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Abstract. In this research, we delve into the influence of cloud condensation nuclei (CCN) and ice-nucleating
particle (INP) concentrations on the morphology and abundance of ice particles in mixed-phase clouds, empha-
sizing the consequential impact of ice particle shape, number, and size on cloud dynamics and microphysics.
Leveraging the synergy of the Advanced Microphysics Prediction System (AMPS) and the Kinematic Driver
(KiD) model, we conducted simulations to capture cloud microphysics across diverse CCN and INP concen-
trations. The Passive and Active Microwave radiative TRAnsfer (PAMTRA) radar forward simulator further
augmented our study, offering insights into how the concentrations of CCN and INPs affect radar reflectivities.

Our experimental framework encompassed CCN concentrations ranging from 10 to 5000 cm−3 and INP con-
centrations from 0.001 to 10 L−1. Central to our findings is the observation that higher INP concentrations yield
smaller ice particles, while an increase in CCN concentrations leads to a subtle growth in their dimensions. Con-
sistent with existing literature, our results spotlight oblate-like crystals as dominant between temperatures of−20
and −16 °C. Notably, high-INP scenarios unveiled a significant prevalence of irregular polycrystals. The aspect
ratio (AR) of ice particles exhibited a decline with the rise in both CCN and INP concentrations, highlighting
the nuanced interrelation between CCN levels and ice particle shape, especially its ramifications on the riming
mechanism.

The forward-simulated radar reflectivities, spanning from−11.83 dBZ (low INP, 0.001 L−1) to 4.65 dBZ (high
INP, 10 L−1), elucidate the complex dynamics between CCN and INPs in determining mixed-phase cloud charac-
teristics. Comparable differences in radar reflectivity were also reported from observational studies of stratiform
mixed-phase clouds in contrasting aerosol environments. Our meticulous analysis of KiD-AMPS simulation out-
puts, coupled with insights into aerosol-driven microphysical changes, thus underscores the significance of this
study in refining our ability to understand and interpret observations and climate projections.
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1 Introduction

Clouds are still one of the most uncertain components of the
global atmosphere system (Bony et al., 2015). Their forma-
tion and evolution occur on various spatio-temporal scales,
which makes it virtually impossible to tackle them with sin-
gle, unified observational or simulation approaches (Kahn
et al., 2023). Single sub-processes are studied individually
and will only in a later stage be the basis for an improved
comprehensive understanding. Important components of a
cloud’s life cycle are, e.g., the cloud formation and the sub-
sequent transitions from the liquid to the ice phase. The pres-
ence of the ice phase is an essential prerequisite for the pro-
duction of adequate amounts of precipitation in most regions
on Earth (Mülmenstädt et al., 2015). Nevertheless, for the
initial formation of cloud droplets, as well as for the forma-
tion of ice crystals down to temperatures of −38 °C, aerosol
particles are required for the phase transition by providing
a reservoir of either cloud condensation nuclei (CCN) or
ice-nucleating particles (INPs), respectively (Morrison et al.,
2012; Hoose and Möhler, 2012). The interplay of the abun-
dance of CCN and INPs and the cloud evolution is an im-
portant pathway of aerosol–cloud interaction. Perturbations
in the concentration and type of CCN or INPs can in partic-
ular potentially influence the formation and evolution of ice
particles in mixed-phase clouds.

There are strong indications given by both observations
and modeling approaches that INP and CCN perturbations
do have a considerable impact on the mixed-phase cloud for-
mation and evolution. Seifert et al. (2010) revealed increased
fractions of ice-containing clouds in dust-laden cloud envi-
ronments over central Europe. On a global scale, these find-
ings were confirmed, e.g., by Zhang et al. (2018), using ob-
servations from the spaceborne A-Train satellite constella-
tion. Hemispheric contrasts in mixed-phase clouds and their
relationship to cloud turbulence and aerosol load were inves-
tigated in detail by Radenz et al. (2021), who also concluded
that a measurable impact of aerosol on mixed-phase cloud
formation exists. Seifert et al. (2012) revealed considerable
impacts of a dust event on the simulation of clouds and pre-
cipitation patterns over Germany. Similar effects were iden-
tified in a European-scale approach by Barthlott and Hoose
(2018). Fan et al. (2014) performed spectral bin simulations
to investigate the influence of CCN and INPs on precipita-
tion in two distinct mixed-phase orographic cloud scenarios
characterized by different cloud temperatures. The study re-
vealed varying degrees of significance regarding the impacts
of CCN and INPs on precipitation, with the INPs exhibiting
a more pronounced effect in both cases. Furthermore, Fan
et al. (2017) conducted a sensitivity analysis where they sys-
tematically varied the concentrations of CCN and INP prox-
ies across a wide range, spanning from extremely low to ex-
tremely high concentrations, employing spectral bin model-
ing specifically tailored to orographic mixed-phase clouds.

