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Abstract. The Tropospheric Monitoring Instrument (TROPOMI) on board the Sentinel-5 Precursor (S5P) satel-
lite is part of the latest generation of trace gas monitoring satellites and provides a new level of spatio-temporal
information with daily global coverage, which enables the calculation of daily globally averaged CH4 concen-
trations. To investigate changes in atmospheric methane, the background CH4 level (i.e. the CH4 concentration
without seasonal and short-term variations) has to be determined. CH4 growth rates vary in a complex man-
ner and high-latitude zonal averages may have gaps in the time series, and thus simple fitting methods do not
produce reliable results. In this paper we present an approach based on fitting an ensemble of dynamic linear
models (DLMs) to TROPOMI data, from which the best model is chosen with the help of cross-validation to
prevent overfitting. This method is computationally fast and is not dependent on additional inputs, allowing for
fast and continuous analysis of the most recent time series data. We present results of global annual methane
increases (AMIs) for the first 4.5 years of S5P/TROPOMI data, which show good agreement with AMIs from
other sources. Additionally, we investigated what information can be derived from zonal bands. Due to the fast
meridional mixing within hemispheres, we use zonal growth rates instead of AMIs, since they provide a higher
temporal resolution. Clear differences can be observed between Northern Hemisphere and Southern Hemisphere
growth rates, especially during 2019 and 2022. The growth rates show similar patterns within the hemispheres
and show no short-term variations during the years, indicating that air masses within a hemisphere are well-
mixed during a year. Additionally, the growth rates derived from S5P/TROPOMI data are largely consistent with
growth rates derived from Copernicus Atmospheric Monitoring Service (CAMS) global-inversion-optimized
(CAMS/INV) data, which use surface observations. In 2019 a reduction in growth rates can be observed for
the Southern Hemisphere, while growth rates in the Northern Hemisphere stay stable or increase. During 2020
a strong increase in Southern Hemisphere growth rates can be observed, which is in accordance with recently
reported increases in Southern Hemisphere wetland emissions. In 2022 the reduction in the global AMI can
be attributed to decreased growth rates in the Northern Hemisphere, while growth rates in the Southern Hemi-
sphere remain high. Investigations of fluxes from CAMS/INV data support these observations and suggest that
the Northern Hemisphere decrease is mainly due to the decrease in anthropogenic fluxes, while in the Southern
Hemisphere, wetland fluxes continued to rise. While the continued increase in Southern Hemisphere wetland
fluxes agrees with existing studies about the causes of observed methane trends, the difference between North-
ern Hemisphere and Southern Hemisphere methane increases in 2022 has not been discussed before and calls
for further research.
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1 Introduction

Methane (CH4) is one of the most important drivers
of climate change with an effective radiative forcing of
1.19 Wm−2 (Arias et al., 2021) and an atmospheric lifetime
of 9.1 years (Szopa et al., 2021). The short lifespan of CH4
compared to other greenhouse gases and the large fraction of
anthropogenic emissions make CH4 emission reduction an
attractive strategy to slow down or possibly reduce human-
made climate change in the short to medium term. Accu-
rate knowledge of the atmospheric CH4 concentrations and
dry column mixing ratios is therefore essential for improv-
ing our knowledge of the sources and sinks of CH4 for sci-
ence and international environmental policy. The globally
averaged surface concentration of CH4 increased by 156 %
between 1750 and 2019, reaching 1866± 3.3 ppb in 2019
(Gulev et al., 2021) and 1917.11 ppb in June 2023 (Lan et al.,
2023).

While the concentrations have risen in total, the trend, i.e.
the rate of change in the background level without seasonal
or short-term variations, has evolved non-linearly. Global
methane concentrations have been observed to increase in
the period from the 1980s to 2000 and from 2007 to the
present. However, a plateau between 2000 and 2007 was ob-
served. This is referred to as “stabilization”. Whether to de-
fine the stabilization period or the period of renewed growth
(2007–present) as anomalous has been a subject of debate.
There have been a variety of explanations for the observed
behaviour in the literature (Turner et al., 2019). Recent pub-
lications suggest that the period of renewed growth can be
attributed to the rise in microbial emissions (Lan et al., 2021;
Basu et al., 2022) and the fact that tropical methane emis-
sions explain the majority of recent changes in the atmo-
spheric methane growth rate (Feng et al., 2022). In 2020 and
2021, record methane increases were observed by the Global
Monitoring Laboratory of the National Oceanic and Atmo-
spheric Administration (NOAA-GML) (Lan et al., 2023) and
the Copernicus Climate Change Service (C3S) (c3s, 2023c).
The reasons for these increases are still debated, with stud-
ies attributing them to increases in wetland emissions and
changes in the atmospheric methane sink to varying degrees.
The main sink of methane is through reaction with the hy-
droxyl radical (OH) in the troposphere. The rate of this re-
action depends on the concentration of OH, which is de-
termined by its photochemical sources and sinks. Recent
studies suggest that the steep decline of nitrogen dioxide
(NO2) (Cooper et al., 2022), carbon monoxide (CO), and
non-methane volatile organic compound emissions as a result
of the measures introduced to control and limit the spread of
the COVID-19 pandemic lowered the levels of OH and thus
led to part of the increase in CH4 concentrations in 2020 and
2021 (Stevenson et al., 2022; Laughner et al., 2021; Peng
et al., 2022; Qu et al., 2022; Feng et al., 2023). Additionally,
enhanced wetland emissions, especially from tropical wet-
lands, contributed to the record increases in atmospheric CH4

in 2020 and 2021 (Peng et al., 2022; Feng et al., 2023, 2022;
Qu et al., 2022).

The Arctic contains large amounts of soil organic car-
bon (SOC), which is stored in the permafrost regions (ca.
1300 Pg), of which roughly 800 Pg is perennially frozen
(Hugelius et al., 2014). The comparatively high temperature
increase in the Arctic, compared to the rest of the world and
also called “Arctic amplification” (Serreze and Barry, 2011;
Wendisch et al., 2017), may lead to increased permafrost
degradation and rapid SOC loss (Plaza et al., 2019) by the
release of carbon dioxide (CO2) and/or methane. Latitudi-
nally resolved growth rates are especially interesting in this
regard and provided the initial motivation for this study.

In this paper we present methane growth rates and an-
nual methane increases (AMIs) derived from Sentinel-5P
TROPOMI XCH4 data using a dynamic linear model (DLM)
approach. In the second section we present the data used.
Next, we describe our method for calculating these growth
rates, which is divided into four parts: (i) we discuss the
preparation of the data; (ii) we provide a brief introduction
to DLMs; (iii) we discuss our ensemble approach, which
utilizes cross-validation to find the optimal DLM configu-
ration for a given time series; and (iv) we provide a method
to calculate a bias related to the satellite sampling. In the
fourth section we present global AMIs for the first 4.5 years
of Sentinel-5 Precursor (S5P) TROPOMI data and compare
these to AMIs from other sources. In the fifth section we
investigate zonal growth rates derived from 20◦ latitudinal
bands to provide spatial information to the global AMIs.
Additionally, we compare the growth rates to growth rates
derived from Copernicus Atmospheric Monitoring Service
(CAMS) global inversion-optimized methane data (CAM-
S/INV) which assimilate either surface observations or sur-
face and satellite data. In the sixth section we investigate
CAMS/INV fluxes to help with the interpretation of our pre-
vious results. Finally, we summarize our results and discuss
potential future uses of this method and suggestions for fur-
ther research. In the Appendix we provide additional infor-
mation about our method and further results which are not
included in the main text.

