM2.5 and its carbonaceous components exhib-
ited relatively fewer variations, with comparable levels ob-
served in the same season across different years.

3.2.2 Weekend–weekday pattern and diurnal variations

The diurnal variations in PM2.5, O3, NOx , and carbonaceous
components over the entire period are shown in Fig. 3. Since
the sampling location is situated near a construction site,
we conducted a comparative analysis of diurnal variations
between weekdays and weekends to evaluate the influence
of construction activities on aerosol particles and gas pol-
lutants. PM2.5 displayed minimal disparities between week-
days and weekends, showing flat diurnal cycles across vari-
ous seasons, except for the winter of 2021. During this partic-
ular winter, higher concentrations of PM2.5 were observed at
night on weekends compared to weekdays. The diurnal vari-
ations in O3 exhibited clear daily trends throughout differ-
ent seasons, with higher concentrations during daytime and a
peak in the late afternoon. These patterns closely correspond
to variations in radiation and temperature. The daily varia-
tions in NOx showed a clear diurnal pattern with higher day-

time concentrations on weekdays, which is characterized by
two concentration peaks at 09:00–10:00 and 16:00–18:00 LT,
aligning with the traffic peak hours at the start and at the
end of a working day at the construction site. Similarly, EC
showed two pronounced peaks during the daytime on week-
days across different seasons, further indicating the notice-
able impacts of primary traffic emissions on NOx and EC
levels, particularly on workdays. Conversely, NOx and EC
levels were generally lower on weekends and lacked a dis-
tinct diurnal variation. Different from EC, OC showed less
difference between weekdays and Sundays. Slightly higher
daytime concentrations with a peak around noon were ob-
served in the two summer seasons, which could be attributed
to the enhanced photochemical formation of OC. Diurnal cy-
cles of OC were flatter in other seasons. Higher OC/EC ra-
tios (Fig. S7d) were observed during weekends across differ-
ent seasons, providing additional evidence of reduced vehicle
emissions on non-working days.

The weekday–weekend patterns of POC and SOC dis-
played notable distinctions. Specifically, SOC was slightly
higher on weekends, whereas an enhancement of POC was
found on weekdays across different seasons. Higher levels
of O3 were also observed on weekends, likely due to the
weak titration effects as a result of reduced NOx from vehicle
emissions and other anthropogenic emissions during week-
ends. This observation suggests that anthropogenic emis-
sions had a stronger influence on POC levels, while SOC lev-
els appeared to be more influenced by the active photochem-
istry VOC emissions from the nearby broadleaf woods rather
than the anthropogenic sources. Regarding diurnal varia-
tions, POC exhibited comparable levels during nighttime on
both weekdays and weekends, while higher levels were ob-
served during daytime on working days. The much higher
POC/SOC ratios during daytime on weekdays (Fig. S7e) fur-
ther evidenced the increased impact of primary emissions on
POC. Additionally, the SOC levels showed increased con-
centrations during daytime on both weekdays and weekends,
similar to the daily patterns of O3 as shown in Fig. 3b, in-
dicating the influence of photochemical reactions. It should
be noted that SOC formation processes are complex and in-
fluenced by various factors, including ambient atmospheric
oxidant and precursor levels. Moreover, these reactions are
significantly influenced by meteorological parameters. Fur-
ther investigation into the relationships between SOC forma-
tion and the aforementioned factors (i.e., temperature, RH,
O3, and NOx) will be described in Sect. 3.3.

3.3 Characterization of SOC formation dependence on
meteorological conditions and Ox and NOx levels
under different pollution conditions

The data set was divided into five groups based on PM2.5
concentrations in individual seasons to investigate the SOC
formation under varying pollution conditions. Specifically, a
period of PM2.5 < 5 µgm−3 represents extremely clean con-
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Figure 2. (a) Time series of meteorological parameters (wind speed, wind direction, temperature, and RH), gaseous pollutants (O3 and NOx ),
PM2.5 (the dashed red line marks the WHO AQG IT-4 value), OC and EC, and POC and SOC (the y-axis error bars represent uncertainties
derived from BI method). (b) Seasonal variations (the circles and horizontal lines in the box denote the average and median, respectively; the
lower and upper boundaries of the boxes represent the 25th and 75th percentile values, respectively; and the upper and lower whiskers are
the 10th and 90th percentile values, respectively.) during the observation period (16 July 2020–31 December 2021) at the HKUST supersite.