Also on a global scale, aerosol variations were found to be
key for understanding the variability of mixed-phase clouds
(Atkinson et al., 2013). Recently, even the first closure stud-
ies bridging remote sensing observations of CCN and INPs
with those of cloud droplet concentration and ice crystal
number concentration were initiated (Ansmann et al., 2019;
Engelmann et al., 2021). However, simulations and observa-
tional approaches have to date rarely been combined, which
hinders one from drawing specific conclusions on aerosol ef-
fects on mixed-phase clouds. One key approach is to connect
cloud-resolving, aerosol-sensitive ideally spectral bin models
with forward operators in order to transfer simulation output
into observation space. By doing so, simulations for selected
scenarios can be evaluated against real-world observations.

Given the complexity of spectral bin modeling frame-
works, it is essential to incorporate the most relevant pro-
cesses on the one hand and to constrain the environmental
conditions to a maximum but still realistic state on the other
hand. Besides number concentration, particle habit should
thus also be incorporated into respective aerosol–cloud in-
teraction studies which aim at a closure against observations.
Ice particle shape plays a crucial role in determining the mi-
crophysical and radiative properties of mixed-phase and ice
clouds (Mishchenko et al., 1996; McFarquhar and Heyms-
field, 1997). The diverse shapes of ice particles influence
their growth, aggregation, and riming processes, which in
turn affect cloud lifetime, precipitation formation, and ra-
diative energy transfer within the atmosphere (Magono and
Lee, 1966; Heymsfield and Westbrook, 2010; Um and Mc-
Farquhar, 2011). The complexity and diversity of ice parti-
cle shapes present challenges for both cloud microphysics
modeling and remote sensing of cloud properties. A compre-
hensive understanding of ice particle shape is essential for
improving the accuracy of cloud microphysics models, re-
mote sensing retrievals, and ultimately climate predictions
(Liou and Ou, 2004; Tao et al., 2012; Chen and Liu, 2016;
Vázquez-Martín et al., 2021). Despite its importance, the rep-
resentation of ice particle shape in cloud microphysics mod-
els remains a significant challenge. Many models adopt sim-
plified assumptions regarding ice particle shape, such as as-
suming all particles are spherical or using a limited set of
predefined shapes (Mitchell, 1996; Morrison et al., 2005;
Cotton et al., 2013). These simplifications can introduce un-
certainties and biases in the simulated cloud properties and
their interactions with radiation (Cotton et al., 2013). Fur-
thermore, the complex nature of ice particle shape and its
dependence on factors such as temperature, supersaturation,
and aerosol loading add to the difficulty in accurately repre-
senting this aspect of cloud microphysics (Bailey and Hallett,
2009; Kanji et al., 2017).

Radar remote sensing is a valuable tool for observing ice
particles in clouds, providing insights into their size, shape,
and spatial distribution (Hogan et al., 2000; Westbrook and
Illingworth, 2011). However, interpreting radar observations
of ice particles requires a thorough understanding of the re-
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lationship between ice particle shape and the radar variables,
such as reflectivity and Doppler velocity (Hogan et al., 2012;
Kneifel et al., 2015). Radar forward simulators, which gen-
erate synthetic radar observations based on cloud model out-
puts, can help bridge this gap by allowing researchers to sys-
tematically investigate the sensitivity of radar variables to
different ice particle shapes and model assumptions (Matsui
et al., 2019).