2 Data

2.1 Sentinel-5P TROPOMI WFMD product

The S5P satellite was launched on 13 October 2017 and
has since delivered high-quality data from its only scien-
tific instrument, TROPOMI, which is a nadir-viewing pas-
sive grating imaging spectrometer. Combined with a near-
polar, sun-synchronous orbit, the swath width of 2600 km
provides daily global coverage. Due to the orbit geometry
and swath overlap, multiple observations per day are pos-
sible in the polar regions. The spatial resolution depends
on the bands and is 5.5× 7 km2 for the short-wave infrared
(SWIR) band (7× 7 km2 before August 2019) (Ludewig,
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2021). Methane is retrieved from TROPOMI measurements
of sunlight reflected by the Earth’s surface and atmosphere
in the SWIR wavelengths. We use the latest release of the
Weighting Function Modified Differential Optical Absorp-
tion Spectroscopy (WFMD) product (v1.8) (Schneising et al.,
2023), which includes processing improvements such as an
increased polynomial degree (cubic instead of quadratic) and
an updated digital elevation model to account for various lo-
calized topography-related biases (Hachmeister et al., 2022).
Furthermore, the machine-learning-based quality filter in the
post-processing is improved to further reduce scenes with
residual clouds. We use data with a quality flag qf= 0 (good)
and do not include data with qf= 1 (potentially bad). The
WFMD product includes measurements for solar zenith an-
gles up to 75◦. We performed this analysis using data from
May 2018 to February 2023, excluding data from the com-
missioning phase (November 2017 to April 2018). Uncer-
tainties for these data are estimated during the inversion pro-
cedure via error propagation from the spectral measurement
errors given in the TROPOMI Level-1 files. Additionally, the
uncertainties include a correction by statistically comparing
the original uncertainties to the measured scatter relative to
Total Carbon Column Observing Network (TCCON) mea-
surements.

2.2 CAMS global inversion-optimized greenhouse gas
fluxes and concentrations (CAMS/INV)

The CAMS/INV dataset provides data for carbon dioxide,
nitrous oxide, and methane. The methane data are produced
using the CAMS CH4 flux inversion system (Segers et al.,
2022), which is based on the TM5-4DVar inverse mod-
elling system (Bergamaschi et al., 2010, 2013). We use re-
lease v22r1, where only ground-based observations from the
NOAA network are used in the inversion (CAMS/INV-SRF),
and release v21r1s, which includes satellite observations
from the Greenhouse Gases Observing Satellite (GOSAT)
in addition to ground-based observations (CAMS/INV-SRF-
SAT). In our analysis we use the total column dry-air mole
fractions and surface fluxes of methane from this dataset. The
data are provided on a 2◦× 3◦ grid from 1990 to 2022. We
only apply our DLM approach to the methane concentrations
from these data and use the corresponding fluxes directly to
help with interpretation.

2.3 NOAA CH4 marine boundary layer reference

The marine boundary layer reference (MBLR) is a two-
dimensional matrix (time vs. latitude) created from weekly
air samples from the Cooperative Air Sampling Network
(Dlugokencky et al., 2021), which is created for various long-
lived trace gases by NOAA–GML. The MBLR is created by
first fitting the weekly data whereby the CH4 level, seasonal
component, and short-term variations are separated. For each
time step (48 evenly distributed per year) the different sta-

tions give a latitudinal distribution of CH4 which is then
smoothed. The global mean is calculated by averaging the
smoothed latitudinal distribution for each time step. A de-
tailed explanation can be found on the NOAA website (noa,
2023).

2.4 University of Bremen C3S/CAMS satellite data
(UB–C3S–CAMS)

Annual methane increases are published by the Copernicus
Climate Change Service (C3S, c3s, 2023a) in the context
of the European State of the Climate (ESOTC) assessment.
Here we use data from the ESOTC 2022 (c3s, 2023d) cli-
mate indicator section (c3s, 2023c). The methane data as
shown on that website are (i) time series of monthly values of
the column-averaged mole fraction of atmospheric methane,
XCH4, as derived from satellite data; and (ii) annual mean
methane growth rates including uncertainty estimates as de-
rived from this time series.

The XCH4 time series corresponds to averaged satel-
lite data over land in the latitude band 60◦ S–60◦ N and
covers the period January 2003 to December 2022. The
underlying satellite XCH4 data product for 2002–2021 is
XCH4_OBS4MIPS version 4.4 available from the Coper-
nicus Climate Data Store (CDS,c3s, 2023b) website (c3s,
2018). The data product is derived from the satellite instru-
ments SCIAMACHY/ENVISAT, TANSO-FTS/GOSAT, and
TANSO-FTS-2/GOSAT-2. A previous version of this data
product is described in Reuter et al. (2020). This dataset is ex-
tended using a year 2022 satellite-derived XCH4 data prod-
uct generated for CAMS (cam, 2023) (see c3s, 2023c, for
details).

The combined C3S/CAMS XCH4 time series has been
generated by the University of Bremen (UB) and is in the
following referred to as the UB–C3S–CAMS dataset. This
dataset is also used to derive annual mean methane growth
rates for 2003–2022 using the method as described in Buch-
witz et al. (2017) for XCO2, which was later also applied to
XCH4 (Reuter et al., 2020). This method provides a new time
series from the monthly XCH4 time series described above.
The new time series is generated by computing the difference
in XCH4 for a given calendar month between 2 consecutive
years (e.g. January 2019 and 2020). The time assigned to this
difference is the mean time between the 2 months (e.g. mid-
July 2019). The annual mean growth rate for a given year is
the weighted average of all monthly difference values of that
year.

3 Method

The Method section is split into four parts. First, we describe
how the data are prepared for the DLM, meaning how we
get from single observations to a time series we can fit our
model to. Next, we briefly introduce DLMs and provide in-
formation on the specific types of models we are using. In
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Figure 1. (a) Temporal inhomogeneity (HT) for global XCH4
WFMDv1.8 data between May 2018 and February 2023. Grid cells
withHT> 0.5 are omitted during analysis. (b) Spatial inhomogene-
ity (HS) for global XCH4 WFMDv1.8 data. Days above the HS
threshold (black line) are omitted from analysis, and the threshold
is set by Eq. (5), which was empirically chosen.

the third subsection we explain how we use an ensemble of
DLMs and cross-validation to select the best model. Lastly,
we describe how we estimate the bias related to imperfect
satellite sampling.

3.1 Data preparation

The XCH4 data to be used in the DLM fitting are pre-
processed onto a latitude–longitude grid with sufficiently ho-
mogeneous sampling in space and time. Initially, the WFMD
XCH4 data product is gridded onto a 2◦× 2◦ grid. For this
we assign each measurement to a single grid cell and calcu-
late the weighted average of all measurements per cell. The
measurements are weighted using the inverse measurement
uncertainty to disadvantage measurements with high uncer-
tainty. For example, reported uncertainties are higher for low-
albedo scenes. Thus, these scenes contribute less to the av-
erage. The coverage of the WFMD data is roughly 25 % in
all regions and is mostly constant, except for a few days
with lower coverage and the seasonal data gaps at high lati-
tudes (see Fig. D1). To account for inhomogeneities in spa-
tial and temporal sampling, we apply the method described
by Sofieva et al. (2014). This method quantifies the sam-
pling distribution’s inhomogeneity using a measure denoted
as 0≤H ≤ 1, which is defined as a linear combination of the
asymmetry A and entropy E of the data.

H =
1
2

(A+ (1−E)) (1)

A= 2
|x− x0|

1x
(2)

E =
−1

loge(N )

∑
i

n(i)
n0

loge

(
n(i)
n0

)
(3)

In Eq. (2), the mean location of measurements is given by
x (e.g. mean spatial position or mean time), x0 is the central
point, and 1x is the width of the region. Equation (3) repre-
sents the normalized entropy with N as the number of bins

(e.g. grid cells or time steps), n(i) the number of observations
in bin i, and n0 the sample size.
A can be intuitively understood as the asymmetry of the

sampling distribution. For example, A would be high if only
measurements in the Eastern Hemisphere are present for a
given day. In contrast, A would be zero if the measure-
ments are symmetrically distributed around the central point.
The normalized entropy is E = 1 for perfectly homogeneous
sampling patterns and decreases for each missing measure-
ment. The entropy does however not capture the distribution
of the sampling pattern. Hence, a combination of both mea-
sures is used to quantify the homogeneity of the sampling
distribution. Values of H close to zero indicate a homoge-
neous sampling distribution, while values close to one indi-
cate a very inhomogeneous distribution. Inaccurate estimates
and spurious features can arise without accounting for this in-
homogeneous sampling (Sofieva et al., 2014). The inhomo-
geneity can be calculated in the temporal domain (for each
grid cell) and in the spatial domain (for each time step).