ditions, an interval of 5µgm−3 < PM2.5 < 10µgm−3 repre-
sents clean conditions, an interval of 10µgm−3 < PM2.5 <

15 µgm−3 represents low-pollution conditions, an inter-
val of 15µgm−3 < PM2.5 < 25 µgm−3 represents medium-
pollution conditions, and an interval of 25µgm−3 < PM2.5
represents high-pollution conditions. The definition of PM2.5
transition value aligns with the annual AQG level and the In-

terim Target-2 to Interim Target-4 limits set by WHO. The
evolution of SOC with the increase in the meteorological
parameters (i.e., temperature and RH) during different sea-
sons within the same pollution conditions is shown in Fig. 4.
SOC concentrations were generally low in low-PM condi-
tions but increased significantly with the intensification of
pollution. The highest SOC levels were observed in periods

Atmos. Chem. Phys., 24, 5803–5821, 2024 https://doi.org/10.5194/acp-24-5803-2024



S. Wang et al.: Bayesian inference-based estimation of hourly primary and secondary organic carbon 5811

Figure 3. Diurnal variations in (a) PM2.5, (b) O3, (c) NOx , (d) OC, (e) EC, (f) POC, and (g) SOC over the entire measurement period.
The circles represent the hourly data averaged over weekdays (Monday–Saturday, red) and Sunday (black). The light orange shaded areas
represent nighttime periods.

with PM2.5 > 25µg m−3 during all seasons, indicating inten-
sive SOC formation contributing to PM2.5 air pollution.

As shown in Fig. 4a, the average concentrations of SOC
were lower than 1 µgCm−3 when T < 15 °C in all seasons
under different pollution conditions, and they increased no-
tably with the increasing temperature, reaching the highest
levels at T > 30 °C. The peak concentrations were almost
twice those at T < 10 °C. These results highlight the im-
portant role of temperature in boosting the ambient SOC
formation. Previous chamber experiments and field obser-
vations have found that increasing temperature could not
only promote the emissions of biogenic VOCs emissions
but also enhance the oxidation reactions (Ding et al., 2011;
Svendby et al., 2008). The positive trends were very clear,
especially in fall and winter during the pollution conditions
(PM> 10µgm−3), suggesting that the effects of temperature
would be more remarkable on SOC formation in cold sea-
sons. This is further confirmed by the correlation coefficients
being stronger in winter and fall (Rp = 0.42–0.57) than in
spring and summer (Rp = 0.10–0.35).

In contrast to temperature dependence, SOC was less sen-
sitive to RH in all seasons and did not exhibit clear trends

(Fig. 4b). Under the clean and low-PM-pollution conditions,
SOC showed a much flatter trend with the increase in RH.
Under medium-PM-pollution conditions, the highest SOC
levels were observed in low-RH groups (RH< 60%) and
did not change extensively in high-RH groups, while under
high-PM-pollution conditions, the responses of SOC to RH
groups varied across different seasons. In the summer period,
SOC levels showed less variation in 2020, while in 2021 the
highest SOC concentrations occurred in the low-RH groups
(50%< RH< 60%) and then decreased with the increase
in RH. The SOC behaviors in the two winter periods were
also different, with comparable concentrations across the RH
groups in 2020 but much higher SOC levels in the medium
RH group in 2021. The SOC behaviors in the spring and
fall seasons exhibited fewer variations with the RH groups.
The weak relationship between SOC and RH suggested that
aqueous-phase chemistry may not be the major formation
pathway of SOC in our site, which is different from observa-
tions in northern China (Guo et al., 2012; Wang et al., 2012)
but similar to a location with comparable site characteristics
in suburban Shanghai (M. Wang et al., 2022).
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Figure 4. Concentrations of SOC as a function of (a) temperature bins and (b) RH bins under different PM2.5 groups in individual seasons
during the entire measurement period (the circles and horizontal lines in the box denote the average and median, respectively; the lower and
upper boundaries of the boxes represent the 25th and 75th percentile values, respectively; and the upper and lower whiskers are the 10th and
90th percentile values, respectively).