In this study, we utilize the Advanced Microphysics Pre-
diction System (AMPS) coupled with the Kinematic Driver
(KiD) to conduct idealized simulations of mixed-phase cloud
microphysics (Hashino and Tripoli, 2007, 2008, 2011a, b),
incorporating a comprehensive representation of ice parti-
cle shapes and the effects of CCN and INP perturbations.
AMPS is a state-of-the-art cloud microphysics model that
has been specifically designed to capture the complex in-
teractions between aerosols, cloud droplets, and ice parti-
cles with a habit prediction system (Hashino and Tripoli,
2007, 2008, 2011a). The AMPS model coupled with large-
eddy simulations (LESs) successfully reproduces features of
mixed-phase clouds and has been compared to observations
(Hashino et al., 2020; Ong et al., 2022). To investigate the im-
pact of ice particle shape on radar retrievals, we employ the
Passive and Active Microwave radiative TRAnsfer (PAM-
TRA) radar forward simulator. PAMTRA is a versatile tool
that can simulate passive and active microwave observations
of the atmosphere, accounting for the scattering properties
of various ice particle shapes (Mech et al., 2020). By com-
bining the capabilities of AMPS and PAMTRA, this study
aims to provide a comprehensive understanding of the role
of ice particle number size distribution and shape in mixed-
phase cloud microphysics and remote sensing retrievals un-
der varying CCN and INP conditions. Furthermore, we seek
to evaluate the impact of ice particle shape assumptions and
CCN and INP perturbations on the accuracy and reliability
of cloud property retrievals from radar observations.

This paper is organized as follows. Section 2 briefly de-
scribes the Kinematic Driver (KiD) (Shipway and Hill, 2012)
as the dynamical model and AMPS as the microphysics
model. Section 3 gives information on the initial thermo-
dynamic condition and experimental design for simulations.
Section 4 shows the numerical simulation results for steady-
state mixed-phase cloud cases under varying CCN and INP
scenarios. Finally, Sect. 5 concludes the paper with a sum-
mary of the results.

2 Model description and simulation setup

2.1 KiD (dynamic model)

The KiD model provides a framework for examining cloud
microphysics, enabling us to assess and compare different
parameterizations, which leads to a better understanding of
cloud particle interactions and the influence of aerosols on
cloud development. The model’s versatility allows its appli-

cation in the study of various cloud types, including strati-
form mixed-phase and convective clouds. It has significantly
contributed to the enhancement of cloud microphysical pa-
rameterizations in larger-scale models (Klein et al., 2009;
Shipway and Hill, 2012).

The model accommodates a variety of microphysics
schemes, from the simpler one-moment bulk models
(Thompson et al., 2004) to more complex two-moment
schemes (Thompson et al., 2008; Morrison et al., 2009; Ship-
way and Hill, 2012; Hill et al., 2015; Vié et al., 2016; Mil-
tenberger et al., 2018). It is also compatible with detailed
spectral bin microphysics schemes, including the Tel Aviv
University bin microphysics and the AMPS (Tzivion et al.,
1987, 1989; Hashino and Tripoli, 2007, 2008, 2011a, b; Lebo
and Seinfeld, 2011; Onishi and Takahashi, 2012), as well as
with Lagrangian cloud models (LCMs) (Andrejczuk et al.,
2010; Arabas et al., 2015; Hoffmann et al., 2015; Dziekan
et al., 2019). Further details on these aspects are provided in
Shipway and Hill (2012) and Hill et al. (2023).

We emphasize the KiD framework’s effectiveness in effi-
ciently evaluating the performance of different microphysics
schemes. Additionally, the KiD model functions as a valu-
able benchmarking tool, enabling researchers to evaluate and
enhance cloud microphysics parameterizations. By compar-
ing the results of various parameterizations within the KiD
framework, inconsistencies and areas for improvement can
be identified and investigated.

2.2 AMPS (microphysics model)

In this study, we employed the Kinematic Driver (KiD)
model in conjunction with the Advanced Microphysics Pre-
diction System (AMPS) to simulate mixed-phase clouds. The
AMPS model has been coupled with other dynamic models
such as the University of Wisconsin Nonhydrostatic Model-
ing system (Hashino and Tripoli, 2007, 2008; Hashino et al.,
2020) and the Scalable Computing for Advanced Library and
Environment (SCALE) large-eddy simulation model (Ong
et al., 2022), demonstrating its capability to accurately pre-
dict mixed-phase clouds and exhibiting favorable compar-
isons with observational data.

According to Hashino and Tripoli (Hashino and Tripoli,
2007, 2008, 2011a, b), the AMPS microphysical model em-
ploys the Spectral Ice Habit Prediction System (SHIPS),
which incorporates particle property variables (PPVs) to
characterize the physical structure of ice particles, as detailed
in Table 1. The SHIPS continuously updates the PPVs for
each mass bin in response to evolving ambient conditions,
ensuring accurate particle property diagnoses based on the
PPVs.