We first calculate the temporal inhomogeneity (HT) for
each grid cell, which quantifies how evenly and symmetri-
cally the data for each grid cell are distributed in the temporal
domain.HT tends to be higher in cells with sparse data cover-
age, which are often found over the oceans and tropical rain-
forests due to high cloud coverage (see Fig. 1). We then filter
cells withHT > 0.5. This threshold value was chosen empiri-
cally to exclude cells in these regions with limited cloud-free
coverage. Next, we calculate the spatial inhomogeneity (HS)
within the designated sub-grid, such as a zonal band. This al-
lows us to identify days with very inhomogeneous coverage.
The spatial inhomogeneity can be calculated along both spa-
tial dimensions. Hence, we defineHS as the equally weighted
linear combination of the latitudinal and longitudinal spatial
inhomogeneity:

HS = 0.5 ·H lat
S + 0.5 ·H lon

S . (4)

We determine a limit, H lim
S , as the median of HS plus 2

standard deviations,

H lim
S = H̃S+ 2σHS , (5)

and filter out days with HS >H
lim
S . The equation for H lim

S
was empirically chosen and yields reliable limits for differ-
ent sub-grids. Figure 1 illustrates the spatial and temporal
inhomogeneity for global WFMDv1.8 data.

Finally, we compute the area-weighted average of the cho-
sen sub-grid, generating a time series for the analysis. To fur-
ther mitigate sampling bias in the global average, we first av-
erage over longitudes and subsequently over latitudes. This
approach assumes a faster mixing of background methane
levels within zonal bands while acknowledging greater lat-
itudinal disparities. A more detailed description is given in
Sect. 3.4. CAMS/INV XCH4 data are already provided on
a grid with complete coverage, and no inhomogeneity treat-
ment is necessary. The time series are therefore calculated
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using the area-weighted average of the sub-grid. Since the
DLM approach is based on the assumption that errors are
present and normally distributed, we add a Gaussian noise
with σ = 0.2 ppb to the CAMS/INV XCH4 time series.

3.2 Dynamic linear model fit

To extract information about the methane growth rate from
the time series we first need to calculate the underlying
XCH4 level, that is the smoothly changing background con-
centration without seasonal or short-term variation. While a
simple approach, such as fitting a polynomial plus a trigono-
metric function to model the seasonality, may be considered,
it is insufficient due to the complex change in XCH4 levels
observed in historical records (Lan et al., 2023; c3s, 2023c).
The use of a moving average is not suitable due to possible
data gaps, especially for high-latitude bands. Therefore, we
employ dynamic linear models to fit the XCH4 data, which
allow for the trend (i.e. the slope of the level, the growth
rate) to change over time and can deal with missing data. For
the analysis of global methane growth we use AMIs, simi-
lar to other relevant studies (Dlugokencky, 2022; c3s, 2023c;
Schneising et al., 2023). This enables the methane growth of
different studies to be readily compared. AMIs are defined
as the difference in methane level between 1 January of 2
consecutive years. This is a measure of the integrated growth
rate over the same time span. For zonal bands we directly in-
vestigate the growth rate instead of AMIs (see Sect. 5 for a
more detailed description).

A dynamic linear model is a regression model that can
handle observations of varying accuracy, missing data, non-
uniform sampling, and non-stationary processes. It allows
some of its parameters to change over time and directly mod-
els the observed variability using unobserved state variables
(Laine, 2020). These DLM properties allow the analysis of
not only global but also zonal methane data, which can have
higher uncertainties and more gaps, especially at higher lati-
tudes. Additionally, the direct modelling of the data allows
partitioning of the signal into different components, such
as an underlying level and seasonal component, which can
prove advantageous beyond the scope of this paper.

A DLM can be formulated as a special case of a state-
space model, i.e. a model which consists of some unobserved
components (represented by a state vector) and the observa-
tion vector. The evolution of the state vector and the rela-
tion between observation and state vectors are modelled by a
set of equations. If these equations are linear, we have a so-
called dynamic linear model. The DLM we use consists of
three main components: first, a slowly changing background
level, which captures the long-term trend of the methane con-
centration; second, a seasonal component included to model
variations arising from seasonal cycles. This component en-
ables variations in the phase and amplitude of the seasonal
cycle to be accounted for. Third, an autoregressive compo-
nent is incorporated to model noise and residual correlations

Figure 2. DLM fit for daily area-weighted global WFMDv1.8 data.
Panel (a) shows the daily area-weighted global XCH4 together with
the level and level + seasonal components from the DLM fit. (b) The
trend or growth rate is the slope of the level, the dashed lines show
the 1σ uncertainty, panel (c) shows the seasonal component which
captures the seasonal cycle, panel (d) shows the AR(1) component
capturing residual correlations in the data, (e) the residual shows
the difference between the fit and the data, and (f) a histogram of
the residual shows that it is roughly normally distributed.

in the data, accounting for short-term effects. Additionally,
Gaussian noise can be included to model part of the errors.
The ability of DLMs to capture changing components over
time is achieved by modelling these changes as Gaussian ran-
dom walks, allowing for smooth transitions and adjustments.
The variances of these Gaussian random walks determine the
overall variability of a certain parameter (e.g. trend). A de-
tailed description of the model set-up and the different DLM
components can be found in Appendix A.

In general, the model parameters (e.g. variances; see Ta-
ble A1 for a complete list) are not known beforehand and
have to be determined. For this purpose, maximum likeli-
hood estimation (MLE) (Durbin and Koopman, 2012; Har-
vey, 1990) can be used. MLE is a statistical method that es-
timates the parameters of a model by maximizing the like-
lihood of the observed data given the model’s assumptions.
Note that the data uncertainties are not used in the MLE but
are indirectly included during the data preparation (gridding)
as described above. For the end-user, various software pack-
ages exist which provide the implementation of this proce-
dure, leaving only the model configuration open for the user.
In our study we use the UnobservedComponents class of the
statsmodel Python package (version 0.14.0, Perktold et al.,
2023), which provides the means to define a DLM and to fit it
using MLE (see sta (2023) for documentation). An overview
of a DLM fit for globally averaged WFMD data can be seen
in Fig. 2.

DLMs have been previously used to successfully model
stratospheric ozone (Laine et al., 2014), methane from dif-
ferent GOSAT retrievals to investigate the seasonal cycle and
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trend (Kivimäki et al., 2019), and methane from ground-
based remote sensing (Karppinen et al., 2020). For a detailed
description of DLMs, including their formulation as a spe-
cial case of a state-space model, we refer readers to Durbin
and Koopman (2012) and Harvey (1990). For a more concise
introduction to DLMs, we refer readers to Laine (2020).

3.3 Ensemble approach and cross-validation

The choice of model configuration is a non-trivial problem,
which is impacted by prior knowledge, empirical testing, and
different quality measures. From prior knowledge the inclu-
sion of a seasonal component is inferred, because the exis-
tence of a seasonality in atmospheric methane concentrations
is known. Empirical testing can show that the inclusion of an
autoregressive component is necessary, because the data con-
tain residual short-term variations. The term “quality mea-
sures” refers to measures that facilitate model selection, such
as the mean squared error (MSE), which is defined as the
mean of squared differences between the model and data.
Additionally, the DLM provides variances (squared standard
deviations) for each component which can be used to com-
pare models; models with lower uncertainty in the level and
seasonality are preferable to models with high uncertainties
for these terms.