The relationships between SOC and atmospheric oxidant
Ox levels under different pollution conditions in individ-
ual seasons are shown in Fig. 5a. Atmospheric oxidants Ox
(O3+NO2) can be utilized to indicate the ability of atmo-
spheric oxidation associated with photochemical reactions
(Kley et al., 1994; Notario et al., 2013). A previous offline
measurement study in Hong Kong reported positive correla-
tions between SOC and O3 and highlighted that SOC forma-
tion was sensitive to the oxidant levels (Hu et al., 2008). In
this study, SOC levels in spring and summer were less sensi-
tive to the Ox under low- and medium-PM-pollution condi-
tions (PM< 25ug m−3). However, under high-PM-pollution
conditions, the enhancement of SOC with the increase in Ox
was only found when Ox < 100 ppb; as Ox increased further,
SOC started to decline. In winter, SOC levels showed a clear
positive trend with increasing Ox , especially under medium-
and high-PM-pollution conditions. The daily highest Ox is
commonly seen from noon to the late afternoon when the
solar radiation is the strongest. The positive correlations of
SOC with Ox in winter highlighted that the photochemical
formation might remain highly efficient and play an impor-
tant role in contributing to high SOC levels and air pollution.

The associations of SOC with the NOx are shown in
Fig. 5b. Under the clean and medium-pollution conditions,
the trends between SOC and NOx were less clear across all
the seasons. However, the variations under polluted condi-
tions differed in individual seasons. The concentrations of
SOC increased substantially with NOx in the two summer
periods under polluted conditions, suggesting that NOx can
also be essential to the SOC formation in contributing to pho-

tochemical air pollution in summer periods (Roberts, 1990;
Fan et al., 2022). However, during the winter seasons, when
the air masses were dominated by the long-range air masses
originating from northern China, SOC levels were slightly
higher in low NOx groups than those in high NOx groups.
It is noted that the variations in SOC with NOx were dis-
tinct from those of SOC with O3 in summer and winter sea-
sons, especially under high-pollution conditions. These re-
sults suggest that the SOC formation pathways are different
and might be promoted by various oxidants under different
ambient environments.

3.4 Evolution characteristics of SOC during the
city-wide PM2.5 episodes

3.4.1 Classification of city-wide PM2.5 episodes

As mentioned above, high SOC levels were observed under
pollution conditions with PM2.5 higher than 25 µgm−3. We
further extract the pollution hours to examine the SOC fea-
tures in order to gain insights into its formation mechanisms.
We have identified a total of 65 pollution episodes based on
a screening method using city-wide air pollutant data from
15 general monitoring stations operated by the Hong Kong
Environment Protection Department (HKEPD) rather than a
single site. The site characteristics and the geographical lo-
cations of the monitoring stations are shown in Fig. S8. The
details of this method can be found in our previous publi-
cation (Q. Wang et al., 2022). In this work, PM2.5 episodes
were identified as periods of hourly concentrations exceeding
25 µgm−3 and lasting 6 consecutive hours or longer at more
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Figure 5. Concentrations of SOC as a function of (a) Ox bins and (b) NOx bins under different PM2.5 groups in individual seasons during
the entire measurement period (the circles and horizontal lines in the box denote the average and median, respectively; the lower and upper
boundaries of the boxes represent the 25th and 75th percentile values, respectively; and the whiskers are the 10th and 90th percentile values,
respectively).

than three monitoring stations. Figure S9 shows the average
concentrations of PM2.5 across the 15 stations and HKUST
during individual episodes and those during the non-episode
hours. The statistical summary of episode information, PM2.5
averages, meteorological conditions, and gas pollutants (O3
and NOx) during individual episodes are listed in Table S2.