The identification of ice particle type and habit relies on
various components, including mass content, length, and
concentration. In our methodology, the SHIPS defines the
ice particle model as a conceptual shape to represent ice par-
ticles leading to their genesis, encompassing “pristine crys-
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Table 1. List of the 16 particle property variables (PPVs) within liquid and ice spectra across each bin, as utilized in the KiD-AMPS model.
Here, ρm denotes the moist air density, while ρlat and ρiat specify the total aerosol density within the liquid phase and ice phase, respectively.
Additionally, ρlas and ρias correspond to the soluble aerosol density in the liquid and ice phases.

Spectrum PPV Description

Liquid ρlat/ρm Mixing ratio of total aerosol mass
ρlas/ρm Mixing ratio of soluble aerosol mass

Ice ρcry/ρm Mixing ratio of crystal mass
ρrim/ρm Mixing ratio of riming mass
ρagg/ρm Mixing ratio of aggregate mass
ρfrz/ρm Mixing ratio of frozen mass
ρmlt/ρm Mixing ratio of meltwater mass
ρiat/ρm Mixing ratio of total aerosol mass
ρias/ρm Mixing ratio of soluble aerosol mass
nexice Extra crystalline structure number
Vcs Circumscribing volume
l3a Cube of the a-axis length
l3c Cube of the c-axis length
l3
d

Cube of the d-axis length (cube of the dendritic arm)
ag Center of gravity along the a axis
cg Center of gravity along the c axis

tals, aggregates, rimed aggregates, graupel, and rimed crys-
tals” as explicated in Fig. 2 by Hashino and Tripoli (2007).
Pristine crystals, rimed crystals, aggregates, and rimed aggre-
gates are modeled as cylinders, while graupel is represented
as a spheroid. These shapes serve as the basis for determin-
ing the maximum dimension (D) of each particle. However,
it is important to note that this diagnosis is primarily intended
for comparison with observations or other models using pre-
dicted mass bin information within the PPVs. Therefore, ad-
ditional errors may arise when artificially categorizing these
types. In this study, we analyzed the mass bin information
without separate type divisions for a more comprehensive as-
sessment.

The habit of ice crystals, a critical aspect of our study,
is determined by analyzing their unique crystallographic
properties, which include forms such as plates, dendrites,
columns, and three polycrystals, as illustrated in Fig. 1. For
each identified particle habit, the SHIPS within the AMPS
model assigns an ice particle model that represents the geo-
metric shape enveloping the ice particle. This model encom-
passes detailed crystal habit information – such as the a-axis
length (la), representing the radius; the c-axis length (lc), rep-
resenting the height; and the d-axis length (ld ), representing
the dendritic arm – across the three crystal habits of plate,
columnar, and dendrite for monocrystals. Additionally, the
model employs a PPV, termed the extra crystalline structure
number (nexice), which ranges from 0 to 1. A value of nexice
greater than or equal to 0.5 signifies that the ice crystals in a
particular bin are polycrystals. The SHIPS’s methodical ap-
proach also integrates the coordinates of the center of gravity
(ag, cg), measured along the a and c axes from the center of
the monocrystals, as distinct PPVs. These measurements are

pivotal in differentiating between planar and columnar poly-
crystals: a planar polycrystal is identified if the ratio ag/la
exceeds the ratio cg/lc by more than 0.5, whereas a columnar
polycrystal is determined if cg/lc exceeds ag/la by more than
0.5. Ice crystals that do not fit within these criteria, such as
scale-like side planes, are categorized as irregular polycrys-
tals. The process and criteria for habit diagnosis are further
detailed in Fig. 2.

To explain more about ice particle habit, the ice crystal
growth regime is determined based on the cumulative relative
frequency of habits and a random number generator when the
temperature falls below −20 °C and the maximum dimen-
sion of the crystal is less than 20 µm. The growth regime is
initially selected from polycrystalline, columnar, and planar
hexagonal regimes. If the growth regime is polycrystalline, a
random number determines whether it is columnar or planar
polycrystalline. Furthermore, if it is polycrystalline, another
random number determines the growth regime for a hexago-
nal monocrystal. This implies that small ice crystals can grow
differently from the habit diagnosed at the beginning of the
time step. Conversely, for temperatures above −20 °C, it is
assumed that polycrystals do not form. Once the maximum
dimension exceeds 20 µm, the ice crystal is presumed to fol-
low the growth of the diagnosed habit at the beginning of the
time step.