To avoid the need for manual model selection, we employ
an ensemble approach, fitting a range of DLMs to the data
and automatically selecting the best model. The ensemble
consists of different DLM configurations, with varying com-
ponents as described in Appendix A. Additionally, we per-
form k-fold cross-validation (CV) with k = 5 folds for each
DLM to calculate an average mean squared error (AMSE).
During CV, the DLM is fitted on a portion of the data while
leaving out another portion (the fold) for testing. The dif-
ference between the model fit and the fold is used to calcu-
late the MSE, and the average MSE across all five folds per
DLM provides the AMSE. Low AMSE values indicate a bet-
ter model fit and help in selecting the best model for a given
time series. The final model selection is based on an aggre-
gated score, defined as the sum of the AMSE, the variance of
the level, and the variance of the seasonal term:

Sagg = AMSE+ σ 2
level+ σ

2
seas. (6)

The inclusion of the variances ensures that the uncertainty
of the level and seasonal components is considered in the
selection criterion. This approach aims to select DLMs that
provide good estimates of the underlying methane signal
while avoiding overfitting and reliance on expert knowledge.

Different methods and measures can be used for model
selection and may yield different results. We want to empha-
size that the problem of model selection is non-trivial, and
different approaches may be suitable for different data and
use cases. Here we select the model which yields the high-
est certainty fit of the level and seasonal component (i.e. the
XCH4 signal without noise) while avoiding overfitting and

manual selection. Furthermore, we want to mention that, in
most cases, the differences between all the models in an en-
semble are rather small, with the best models producing ap-
proximately the same results. However, the use of a single
DLM configuration for all zonal bands is not feasible due to
the inherent differences in the seasonal signal for each zonal
band. Additionally, an over-specified model can lead to high
uncertainties in the resulting fit.

To quantify the impact of model selection, we calculate a
model selection bias σ 2

model, which is included in the error
budget of all the AMIs and growth rates. For global data we
calculate the AMIs for all the models in an ensemble and
determine the weighted variance for each year of interest:

σ 2
Model/AMI,j =

∑
i(AMIavg,j −AMIi,j )2σ̃−2

i,j∑
i σ̃i,j

−2 ;

σ̃ 2
i,j = σ

2
avg,j + σ

2
i,j , (7)

where AMIi,j is the AMI for year j and model i, AMIavg,j
the average AMI of all models in year j , and σavg,j and σi,j
the corresponding uncertainties as given by the DLM. For the
case of growth rates we calculate a single model uncertainty
which is averaged over all time steps:

σ 2
Model/trend =

1
T

∑
t

[∑
i(νavg,t − νi,t )2σ̃i,t

−2∑
i σ̃i,t

−2

]
;

σ̃i,t
2
= σavg,t

2
+ σi,t

2, (8)

where T is the total number of time steps, νi,t the growth rate
for model i at time step t , νavg,t the average growth rate of
all models at time step t , σavg,t the uncertainty of the average
growth rate at time step t , and σi,t the uncertainty of model i
at time step t as given by the DLM.

The contribution of the model selection bias to the error
budget can be seen in Table 1 for global AMIs and in Ta-
ble 2 for zonal growth rates. In the case of global data, the
contribution is small for all years with σModel< 1 ppb except
for 2018, when only an incomplete time series is available.
For zonal data, σModel varies between the bands and is in the
range of 1.03–4.34 ppbyr−1.

3.4 Estimation of sampling bias

The spatio-temporal coverage of S5P XCH4 data is limited
mostly by cloud coverage, the polar nights, and poorly reflec-
tive surfaces, while additional gaps may exist due to technical
problems with the satellite platform. Additionally, the sam-
pling distribution is not completely random but is influenced
by the total land mass per latitudinal band and seasonal cloud
coverage over the tropical and subtropical oceans. The daily
gridded data for S5P XCH4 are therefore always incomplete,
meaning we have some grid cells without any measurements.
Here we investigate the systematic sampling bias due to po-
lar nights, the total effect due to sampling, and the effect of
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Table 1. Error budget for global AMIs. σDLM is the uncertainty
provided by the DLM fit, σModel is the uncertainty from model se-
lection, and σSampling is the bias due to satellite sampling. All val-
ues show 1σ uncertainties.

Year 2018a 2019 2020 2021 2022

σDLM 1.70 0.40 0.39 0.39 0.49
σModel 3.22 0.71 0.32 0.48 0.35
σSampling 2.96 0.25 0.19 0.26 0.25
σSampling(SZA) 0.06 0.37 0.05 0.22 0.73
σTotal 4.70 0.85 0.53 0.67 0.65

All values are in parts per billion. a 2018 only includes data starting on 1 May
2018.

Table 2. Sampling and model error for zonal growth rates. σDLM
is not included in this table since it varies with time but is shown in
Fig. 8. All values show 1σ uncertainties.

Band σModel σSampling σSampling(SZA)

70–90◦ N 1.44 2.70 0.14
50–70◦ N 1.92 1.30 0.61
30–50◦ N 1.87 1.46 0.00
10–30◦ N 3.63 1.52 0.00
−10–10◦ N 3.34 2.65 0.00
10–30◦ S 1.73 1.87 0.00
30–50◦ S 1.03 3.98 0.00
50–70◦ S 2.95 1.46 1.85
70–90◦ S 4.34 1.94 0.67

All values are given in parts per billion per year.

the averaging method. For this, we use CAMS/INV XCH4
data (see Sect. 2.2), onto which we apply different masks and
averaging methods. Since CAMS/INV data have a complete
coverage (due to being model data), we can investigate the
effects of different sampling masks or averaging and com-
pare them to the results gained from the unmasked data.

We therefore compare AMIs (for global data) and growth
rates (for zonal data) calculated using different samplings
and/or methods. To simulate the spatio-temporal pattern
of S5P sampling, we created a daily mask from gridded
WFMDv1.8 data and applied it to the model data. To only
simulate the systematic effect of the polar nights, we created
a daily mask using the average solar zenith angle (SZA) per
grid cell with a cut-off value of 75◦. The AMIs and growth
rates for CAMS/INV XCH4 data were calculated using the
same ensemble approach used for WFMD data.

First, we investigate the effect of the averaging method.
We compare standard averaging, which is defined in this
study as the area-weighted mean of all grid cells in a region,
with an approach we call zonal-first averaging. Zonal-first
averaging takes into account the inhomogeneous sampling
at each latitude, which is influenced by the distribution of
land mass and seasonal coverage. Since zonal transport oc-
curs within weeks (Jacob, 1999), we first average the grid

Figure 3. Global AMIs derived from CAMS/INV-SRF XCH4 data
using (a) the non-masked dataset with standard averaging, (b) the
S5P-sampled CAMS/INV-SRF data with standard averaging, and
(c) the S5P-sampled CAMS/INV-SRF data using our zonal-first av-
eraging approach.

cells zonally, assuming that the available data within a 2◦

band provide a good estimate of the mean XCH4 at this lati-
tude. For global data this means that we first average the data
in all 90 2◦ latitude bands, and for zonal growth rates this
would mean first averaging the 10 2◦ latitude bands within a
20◦ zonal band. Subsequently, we calculate the average from
the zonal averages, which leads to a consistent weighting of
all the latitudes regardless of their individual coverage. Fig-
ure 3 shows AMIs calculated from CAMS/INV-SRF XCH4
data using (a) no mask and standard averaging, (b) the S5P
XCH4 mask and standard averaging, and (c) the S5P XCH4
mask and zonal-first averaging. Using zonal-first averaging,
the AMIs are closer to the AMIs derived from the complete
data. This is especially visible for 2020, where the AMI is
overestimated by roughly 3 ppb when using the standard av-
eraging. Therefore, we use zonal-first averaging for all cal-
culations of globally averaged data.