As expected, pollution episodes occurred more often in
winter (i.e., 24 in 2020–2021 winter and 7 in 2021–2022
winter) than in summer and fall. This can be attributed to the
less wet deposition and elevated contributions from regional
transport, which could be further confirmed by the higher
wind speed. We also observed 14 episodes in 2021 spring,
possibly due to the dust storms from outside Hong Kong
(Ding et al., 2005; Wang et al., 2004). The city-wide PM2.5
max-to-min ratios of individual episodes are calculated to in-
vestigate the spatial variations (Table S2). A ratio close to 1
indicates the episodic pollution was spatially homogeneous
in Hong Kong; a higher value means higher spatial hetero-
geneity of the episodes across Hong Kong. Generally, the ra-
tios in summer and fall episodes were lower than 2, while
higher ratios were observed in winter and spring episodes,
indicating the spatial gradient was more notable under the
regional influences.

3.4.2 Variations in SOC during the episodes

The average concentrations of gaseous pollutants, PM2.5,
POC, and SOC are shown in Fig. 6a–e. In general, the con-
centrations in non-episode hours were higher in winter and
fall than those in spring and summer, suggesting the consis-

tent influences of regional transport. Higher concentrations
of O3 were observed in winter and fall episodes, with episode
averages of 29–78 ppb, except for EP11, EP20, and EP52. It
is noted that NOx levels in these three episodes were much
higher than the others. Summer episodes had significantly
higher levels, with average concentrations that were more
than 2 times those in the other seasons. The mass increment
ratio (MIR) is calculated as the mass concentration during
the episode divided by that during the non-episode hours in
the same season, which could be used as an indicator to eval-
uate the change in the concentration during the episode. The
MIR values of O3 and NOx were generally larger than 1 dur-
ing the summer and spring episodes (Fig. 6g) and close to 1
during winter. In contrast to the gaseous pollutants, the aver-
age concentrations of episodic PM2.5 showed fewer seasonal
variations, with slightly lower values in 2021 fall. The MIR
values were larger than 1 during the majority of episodes,
with the highest values in summer (∼ 2–5) and fall (∼ 1.5–
2.2) episodes.

The concentrations of carbonaceous components were
much higher during episodes than non-episode hours in the
same seasons. POC levels were higher in winter episodes,
while SOC showed enhancement across different seasons ex-
cept spring (Fig. 6d and e). MIR values > 1 were observed
for both POC and SOC during summer episodes, with no-
ticeably larger MIR values exceeding 2. Lower MIR val-
ues were found in winter seasons, possibly due to the high
background levels. The percentage contributions of POC and
SOC during individual episodes are shown in Fig. 6f. The
SOC mass fraction varied in individual seasons, ranging from
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Figure 6. Comparison of selected pollutant levels during episodic and non-episodic periods for individual episodes. The comparison param-
eters include concentrations of (a) O3, (b) NOx , (c) PM2.5, (d) POC, and (e) SOC; (f) POC and SOC percentage contributions; and mass
increment ratios of (g) O3 and NOx , (h) PM2.5, and (i) POC and SOC. In panels (a)–(e), the filled squares represent the average values
of concentrations during episodes, while the empty circles represent the average of all non-episode hours throughout the individual season;
the error bars represent 1 standard deviation of the results. In panels (g)–(i), the light yellow shaded zone marks the mass increment ratios
(calculated as mass concentration during the episode divided by that during the non-episode hours in the same season) values of less than 1.

10 % in EP43 to 66 % in EP09. Compared with the corre-
sponding values in non-episode hours, higher SOC percent-
ages were generally found in winter and summer episodes,
while they were similar in fall and spring episodes. It is worth
noting that the meteorological conditions and major atmo-
spheric oxidants are different in the two seasons, indicating
that the formation mechanism differs in the two seasons. Fur-
ther examination of SOC variations during summer and win-
ter episodes would enhance understanding of SOC formation
mechanisms, which will be described in the subsequent sec-
tions.