Expanding upon this, the concept of AR of an object is the
ratio of its width to its height. In this study, the AR of poly-
crystalline ice particles is determined by the ratio of the semi-
axis lengths of the ice particle model, i.e., α = lc,sm/la,sm,
while the AR of monocrystalline particles is determined by
the ratio of the axis lengths, α = lc/la .
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Figure 1. Diagnosis of the habit of the representative hydrometeor dimensions (la , lc, and ld ) for monocrystals, including (a) hexagonal
plate, (b) column, and (c) dendrite.

Figure 2. Flowchart depicting the diagnostic procedure for identifying ice particle habits in the AMPS.

Within the framework of the AMPS model, ice particles
are characterized by their circumscribing sphere volume, de-
noted as Vcs. This volume is pivotal for comprehending the
microphysical behavior of ice particles within mixed-phase
clouds. As Hashino and Tripoli (2011a) explain, the cir-
cumscribing sphere volume of an ice particle is instrumen-
tal in forecasting the mass–dimension (m–D) relationship.
The AMPS model utilizes functions that interlink the pre-
dicted sphere volume with the diagnosed aspect ratios, semi-
axis lengths, and the particle’s maximal extent. Each mass
bin’s circumscribing sphere volume, a key PPV, is integral to
these prognostications. The model assumes a consistent geo-
metric form across microphysical processes, transferring the
concentration-weighted circumscribing sphere volume be-
tween mass bins as per the collection process. This trans-
fer is essential to ascertain the circumscribing sphere volume
of representative hydrometeors, thereby ensuring an accurate
representation of the ice particles’ physical properties. More-

over, this factor critically influences the determination of the
effective diameter. The formulation for calculating Vcs de-
pends on the particle type: for most ice particles, it is deter-
mined by the equation ks(la,sm)3(1+α2)3/2 assuming a cylin-
der, where ks = 4π/3, and α represents the aspect ratio (AR)
of the ice particle defined as the ratio of the vertical semiaxis
length (lc,sm) to the horizontal semiaxis length (la,sm). How-
ever, for graupel, it is computed using ks(la,sm)3max(1,α3)
assuming an ellipsoid.

It is important to highlight that while categorizing solid
hydrometeors into specific types and habits is not obligatory
for conducting SHIPS microphysics simulations, it greatly
improves the model verification process. This is especially
valuable because observational data are frequently organized
based on these conventional classifications, facilitating more
robust model comparisons. Given this capability, we con-
clude that AMPS is well suited to investigate the impact of
varying CCN and INP conditions on particle shape.
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2.3 PAMTRA (radar forward simulator)

The equivalent radar reflectivity factor denoted as Ze, char-
acterizes the collective scattering properties of a volume of
scatterers, such as atmospheric precipitation particles, rather
than just a single object. This factor is crucial in identify-
ing and quantifying precipitation events by enabling the de-
tection of radar signal reflections from these particles. The
magnitude of Ze is influenced by several factors: the size
and concentration of the precipitation particles, their com-
position, and the frequency of the radar signal.

To convert the model data into radar variables, we utilize
PAMTRA, a powerful tool designed for simulating and re-
trieving microwave radiative properties in the atmosphere.
Serving as a forward model, PAMTRA allows the interpreta-
tion of data from diverse passive and active microwave sen-
sors, including radars and radiometers, used for observing
and studying precipitation and other atmospheric phenom-
ena. PAMTRA incorporates crucial factors such as cloud and
precipitation scattering as well as gas absorption and facil-
itates comprehensive analysis of remote sensing data from
satellite, airborne, and ground-based platforms. Numerous
studies have leveraged PAMTRA to investigate precipitation
processes, cloud microphysics, and remote sensing of atmo-
spheric variables, establishing it as an invaluable resource for
researchers and atmospheric scientists engaged in the field of
radiative transfer and remote sensing (Maahn et al., 2019; Ori
et al., 2020; Schnitt et al., 2020; von Lerber et al., 2022).