Figure 4 shows zonal growth rates calculated from
CAMS/INV-SRF XCH4 data using (a) no mask and stan-
dard averaging, (b) the S5P XCH4 mask and standard av-
eraging, and (c) the S5P XCH4 mask and zonal-first aver-
aging. Growth rates calculated on the masked data show 1σ
agreement with the growth rates calculated on the complete
data. Growth rates calculated using the zonal-first averaging
show better agreement for the 50–70◦S band, while for the
10◦S–10◦N band the growth rate is more variable. For all the
other zonal bands the results are nearly identical. Noticeably,
the 70–90◦N band shows no variation when using the S5P
XCH4 mask, indicating that insufficient data coverage hin-
ders the detection of growth rate variation. Since sampling
within a 20◦ zonal band can still vary with latitude, we fol-
low the same reasoning as in the previous paragraph and also
use zonal-first averaging for zonal growth rate calculation.
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Figure 4. Zonal growth rates derived from CAMS/INV-SRF XCH4
data using (a) the non-masked dataset with zonal-first averaging,
(b) the S5P-sampled CAMS/INV-SRF data with standard averag-
ing, and (c) the S5P-sampled CAMS/INV-SRF data using our zonal-
first averaging approach.

The different growth rates for Fig. 4a–c indicate the pres-
ence of a sampling bias. Thus, we investigated the effect of
satellite sampling and the polar nights by applying corre-
sponding masks to CAMS/INV XCH4 data. For global data
the sampling biases are calculated by taking the squared dif-
ference between the AMIs calculated on the complete data
(without any sampling filtering) and the AMIs calculated on
the masked CAMS/INV data. We calculate a separate bias
for each year in our analysis.

σ 2
Sampling = (AMI−AMISampling)2 (9)

σ 2
SZA = (AMI−AMISZA)2 (10)

Table 1 shows the resulting errors for global AMIs. The
sampling bias is around 0.25 ppb for all fully available years
and is much higher for 2018 with 2.96 ppb. The contribu-
tion of the SZA-related bias varies from year to year with a
maximum value of 0.73 ppb in the year 2022. This variability
might be related to the varying difference between the high
and mid latitudes during the different years. When the dif-
ference between both is bigger, the masking of high-latitude
regions is expected to have a larger effect on AMIs. For the
analysis of zonal bands we calculate a zonal error by taking
the average squared difference between growth rates derived
from the complete data and growth rates derived from the
reduced CAMS/INV XCH4 data for each band:

σ 2
Sampling/Zonal =

1
N

N∑
i

(
νi − ν

Sampling
i

)2
, (11)

where νi is the growth rate at time step i and N is the total
number of data points. The sampling errors for zonal growth
rates are shown in Table 2. Higher sampling errors correlate

Figure 5. Global annual methane increases derived from Sentinel-
5P TROPOMI WFMDv1.8 data. The error bars show the 1σ uncer-
tainty and include the DLM, sampling, and model error.

clearly with regions of high temporal inhomogeneity, which
further shows the challenging sampling conditions in these
regions (see Fig. 1).

4 Comparison of different global annual methane
increases

In this section, we discuss the global AMIs calculated us-
ing WFMDv1.8 data from May 2018 to February 2023. The
results are shown in Fig. 5. An overall, although non-linear,
rise in the methane level is observed between 2019 and 2022.
The most significant change occurs from 2019 to 2020, with
an increase from 6.89± 0.85 ppb to 14.40± 0.53 ppb. The
highest AMI is observed in 2021, reaching 16.93± 0.67 ppb.
The globally averaged XCH4 rose from 1817.32± 2.81 ppb
at the beginning of 2018 to 1878.14± 0.16 ppb at the end of
2022.

To validate our findings, we compared our results with
AMIs determined by Schneising et al. (2023), the NOAA–
GML (Dlugokencky, 2022), and data generated for the C3S
(c3s, 2023c). Additionally, we include AMIs derived using
our DLM approach for monthly WFMDv1.8 data, NOAA–
GML MBLR data, and the UB–C3S–CAMS dataset. Table 3
and Fig. 7 provide a comparison of AMIs between 2018
and 2022. While absolute values may differ due to varia-
tions in data and methods, all the AMIs exhibit the same
qualitative trend. Differences are expected for various rea-
sons. First, there is the difference in sampling. NOAA–GML
AMIs are based on surface flask measurements rather than
satellite total column observations used in the other calcu-
lations. Second, different methods are used to derive AMIs
from the data (see the corresponding sources for descriptions
of the other methods). Lastly, depending on the time resolu-
tion of the data and the method used, the AMIs represent ei-
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Table 3. Comparison of global AMIs using different data and methods.

Method@Dataset (time resolution) 2018 2019 2020 2021 2022

DLM@WFMDv1.8 (daily) 9.74± 4.70a 6.89± 0.85 14.40± 0.53 16.93± 0.67 12.72± 0.65
DLM@WFMDv1.8 (monthly) 6.56± 4.23a 7.85± 0.98 14.39± 0.93 16.55± 0.94 12.65± 1.17
Schneising et al. (2023) @WFMDv1.8 (monthly) 7.80± 0.60 15.00± 1.00 16.40± 0.50 13.90± 0.60
NOAA–GML (version 2023-10) @NOAA MBLR (daily)b 8.76± 0.52 9.68± 0.60 15.16± 0.41 17.82± 0.47 13.97± 0.58
DLM@NOAA MBLR (daily)b 9.35± 0.89 8.60± 0.75 15.99± 0.97 18.16± 1.22 16.04± 1.86
Buchwitz et al. (2017) @UB–C3S–CAMS (monthly) 10.19± 1.96 9.00± 2.01 15.19± 2.09 17.09± 2.09 11.87± 2.77
DLM@UB–C3S–CAMS (monthly) 10.15± 1.13 8.92± 1.30 15.77± 1.20 17.04± 1.05 11.46± 1.96
DLM@CAMS/INV–SURF (daily) 6.24± 0.97 9.86± 0.39 13.34± 0.38 18.04± 0.71 15.33± 0.48

All values are in parts per billion. Uncertainties reflect 1 standard deviation. a Larger error since only data starting with May 2018 were used. b Input data have a weekly time
resolution, but AMIs are provided as for daily data (as the difference between 1 January of 2 consecutive years).

Figure 6. Global annual methane increases derived from CAMS
global inversion-optimized greenhouse gas concentrations includ-
ing only surface observations. The error bars show the 1σ uncer-
tainty and include the DLM and model error, which are also shown
in brackets.

ther the difference between 1 January of 2 consecutive years
or the difference between the monthly January average of 2
consecutive years. The former is the case for our DLM ap-
proach and the AMIs derived by the NOAA–GML. The latter
is the case for the AMIs derived by Schneising et al. (2023)
and for the C3S AMIs. To discern the impact of data and
methodology, AMIs for the UB–C3S–CAMS and NOAA–
GML datasets created using different methods can be com-
pared. Our DLM-based AMIs of these datasets agree within
1σ with the calculations done for the C3S and by the NOAA–
GML, indicating no significant differences due to the method
used. However, we see a comparatively high AMI in 2022 for
the combination of DLM and NOAA–GML data (see Fig. 7).
This is probably related to the higher uncertainty for DLMs
at the start and end of a time series, which can also be seen
for UB–C3S-CAMS AMIs. A longer input time series will
likely lead to a reduction in uncertainty and to a reduced de-
viation compared to the other 2022 AMIs. An application of

Figure 7. Comparison of global AMIs listed in Table 3. The la-
bels are formatted as Method@Dataset. Colours indicate the type
of dataset used, and the markers denote the method. All errors rep-
resent 1σ uncertainties.

our DLM approach for the complete UB–C3S–CAMS and
NOAA–GML MBLR data can be seen in Appendix B.

Additionally, we used our DLM approach on monthly
WFMDv1.8 data to better compare our method to the method
used by Schneising et al. (2023), which also shows agree-
ment within 1σ . Only differences smaller than 1σ are found
when comparing AMIs based on the same data but differ-
ent methods. We also applied our approach to CAMS/INV
XCH4 data (see Sect. 2.2), for which global AMIs can be
seen in Fig. 6. The AMIs are in qualitative agreement and
show the same structure over the 5-year period; however, sig-
nificant differences in absolute values are observed for 2020
and 2022. For 2020 the CAMS/INV AMI is significantly
lower compared to most other sources, while for 2022 the
CAMS/INV AMI is significantly higher compared to most
other sources (see Table 3).