3.4.3 Summer tropical-cyclone-induced episodes

A total of eight episodes were observed during the summer
of 2021, with seven of them coinciding with the presence of
tropical cyclones. These cyclones included Typhoon Chai-
wan (EP45), Typhoon Infa (EP46 and EP47), Tropical Storm
Lupit (EP48), Typhoon Chanthu (EP49 and EP50), and Ty-
phoon Mindule (EP51). The tracks of individual tropical cy-
clones are shown in Fig. S10. It is noted that these tropi-
cal cyclones were located east of Hong Kong (near Taiwan).
Previous studies have indicated that when a tropical cyclone
is situated to the east of Hong Kong, the weather in the re-
gion is predominantly influenced by subsidence, resulting in
stable air conditions near the ground (Chow et al., 2018;

Huang et al., 2006). As shown in Fig. 7, the winds during
EP45 to EP51 were characterized by low speeds (< 2 ms−1)
and come from multiple directions. These stagnant condi-
tions could suppress the vertical dispersion, leading to the
accumulation of air pollutants. Episodic PM2.5 concentra-
tions show a less spatial gradient with an average max-to-
min ratio (∼ 1.6, Table S2). Slightly higher concentrations
were observed in new town and urban monitoring stations
than suburban sites (Fig. S9), consistent with impacts from
local urban sources. This suggests that the air pollution dur-
ing these episodes was likely attributable to local emissions
rather than regional transport.

Concurrent enhancements of gas pollutants and PM2.5
mass loadings were observed during the episodes (Fig. 7a).
PM2.5 concentrations notably increased with typhoon evo-
lution, reaching peak values of nearly 50 µgm−3 except for
EP48. The highest O3 levels were observed at noon under the
influence of Chaiwan and Chanthu2 (EP45 and EP50, respec-
tively). Extremely low NOx levels were observed in EP50,
with an average of 7.7 ppb. POC and SOC levels largely
increased during the episodes, with different responses in
individual episodes. Specifically, a sharp increase in POC
was observed in EP45, but SOC levels did not increase no-
ticeably. Similar results were observed in EP46, EP48, and
EP50, with the percentage contributions of SOC ranging
from 27 % to 37 %. In contrast, an opposite trend was found
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Figure 7. SOC variation characteristics during typhoon episodes in summer 2021. (a) Time series of meteorological parameters (wind
speed and direction), gaseous pollutants (O3 and NOx ), PM2.5 mass concentrations, and POC and SOC levels and their relative percentage
contributions, with the yellow shaded area marking individual episode periods of EP45–51. (b) Concentrations of SOC as a function of
temperature, RH, and Ox (O3+NO2) and NOx bins, with daytime and nighttime episode hours plotted separately (the squares and horizontal
lines in the box denote the average and median, respectively; the lower and upper boundaries of the boxes represent the 25th and 75th
percentile values, respectively; and the whiskers are the 10th and 90th percentile values, respectively). Significance levels (p) determined by
t test are as follows: ∗∗∗∗ p < 0.0001, ∗∗∗ 0.0001< p < 0.001, ∗∗ 0.001< p < 0.01, ∗ 0.01< p < 0.05.

in EP47, EP49, and EP51, where SOC exhibited rapid in-
creases, showing higher percentage contributions of 37 %–
50 %. It is worth noting that even under the influence of the
same typhoon (i.e., EP46 vs. EP47, EP49 vs. EP50), SOC
exhibited distinct variations. These could be associated with
the moving tracks of the typhoons and their relative locations
with respect to Hong Kong.

The relationships of SOC with meteorological parameters
and oxidants are investigated during the daytime and night-
time episodic hours. Clear diurnal patterns with higher day-
time concentrations were observed (Fig. 7b), which could
be associated with high emissions and strong atmospheric
oxidation capacity during the daytime. Positive correlations
were found between the logarithm of SOC and 1000/T in
both daytime and nighttime episodic hours, with comparable
coefficient values (Rp = 0.28–0.31, Fig. S11a). SOC levels
were comparable during the daytime episodic hours among
different RH bins, while during nighttime we observed the
increase in SOC with RH raised from 60 % to 90 %, which
might be associated with the aqueous-phase reactions.

The responses of SOC to the oxidants are distinctive in
the daytime and nighttime episodic hours. We observed the
gradual increase in SOC when Ox levels were< 150 ppb dur-
ing the daytime, but no clear trend was observed during the
nighttime; this could be explained by the negligible photoox-
idation reactions. Previous studies also observed better corre-
lations of SOC with Ox in urban Hong Kong during the day-
time (Zhou et al., 2014). SOC levels elevated more rapidly
with the increase in NOx than O3 in both daytime and night-
time episodic hours. The average levels of SOC were doubled
under conditions of NOx levels exceeding 20 ppb compared

to the lowest NOx group, indicating that NOx played a more
important role in SOC formation.