PAMTRA offers a full-bin interface with several benefits,
which can directly convert spectral bin model data or in situ
measurement for each size bin to radar variables. This con-
version facilitates the transfer of crucial information, such
as mass, density, number concentration, terminal velocity,
cross-sectional area, AR, and particle size distribution, with-
out the need for further assumptions. In contrast, a bulk mi-
crophysics model provides hydrometeor mixing ratio in one-
moment microphysics models (e.g., Baldauf et al., 2011) or
mixing ratio and number concentration in two-moment mi-
crophysics models (e.g., Seifert and Beheng, 2006), requiring
assumptions about particle size distribution, mass–size rela-
tions, and terminal velocity in PAMTRA. In the context of
the spectral bin model AMPS, the terminal velocity for the
sedimentation of a prognostic variable for a specific bin is
determined by considering the mass, concentration, and the
particular type of PPVs within that bin (Hashino and Tripoli,
2007). Radar reflectivity factor ze (mm6 m−3) is obtained by
integrating the normalized particle size distribution (PSD)
n(D) over the entire range of particle sizes D,

ze =

∫
1018σB(D)n(D)

λ4

π5|Kw|
2 dD, (1)

where λ is the wavelength in meters, |Kw| corresponds
to the dielectric factor of water, and σB(D) stands for
the backscattering cross-section of individual hydrometeor
particles in square meters (m2). Typically, radar reflectiv-

ity is used in logarithmic units converted with Ze(dBZ)=
10log10ze(mm6 m−3).

It is standard practice to use the value for liquid water
at centimeter wavelengths (|Kw| = 0.93 at Ka-band; Ulaby
et al., 1981) regardless of whether ice or liquid clouds are
observed. However, |Kw| is also frequency dependent. This
study employs the self-similar Rayleigh–Gans approxima-
tion (SSRGA) parameterization proposed by Hogan et al.
(2017) for the backscattering cross-section σB(D) calcula-
tion. This parameterization is determined by five dimension-
less parameters: αe, K , β, γ , and ζ . The AR of the particles
is represented by αe, whereas K measures the mean mass
distribution of the particle along the propagation direction
and is referred to as the kurtosis parameter. The mass fluc-
tuations around the mean mass distribution are described by
β and γ , which represent the power law prefactor and expo-
nent, respectively. ζ is a correction term for the power spec-
trum of the smallest wavenumber. We choose the SSRGA
coefficients depending on the normalized particle rime mass
fraction following Maherndl et al. (2023).

3 Model description and simulation setup

3.1 Initial profile

We selected a one-dimensional mixed-phase stratocumulus
case for our experiments with the KiD-AMPS framework. To
minimize the effects of the microphysics schemes, the tem-
perature field is kept constant. The vertical velocity demon-
strates repeated up–down oscillation, and an additional vapor
source is supplied to artificially recreate a quasi-steady stra-
tocumulus condition. The vertical velocity is given as

w(z, t)=

 w1
z
z1

(
1− exp

[
−

(
z−z1
z2

)2
])

sin(πt/t1) , if z < z1

0.0, otherwise
(2)

and the additional forcing

dq
dt add

(z, t)=
dq
dt add

(z,0)=


Acos

(
1.25π

2

)
, if z < z3+ z4,

Acos
(
z−z3
z4

π
2

)
, if z3+ z4 < z < z3

+1.25z4,

(3)

and A satisfies
z5∫

0

dq
dt add(z,0)dz= fq/3600. (4)

The parameters z1, z2, z3, z4, and z5 are set to 450, 200,
400, 100, and 1000 m, respectively. Similarly, the values of
ω1, t1, and fq are set to 1.0 m s−1, 600 s, and 5 mm h−1, re-
spectively. The initial potential temperature and specific hu-
midity profile are displayed in Fig. 3. This implies that the
cloud’s top region exhibits a temperature of approximately
−20 °C, whereas the lowermost part of the cloud shows a
temperature of−15 °C. Importantly, the profiles were specif-
ically crafted to emulate a mixed-phase stratocumulus layer,
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Figure 3. The initial condition of the (a) potential temperature θ
(K) and (b) specific humidity qv (g kg−1) profile in the KiD-AMPS
simulation.

drawing inspiration from the Global Energy and Water Cy-
cle Experiment Cloud System Study (GCSS) Surface Heat
Budget of the Arctic Ocean (SHEBA) intercomparison, a
choice substantiated by previous studies (Klein et al., 2009;
Morrison et al., 2011; Fridlind et al., 2012). This selection
was made with the deliberate intent of aligning our study’s
environmental conditions with well-established benchmarks,
thereby enabling seamless comparisons with other investi-
gations centered around similar Arctic settings. The GCSS–
SHEBA intercomparison is widely acknowledged for pro-
viding meticulously documented atmospheric conditions that
faithfully represent Arctic stratocumulus clouds, rendering it
an ideal resource for our initial profiles.