The AMIs for 2020 and 2021 are the largest observed since
the NOAA began systematic records in 1983. The drivers
contributing to these record increases have been the subject
of recent debate and can be attributed to a rise in emissions,
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a reduction in the CH4 sink, or a combination of both ef-
fects. According to the International Energy Agency (IEA),
methane emissions from the energy sector decreased by ap-
proximately 10 % in 2020 (iea, 2021). However, additional
emissions due to reduced maintenance of landfills and oil
and gas infrastructure can be expected according to Laughner
et al. (2021), while McNorton et al. (2022) suggest that the
effect of the global slowdown on anthropogenic CH4 emis-
sions is relatively small. Some studies propose that the re-
duction in the OH sink, caused by decreased emissions of
nitrogen oxides during the COVID-19 pandemic, may ex-
plain part of the increase (Stevenson et al., 2022; Laughner
et al., 2021; Peng et al., 2022; Qu et al., 2022; Feng et al.,
2023). Specifically, Stevenson et al. (2022) and Peng et al.
(2022) suggest that approximately half of the increase can
be attributed to this effect. Conversely, several other stud-
ies attribute the majority of the CH4 increase in 2020 to the
growth in wetland emissions (Qu et al., 2022; Feng et al.,
2023, 2022; Zhang et al., 2023).

5 Investigation of zonal methane growth rates

In addition to our global analysis, we investigated 20◦ zonal
bands. The good spatio-temporal coverage of S5P XCH4
might suggest that the same approach of using AMIs could
be applied to identify zonal bands with anomalous methane
increases. However, the impact of atmospheric transport
has to be considered. While longitudinal mixing occurs on
timescales of a few weeks, meridional transport is slower,
taking 1–2 months between mid-latitudes and the tropics
or polar regions and around a year between hemispheres
(Jacob, 1999; Warneck, 1999). The relatively longer atmo-
spheric lifetime of 9.1 years (Szopa et al., 2021) compared to
the mixing times therefore guarantees a relatively even lat-
itudinal distribution of methane in the troposphere, where
the main difference is driven by the uneven distribution of
CH4 sources (Warneck, 1999). Thus, we need to sample at
about 1 year or less to observe differences between hemi-
spheres and 1 month or less to observe differences within a
hemisphere. The daily sampling of S5P is hence faster than
meridional transport; however, part of the temporal informa-
tion gets lost when using AMIs which are obtained by inte-
grating the growth rate over 1 year. Thus, we investigate the
growth rate, which is the trend component of our DLM fits,
to obtain a better temporal resolution of the zonal signals.

The results are shown in Fig. 8 and include growth rates
derived from CAMS/INV-SRF XCH4 data for comparison.
The shown errors include the uncertainty gained from the
DLM fit σDLM, the model selection error σModel, and the sam-
pling error σSampling (see Sects. 3.3 and 3.4). Growth rates
are similar within a hemisphere, while differences between
the hemispheres are clearly visible. Additionally, no signif-
icant sub-annual variations (i.e. on a monthly timescale) in
zonal growth rates are present. Both observations are in good

Figure 8. Zonal growth rates for 20◦ bands derived from
(a) Sentinel-5P TROPOMI WFMDv1.8 data and (b) CAMS/INV-
SRF XCH4 data. The errors show the 1σ uncertainty.

agreement with the known atmospheric mixing times and in-
dicate that our data currently allow for identification of inter-
hemispheric differences, while short-term variations between
zonal bands are not detected. The high-latitude band be-
tween 70 and 90◦ N is included for completeness but shows
no inter-annual variability. This may be due to a lack of
real change in growth rates in this region, high uncertain-
ties present in the data, and/or the sparse data coverage. The
corresponding CAMS/INV-SRF XCH4 growth rate indicates
that the variability in the growth rate is relatively small in this
band, which supports the first point of our explanation. We
therefore exclude this band from our following discussion.
Hence, we mean bands between 10 and 90◦ S when we speak
of the Southern Hemisphere (SH) and bands between 10 and
70◦ N when we speak of the Northern Hemisphere (NH). The
band between 10◦ S and 10◦ N represents the boundary re-
gion and is close to the global background, as can be seen
in Fig. 9, which presents zonal growth rate anomalies. Zonal
growth rate anomalies are defined as the difference between
the zonal and global growth rates for each band.

Overall growth rates derived from WFMD data are close to
growth rates derived from CAMS/INV-SRF XCH4 data, with
an overall agreement within 1σ . The growth rates and the
growth rate anomalies can be used to interpret the changes in
global AMIs and to allow the identification of hemispheres
or zonal bands with anomalous growth rates. Differences be-
tween the hemispheres can be especially well seen in the
zonal growth rate anomalies. During 2019 a decrease in
growth rates can be observed for the whole SH (except for
the southernmost band), while growth rates in the NH in-
creased or stayed stable. For 2020 growth rates for all the SH
bands increase greatly from roughly 0 to 20 ppbyr−1. The
NH growth rates increase more slowly, except for the 50–
70◦ N band, which exhibits a small decrease in the growth
rate. During 2021 most zonal growth rates move towards or
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Figure 9. Zonal growth rate anomalies for the 20◦ bands derived
from Sentinel-5P TROPOMI WFMDv1.8 data. The anomalies are
defined as the differences between zonal and global growth rates.

around the global mean, with the strongest anomaly visible
in the 10–30◦ N band, which shows some additional increase
in the growth rate that peaks in the middle of the year. Dur-
ing 2022 a clear difference between the hemispheres can be
seen again, with a decrease in growth rates in the NH and an
increase in or stabilization of growth rates in the SH. This dif-
ference is especially clear when looking at the zonal growth
rate anomalies in Fig. 9.

Recent studies, which discuss the record methane in-
creases in 2020 and 2021, can help with interpreting the
structures of zonal growth rates. Peng et al. (2022) employ
an atmospheric inversion using ground-based data. They at-
tribute the increase from 2019 to 2020 roughly equally to
changes in the OH sink and an increase in wetland emis-
sions located mainly in the NH. In contrast, studies based
on the inversion of satellite data from the Japanese Green-
house gases Observing SATellite (GOSAT) state that the ma-
jority of increase from 2019 to 2020 can be attributed to the
African continent (Feng et al., 2023; Qu et al., 2022) with
additional increases in tropical South America in 2021 (Feng
et al., 2023). Our findings can thus be seen as aligning with
recent studies by Feng et al. (2023) and Qu et al. (2022). The
increase in SH growth rates from 2019 to 2020 is consistent
with increased wetland emissions. The rise in the NH latitu-
dinal bands during 2020 can be explained by the decreasing
OH sink primarily located in the NH (Peng et al., 2022; Feng
et al., 2023). However, the continued increase in 2021 can-
not be solely explained by the OH sink, as OH levels mostly
recovered in that year according to Feng et al. (2023) and
Peng et al. (2022). Possible explanations for the ongoing in-
crease are persistent wetland emissions Feng et al. (2023) as
well as the return to pre-pandemic methane emissions form
the energy sector in 2021 (iea, 2023). Finally, the decrease in
growth rates in the NH and the increase in growth rates in the
SH during 2022 have not been discussed to our knowledge.
Our results therefore indicate that the decrease in global AMI

Figure 10. Difference between total surface fluxes from the
CAMS/INV-SRF data.

Figure 11. Difference between wetland surface fluxes from the
CAMS/INV-SRF data.

from 2021 to 2022 can be attributed to a reduced growth rate
in the NH. We investigate this further in the next section.