3.4.4 Winter haze episodes

In winter, PM2.5 episodes mainly occurred in December.
During the winter episodes, northerly winds prevailed, and
the wind speed generally exceeded 3 ms−1 (Fig. 8a). The
city-wide PM2.5 showed a clear spatial gradient with an aver-
age max-to-min ratio (1.6–4.2, Table S2). Higher levels were
observed at sites in the northwestern part of the city, followed
by the central sites and eastern and southern sites (Fig. S9).
This spatial pattern is consistent with the observation that
wintertime air pollution in Hong Kong is frequently asso-
ciated with regional transport coming from the north. No-
tably, the levels of PM2.5 were higher during the episodes in
2021 (EP10–13) than those in 2020 (EP62–65). This can be
attributed to the increased intensity of anthropogenic emis-
sions in 2021, as the pandemic restrictions in China were
somewhat relaxed compared to 2020.

Regarding POC and SOC, we observed enhancements
of POC by 1.5–2 times during episodes compared to non-
episode hours in the winter of 2020; however, SOC did not
exhibit obvious elevation during these episodes. In the win-
ter episodes of 2021, there was concurrent rapid increase in
POC and SOC throughout the progression of the episodes.
The highest SOC levels were observed in EP62, coinciding
with the highest O3 recorded during that episode (Fig. 8a).
The percentage contributions of SOC varied among individ-
ual episodes, ranging from 29 % to 41 % in 2020 episodes
and 32 % to 38 % in 2021 episodes.
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Figure 8. SOC variation characteristics during haze episodes in winter 2020 and 2021. (a) Time series of meteorological parameters (wind
speed and direction), gaseous pollutants (O3 and NOx ), PM2.5 mass concentrations, and POC and SOC levels and their relative percentage
contributions, with the yellow shaded area marking individual episodes (EP10–13 and EP62–65). (b) Concentrations of SOC as a function
of temperature, RH, Ox (O3+NO2), and NOx bins, with daytime and nighttime episode hours plotted separately (the squares and horizontal
lines in the box denote the average and median, respectively; the lower and upper boundaries of the boxes represent the 25th and 75th
percentile values, respectively; and the whiskers are the 10th and 90th percentile values, respectively). Significance levels (p) determined by
t test are as follows: ∗∗∗∗ p < 0.0001, ∗∗∗ 0.0001< p < 0.001, ∗∗ 0.001< p < 0.01, ∗ 0.01< p < 0.05.

Unlike the summer episodes, the winter episodes exhib-
ited weak diurnal differences, in line with the regional source
origin of the pollution, which persisted day and night. Pos-
itive correlations of SOC with temperature were only ob-
served during daytime hours, while the correlations were
insignificant at night. Similar to summer typhoon episodes,
the SOC levels during the nighttime in winter initially in-
creased with RH for the three lowest RH bins from < 50 %
to 70 %, then decreased as RH further increased. It is noted
that the correlation of SOC with Ox at nighttime was par-
ticularly significant during winter episodic hours when the
prevailing northerly winds were dominant. The average noc-
turnal O3 and Ox levels at the sampling site reached around
40 ppb during the nighttime hours. Similar nocturnal O3 en-
hancements events have been widely observed in recent years
in multiple locations in China (He et al., 2022; An et al.,
2024), including Hong Kong (Feng et al., 2023). The en-
hanced levels of nocturnal O3 at the sampling site can in-
crease the ambient oxidation capacity by facilitating the for-
mation of nitrate radical (Brown and Stutz, 2012), thereby
promoting the generation of secondary pollutants. The corre-
lations of SOC with NOx during the nighttime (Rp = 0.24)
were slightly higher than daytime hours (Rp = 0.12), high-
lighting a notable role of nighttime NOx chemistry in SOC
formation. Previous studies have suggested that nighttime
secondary formation is dependent on the NO3 radical (Nah
et al., 2016; Zhang et al., 2015). Feng et al. (2022) measured
the nocturnal NO3 radical in Beijing and found that nighttime
SOC formation was sensitive to the NO3 radical, providing
more direct evidence for the role of NOx through enhanc-
ing NO3 radical during nighttime SOC formation. If we use