3.2 Experimental designs (CCN and INPs)

This study aimed to investigate the impact of varying initial
concentrations of CCN and INPs on the formation and evolu-
tion of clouds. It is widely recognized that aerosols can sig-
nificantly influence cloud formation and evolution, with their
role in these processes depending on factors such as size,
composition, and concentration. It should be noted that while
aerosols can act as a source of INPs, not all aerosols possess
this capability. INPs are particular types of particles capable
of initiating ice crystal formation at temperatures below 0 °C.
The precise composition and physical properties of INPs can
considerably vary based on specific conditions, with mineral
dust, biological particles (e.g., bacteria and fungi), and cer-
tain anthropogenic particles (e.g., industrial emissions) be-
ing the most prevalent sources of INPs (Hoose and Möhler,
2012). For this research, we employ ammonium sulfate as
CCN and assume that the insoluble portion of all aerosols
consists of montmorillonite as INP sources. Hashino et al.
(2020) demonstrated that the volume-dependent Bigg’s im-
mersion method (Diehl and Wurzler, 2004) is well suited
for characterizing the ice nucleation process. Consequently,
we adopt Bigg’s immersion freezing method in this study as
well. For further details on ice nucleation schemes, de Boer

et al. (2010, 2013) and Hashino et al. (2020) can be referred
to.

Within the AMPS model, aerosol particles are represented
by lognormal size distributions, which provide comprehen-
sive coverage of their size range. In the CCN activation
scheme, the particle size distribution is divided into 10 bins,
and for each bin, the critical supersaturation value is individ-
ually computed. As the iteration proceeds, bins that exhibit a
critical supersaturation below the threshold of environmental
supersaturation are identified and subsequently transferred to
the liquid spectrum. This methodology ensures the appropri-
ate incorporation of bins in the liquid phase, leading to a
faithful depiction of cloud microphysics within the AMPS
model. As previously mentioned, montmorillonite particle
number concentration serves as an INP proxy for this sim-
ulation. For the present study, we conduct sensitivity analy-
ses in this study by altering CCN and INP proxy concentra-
tions across an extensive range, from extremely low to ex-
ceptionally high levels, as illustrated in Table 2. The initial
CCN concentrations for these sensitivity simulations are set
at 10, 50, 500, 1000, and 5000 cm−3 (denoted as CCN10,
CCN50, CCN500, CCN1000, and CCN5000, respectively).
For each CCN condition, simulations are carried out with
initial INP particle concentrations of 0.001, 0.1, and 10 L−1,
respectively, labeled INP0.001, INP0.1, and INP10. A simi-
lar range for the experimental setup was also selected in the
sensitivity study of Fan et al. (2017). The authors further em-
phasize that in heavily polluted regions like China and India,
where CCN concentrations exceeding 1000 cm−3 are preva-
lent, such high values hold significant implications for pre-
cipitation extremes and water cycles. Choudhury and Tesche
(2023) provide a comprehensive global multiyear dataset of
height-resolved concentrations of cloud condensation nuclei
(CCN) categorized by aerosol types. These estimates are de-
rived from the spaceborne lidar instrument aboard the Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observation
(CALIPSO) satellite. Notably, recent studies have demon-
strated that the levels of extreme CCN concentrations in
heavily polluted regions can exceed 5000 cm−3. The selected
INP range is well motivated with respect to the variability
that can be found in existing in situ and remote sensing stud-
ies of INP concentrations. Specifically, we based the decision
for the lowest value of INP concentration on the values re-
ported for the free troposphere over the Southern Ocean site
of Punta Arenas, Chile (Radenz et al., 2021). The selected
maximum value of INP concentration of 10 L−1 can, e.g., be
observed in the case of strong Saharan dust outbreaks in the
Mediterranean region, as reported for instance by Ansmann
et al. (2019). The range also agrees well with in situ mea-
surements, as reported by DeMott et al. (2010).