6 CAMS/INV fluxes

As mentioned before, zonal growth rates provide informa-
tion about the change in methane concentration in a given
zonal band, including changes in sources, sinks and trans-
port patterns. These transport patterns would average out for
global AMIs given a perfect coverage. In Sect. 3.4 we applied
a S5P XCH4 mask to CAMS/INV XCH4 data (see Fig. 3)
and compared AMIs calculated from this masked data with
AMIs calculated from the complete data. Since differences
between these AMIs are small, we conclude that the effect
of related sampling biases is limited. Therefore, changes in
global AMIs can be attributed to the total source–sink bal-
ance of methane and not to changes in transport patterns.
Whether this is also true for zonal growth rates is less clear,
since transport effects are expected to be stronger especially
within hemispheres.

The agreement within 1σ of zonal growth rates derived
from WFMD and CAMS/INV XCH4 data in Fig. 8, sug-
gest that the structures observed in our zonal growth rates
are not artifacts from sampling-related biases. However, we
cannot rule out transport effects from this comparison, mean-
ing we cannot clearly attribute changes in hemispheres or
zonal bands over the years to a change in the source–sink
balance. Hence, we also investigated the change in surface
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Figure 12. Difference between other surface fluxes from the
CAMS/INV-SRF data.

Figure 13. Difference between total surface fluxes from the
CAMS/INV-SRF-SAT data. No flux difference is available for
2022–2021, since the dataset currently ends in 2021.

fluxes between consecutive years which are readily available
for the CAMS/INV data. In Figs. 10–12 we present total,
wetland and non-wetland fluxes from CAMS/INV-SRF data,
respectively. The category of non-wetland fluxes includes all
other anthropogenic emissions as well as contributions from
oceans, wild animals, the soil sink, termites, and biomass
burning.

Large changes in fluxes are identified between all the years
investigated. The wetland flux difference between 2019 and
2020 indicate a strong increase in the NH as indicated by
Peng et al. (2022) as well as some increase in the SH wet-
lands as reported by Feng et al. (2023) and Qu et al. (2022).
We expect the SH wetland fluxes to be underestimated as
indicated by Feng et al. (2023) because the CAMS/INV-
SRF data is based on ground-based measurements from the
NOAA network, similar to the inversion performed by Peng
et al. (2022), due to the poor coverage in the tropics. Inter-
estingly, wetland fluxes from CAMS/INV-SRF-SAT data in-
cluding satellite measurements from GOSAT show stronger
SH wetland emissions between 2019 and 2020 as shown in
Fig. 13. Additionally, an increase in non-wetland fluxes oc-
curs between 2019–2020 and 2020–2021. In the first case
these increases are mainly focused on China, while in the
second case additional increases over the Indian subconti-
nent can be seen. Between 2021 and 2022 a clear decrease
in total surface fluxes can be seen in large parts of the NH,
while strong increases can be observed over the whole of

South America. The large decreases in the NH can be clearly
attributed to changes in the non-wetland fluxes, while the
increase over South America seems to involve a combina-
tion of wetland and other fluxes. Therefore, CAMS/INV
fluxes imply that the changes in zonal growth rates we ob-
served both in WFMD and CAMS/INV are not merely due
to changes in transport patterns but correlate with changes in
surface methane fluxes between the years. This conclusion is
strengthened by the qualitative agreement of the flux changes
between CAMS/INV-SRF and the aforementioned studies by
Peng et al. (2022), Feng et al. (2023), and Qu et al. (2022).
However, further research is needed to substantiate these in-
ferences.

7 Conclusions

In this study, we presented a DLM-based approach to calcu-
late methane growth rates and AMIs from S5P/TROPOMI
data. We addressed sampling-related biases by comparing
AMIs and growth rates derived from CAMS/INV XCH4 data
both with and without S5P XCH4 sampling. Further, we in-
cluded a bias related to the model selection in our error bud-
get. Our calculations of global AMIs based on WFMDv1.8
data from 2018 to 2022 demonstrate good agreement with
other AMIs. Additionally, we separated the influence of
the fitting method and the underlying data by applying our
DLM approach to other datasets. We show that using the
same input data results in agreement within 1σ between all
AMIs. Using the same method but different input data re-
sults in qualitative agreement but differences larger than 1σ .
Nevertheless, the consistency of AMIs derived from diverse
datasets, such as ground-based data from NOAA and dry-air
mole fraction data from WFMDv1.8 and UB–C3S–CAMS,
highlights the robustness of these various approaches. The
record methane increase in 2020 and 2021 is therefore well-
identified in the different datasets, which use different meth-
ods to assess AMIs. The underlying factors driving these in-
creases, as discussed in Sect. 4, remain however a subject of
debate.

In addition to global AMIs, we investigated growth rates
for 20◦ zonal bands which provide spatial information to
the global AMIs. We argue that this is possible due to (a)
the faster zonal mixing in comparison to meridional mix-
ing and (b) the faster satellite sampling in comparison to
the meridional mixing times. Firstly, comparisons of zonal
growth rates from S5P/TROPOMI data with growth rates
from CAMS/INV-SRF XCH4 data show agreement within
1σ . Additionally, we investigated growth rates calculated
from CAMS/INV-SRF XCH4 data filtered using a S5P XCH4
mask which indicate that no significant sampling biases ex-
ist for the zonal band approach. Still, we want to empha-
size that meridional transport can affect the zonal growth
rates, meaning they do not necessarily indicate changes in the
sources and sinks of methane but might also show system-
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atic changes in transport patterns. The zonal growth rates ex-
hibit clear differences between the hemispheres for 2019 and
2022, whereas growth rates are more similar for 2020 and
2021. Differences within a hemisphere are mostly smaller
and no additional short-term variations are visible, which
might reflect the well-mixed state of the atmosphere within a
hemisphere. The low growth rates in the SH in 2019 and the
subsequent increases suggest a rise in atmospheric methane
in that region possibly driven by tropical wetland emissions
according to Feng et al. (2023), Qu et al. (2022), and Zhang
et al. (2023). Other factors potentially contributing to these
changes include variations in the OH sink due to pollutant re-
ductions during the COVID-19 pandemic (Feng et al., 2023;
Qu et al., 2022; Peng et al., 2022) and the changes in global
methane emissions due to the COVID-19 pandemic and the
subsequent recovery (iea, 2021).

We further investigated these inter-hemispheric differ-
ences by investigating the surface fluxes available from
CAMS/INV data. We argue that this is possible since (a)
growth rates derived from WFMDv1.8 data are similar to
growth rates from CAMS/INV data and (b) no significant
sampling bias is present, as we showed in Sect. 3.4. The
total surface fluxes show clear changes between the years,
and the partitioning into wetland and non-wetland (mainly
anthropogenic) fluxes allows further interpretation. Further-
more, changes in fluxes show reasonable qualitative agree-
ment with findings reported by Feng et al. (2023), Qu et al.
(2022), and Peng et al. (2022).

In addition to the confirmation of known results, new con-
clusions are also drawn. Most notably, the decrease in the
global AMI in 2022 is caused by reduced NH zonal growth
rates. This is clearly visible in zonal growth rates derived
from S5P XCH4 and CAMS/INV XCH4 data. Investiga-
tion of the corresponding model surface fluxes indicates that
changes in zonal growth rates are consistent with the de-
crease in non-wetland fluxes in the NH and the continuing
increase in wetland fluxes in the SH. However, more research
is needed to substantiate this inferred connection between the
change in NH growth rates and fluxes.

In summary, our DLM-based approach allows calculation
of growth rates or AMIs for global and zonal S5P/TROPOMI
data. This approach is computationally inexpensive and read-
ily allows for the constant integration of new data, enabling
timely assessments of global methane concentration changes.
Importantly, no additional prior information about the at-
mospheric state is required. We believe that our approach
provides an additional valuable tool for investigating atmo-
spheric methane concentrations, enabling rapid identification
of regions of interest, such as the 2022 NH. Furthermore, our
approach can be readily applied to other datasets facing sim-
ilar challenges, such as inhomogeneous sampling, non-linear
trends, and data gaps. For the 70–90◦ N band, our method
failed to identify any changes in growth rates. However,
this result is in good agreement with the growth rates from
CAMS/INV-SRF XCH4 data, which themselves only show

small variations. This indicates that (a) the small changes
in growth rates could not be distinguished from the random
variability in the data or that (b) no anomalous increases in
growth rates are visible for the northern high-latitude regions
in the observed period from 2018 to 2022.