[NO2][O3] as a rough indicator for the production of NO3
radical (Wang et al., 2018), the observed moderate correla-
tion between nighttime SOC with [NO2][O3] (Rp = 0.36) in
this study implies that SOA formation pathways involving
NO3 radials were also active at our site. Previous studies have
also pointed out that SOA formation in cloud and aerosol
water played a more important role in determining the total
SOA amount, especially in regions of high RH conditions
(Ervens et al., 2011; Lim et al., 2010). As AWC and acidity
are the major factors for aqueous-phase reactions (Jang et al.,
2002, 2004), we investigated the relationship between SOC
and AWC, as well as aerosol acidity. Table S3 tabulates the
average AWC and [H+] levels during episodic hours, calcu-
lated separately for daytime and nighttime, showing higher
AWC and acidity during the nighttime episodic hours. Fig-
ure S12a shows moderate correlations of SOC with AWC
and acidity during nighttime (Rp = 0.30 and 0.35, respec-
tively). The correlations during daytime were less significant
(Rp = 0.10 and 0.11, respectively), indicating that aqueous-
phase reactions were negligible during the day. These results,
along with our analysis, indicate that both NO3 chemistry
and acid-catalyzed aqueous-phase reactions may represent
notable formation pathways for nighttime SOC during winter
haze episodes.

4 Conclusions

Organic carbonaceous aerosols play a significant role in for-
mulating policies to control PM2.5 pollution given their in-
creasing relative contribution to PM2.5 in the ambient en-
vironment. Availability of POC and SOC from observation-
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based measurements is crucial for refining atmospheric mod-
els and developing more effective measures to tackle car-
bonaceous aerosol pollution and its associated impacts on
climate change and public health. In this study, online obser-
vations of major components of PM2.5 were conducted from
16 July 2020 to 31 December 2021 at a regional suburban
site in Hong Kong. POC and SOC were differentiated using
a novel Bayesian inference approach, which yielded results
that agree well with those derived from the elemental- and
organic-tracer-based PMF method. The model utilizing sul-
fate as a SOC tracer exhibited the lowest error and Bayesian
information criterion (BIC) values, making it a more suitable
choice compared to other secondary inorganic ions, such as
NH4

+ and NO3
−. We study the characteristics of aerosol car-

bonaceous components, including seasonal cycles and diur-
nal and weekday–weekend patterns, and the influencing fac-
tors (i.e., meteorological parameters and oxidant levels) con-
tributing to SOC formation under varied PM pollution con-
ditions. Positive correlation between SOC level and ambient
temperature was observed across different seasons. Substan-
tially high SOC levels were associated with increased Ox
concentration, especially in winter, highlighting the impor-
tant role of photochemical reactions even under weak radia-
tion conditions. NOx was found to be significant in contribut-
ing to extensive SOC formation under pollution conditions in
summer.

A total of 65 city-wide PM2.5 episodes were identified
over the entire study period, and the characteristics of POC
and SOC varied substantially among the episodes. An in-
depth analysis of summer typhoon episodes and winter haze
episodes demonstrated the importance of meteorology and
oxidant levels in relation to the variations in SOC and for-
mation processes. During summer typhoon episodes, the in-
creased carbonaceous components were largely influenced
by local emissions resulting from impacts of the typhoons.
Higher SOC levels were observed during the daytime, likely
due to enhanced oxidation reactions under high temperatures
and stronger solar radiation. In winter haze episodes, the di-
urnal difference was less obvious as the site was influenced
by the continuous regional transport of air pollutants from
northern China. Notably, the nighttime aqueous-phase reac-
tions involving the NO3 radical were found to play an impor-
tant role in SOC formation during the episodic hours.

Overall, our findings demonstrate the diverse facilitating
factors contributing to aerosol pollution episodes and high-
light the combined influences of meteorology and atmo-
spheric oxidants on SOC formation. These results will be
valuable for modeling studies aiming to improve accuracy
in evaluating SOC contributions and variations at both city
and regional scales. They will also aid the development of
target-oriented strategies for air quality improvement.
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