Future research could aim to improve this approach, espe-
cially for high-latitude regions, to identify smaller changes
in growth rates. Better estimates of the impact of meridional
transport on zonal growth rates could help to provide bet-
ter error estimates for our method. The 2022 decrease in NH
growth rates could be investigated in more detail and this ap-
proach be extended to include datasets of other atmospheric
constituents. Data from future satellite missions, with lower
uncertainties and increased data coverage, could enable the
investigation of sub-annual changes in growth rates, which
are presently not detectable. Finally, zonal growth rates of
long-lived gases (e.g. HF) without any significant sources or
sinks could possibly enable the quantification of atmospheric
transport patterns.

Appendix A: Model set-up and ensemble size

The structure of our DLMs assumes that the measured
methane signal can be separated into a slowly changing back-
ground level, a seasonal component and noise term. This sec-
tion closely follows the more detailed description in Durbin
and Koopman (2012) and Harvey (1990).

The level component can be described by the following
formulas:

µt+1 = µt + νt + εt,level, εt,level ∼N
(

0,σ 2
level

)
, (A1)

νt+1 = νt + εt,trend, εt,trend ∼N
(

0,σ 2
trend

)
. (A2)

µt is the level, νt is the trend (i.e. the slope or growth rate),
and εt are steps in a random walk sampled from a Gaussian
distribution. The random walks allow components to change
over time. Since we want to allow for a smoothly changing
level, we allow the trend to change over time. Additionally,
we enforce a constraint of zero variance for the level to en-
sure that short-term fluctuations in the background level are
not allowed:

σ 2
level = 0, (A3)

σ 2
trend > 0. (A4)

The seasonal part of the signal is modelled by a truncated
Fourier series with h harmonics:

γt =

h∑
j=1

γj t , (A5)

with
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Table A1. DLM parameters.

Parameter Description Allowed range

σ 2
level Variability of the level 0
σ 2

trend Variability of the trend [0,∞]a

σ 2
seas Variability of the seasonal cycle 0 orb

[0,∞]a

ρ Parameter of AR(1) [0,1]a

σ 2
AR(1) Variability of AR(1) [0,∞]a

σ 2
irr Variability of the Gaussian error 0 orb

[0,∞]a

h Number of harmonics 1–4b

a Determined by maximum likelihood estimation during the DLM fit. b Different
settings are part of the ensemble.

γj,t+1 = γj tcos(λj )+ γ ∗j t sin(λj )+ εseas,

εseas ∼N
(

0,σ 2
seas

)
, λj =

2πj
s
, (A6)

γ ∗j,t+1 = − γj t sin(λj )+ γ ∗j tcos(λj )+ ε∗seas,

ε∗seas ∼N
(

0,σ 2
seas

)
, j = 1, . . .,h, (A7)

where s describes the seasonality of the data, e.g. for monthly
data s = 12 or for daily data s = 365 when modelling yearly
patterns. The value of s = 365.25 can be used to account for
leap years. We use s = 365.2, which is equal to the aver-
age number of days per year between 2018 and 2022. For
σ 2

seas > 0 the seasonal cycle is allowed to change over time.
We allow values of h ∈ {1,2,3,4} to account for varying lev-
els of complexity in the seasonal cycle. The motivation for
this is twofold. Firstly, we want to only model the basic struc-
ture of the seasonal cycle and not the whole signal. Secondly,
the inclusion of more harmonics introduces further parame-
ters which have to be estimated. This quickly leads to high
uncertainties in the produced fit since not enough information
is included in the data to account for the growing number of
parameters.

The noise term accounts for residual correlations as well
as random Gaussian noise in the signal. Residual correlations
can be modelled by an autoregressive component which in-
cludes a serial dependence between the observations. An au-
toregressive noise of order n includes a memory of the last n
measurements. For n= 1, this AR(1) term is

ηt+1 = ρ ηt+ εAR(1),εAR(1) ∼N
(

0,σ 2
AR(1)

)
,ρ ∈ [0,1], (A8)

where ηt is the autoregressive component, ρ determines the
strength of the autocorrelation (the memory of the previous
time step), and εAR(1) is again a step in a Gaussian ran-
dom walk. This component introduces the parameters ρ and
σ 2

AR(1) to the model. We confine our autoregressive compo-
nent to the order of n= 1, which is enough to model the
residual correlations in our data. Higher orders would in-
troduce further parameters to be estimated and lead to a

harder interpretability of the results. However, exclusion of
the AR(1) component leads to bad fits since the model fails
to account for the data variability.

An additional Gaussian noise can be included:

εirr, εirr ∼N
(

0,σ 2
irr

)
. (A9)

We call this the irregular component.
The complete signal can then be written as the sum of

these components:

yt = µt + γt + ηt + εirr. (A10)

The ensemble size is determined by the number of possi-
ble model configurations. In our case this is determined by
whether to allow variability of the seasonal cycle or whether
to include a Gaussian error term and the number of harmon-
ics: N = 2 ·2 ·4= 16. An overview of all the parameters can
be found in Table A1.

Appendix B: Replication of complete NOAA GML and
UB–C3S AMIs

To investigate the effect of the fitting method on AMIs we
replicated AMIs calculated by the NOAA–GML and C3S in
Figs. B1 and B2, respectively. Here we present the compari-
son for the whole available time range (a subset of data can
be seen in Table 3).

Figure B1. Comparison of global annual methane increases derived
from the NOAA–GML MBLR data using different methods.

Atmos. Chem. Phys., 24, 577–595, 2024 https://doi.org/10.5194/acp-24-577-2024
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Figure B2. Comparison of global annual methane increases de-
rived from C3S XCH4_OBS4MIPS v4.4 data which are extended
by CAMS NRT data after 2021 using different methods.

Appendix C: Global AMIs and zonal growth rates
derived from CAMS global inversion-optimized
greenhouse concentrations

Here we present global AMIs and zonal growth rates for
CAMS/INV-SRF-SAT data which includes satellite measure-
ments from GOSAT in its optimization (see Figs. C1 and C2).

Figure C1. Global annual methane increases derived from CAMS
global inversion-optimized greenhouse concentrations including
both surface and satellite observations.

Figure C2. Zonal growth rates for 20◦ bands derived from
(a) Sentinel-5P TROPOMI WFMDv1.8 data and (b) CAMS/INV-
SRF-SAT data. The errors show the 1σ uncertainty.

Appendix D: WFMDv1.8 data coverage

Figure D1 shows the area-normalized coverage of
S5P/TROPOMI WFMDv1.8 data. It can be seen that
the tropics, mid-latitudes, and high latitudes mostly have
an average coverage of about 25 %, while the high-latitude
regions have seasonal gaps due to the polar night.

Figure D1. Area-normalized coverage of S5P/TROPOMI
WFMDv1.8 data for 30◦ zonal bands, representing the high-
latitude, mid-latitude, and tropical regions. For the calculation, data
on a 2◦× 2◦ grid were used. The coverage is given on a scale from
0 to 1, where 1 represents complete coverage within a band.
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Code and data availability. CAMS global inversion-optimized
greenhouse gas fluxes and concentrations are available from https:
//ads.atmosphere.copernicus.eu/ (last access: 21 June 2023, Segers
et al., 2022). Sentinel-5P TROPOMI WFMD data are avail-
able from https://www.iup.uni-bremen.de/carbon_ghg/products/
tropomi_wfmd/ (last access: 28 March 2023, Schneising et al.,
2023). NOAA MBL data are available from https://gml.noaa.gov/
ccgg/mbl/ (last access: 30 October 2023, Dlugokencky et al., 2021).
Example code to recreate Fig. 5 (global annual methane increases),
including the gridding and processing of the data, is available at
https://doi.org/10.5281/zenodo.8178927 (Hachmeister, 2023).
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