In total, we conducted 15 experiments, and from this set,
we specifically selected five representative cases (EXP1–5)
for detailed analysis in Sect. 4.1 of the Results section (see
Table 2). These selected cases encompass clean, pristine, and
polluted scenarios, achieved by varying the concentration of
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Table 2. Definition of the EXP1–5 experiments referred to in the re-
mainder of this study. The simulations are conducted using various
concentrations of CCN and INP aerosols.

CCN [cm−3]

10 50 500 1000 5000

0.001 X EXP3 X X X
INP [L−1] 0.1 EXP4 EXP2 EXP5 X X

10 X EXP1 X X X

CCN and adjusting the concentration of INPs to be 100 times
smaller and 100 times larger than the commonly observed
value of 0.1 L−1 in Arctic mixed-phase clouds. The results
of the sensitivity test, covering all cases, are presented in
Sect. 4.2. Additionally, Sect 4.3 showcases the outcomes of
coupling typical EXP1–5 cases with PAMTRA for radar re-
trieval analysis.

4 Results

4.1 Comparative analysis of CCN and INP effects on
mixed-phase clouds

We analyze the evolution of cloud formations and the pro-
gression of hydrometeors by altering the initial CCN and INP
concentrations. In this section, our primary focus is on cases
EXP1–5 (see Table 1), which represent the most contrasting
experimental scenarios among the 15 cases examined.

Figure 4 presents the temporal evolution of cloud develop-
ment, specifically focusing on the average column value over
time. This figure provides valuable insights into the progres-
sion of cloud formation in relation to the initial conditions,
considering the variations in CCN and INPs. In Fig. 4a, we
present the effective diameter values of ice particles obtained
from the simulations. In this study, the effective diameter of
ice particles, denoted as Deff,ice, is calculated using Eq. (5).

Deff,ice = 2
√
Vcs/(πlc,sm) (5)

The mean effective diameters after t = 100 min for EXP1,
EXP2, EXP3, EXP4, and EXP5 are 79, 293, 331, 275, and
346 µm, respectively. It is observed that as the concentration
of INPs increases, there is a corresponding decrease in the ef-
fective diameter of ice particles, as evident in EXP1, EXP2,
and EXP3. Conversely, an increase in CCN concentration re-
sults in a slight increase in the effective diameter, as observed
in EXP4 and EXP5. The simulated effective diameters of ice
particles span a wide range, ranging from small values in the
tens of micrometers to larger values in the range of thousands
of micrometers. These findings are consistent with previous
observations indicating effective diameters within the range
of 300 to 800 µm (Morrison et al., 2011).

AMPS is comprised of two separate bin spectra. The first
40 bins represent the liquid phase and are categorized as ei-

Figure 4. Time series of key variables: (a) effective diameter of
ice crystals (Deff,ice) with the dotted line representing the average
value from 100 min, (b) ice number concentration (Nice), (c) liq-
uid number concentration (Nliq), (d) mixing ratio of ice (mice), and
(e) mixing ratio of liquid (mliq). The gray-shaded regions corre-
spond to the ranges derived from observational data obtained during
the SHEBA campaign.

ther cloud or rain, while the next 20 bins represent the ice
phase. The mixing ratio and number concentration of liq-
uid and ice particles are found to remain in a quasi-steady
state, with the exception of EXP1. Moreover, the experi-
mental results in Fig. 4b for the number concentration of
ice (Nice) in EXP2, EXP4, and EXP5, ranging from 0.3 to
1.7 L−1 (gray zone), are in agreement with previous obser-
vations from the SHEBA campaign of mixed-phase clouds
(Morrison et al., 2011; Fridlind et al., 2012). These results
further suggest that the experiment accurately represents typ-
ical mixed-phase clouds. Figure 4 indicates that as INP con-
centrations increase in EXP1, EXP2, and EXP3, both Nice
and mice significantly increase, while Nliq and mliq decrease.
Conversely, the mean mice is slightly higher in experiments
with increased CCN (EXP4, EXP2, and EXP5) despite the
higher Nliq and mliq, consistent with findings from earlier
studies employing two-moment bulk microphysics simula-
tions (Solomon et al., 2018) and experimental investigations
(Desai et al., 2019).

The impact of CCN and INP perturbations on cloud evo-
lution is illustrated in Fig. 5. It is observed that increasing
CCN concentration can significantly affect the relationship
between liquid water and ice mixing ratios. In response to
the increased concentration of INPs, the ice water content in-
creased, as well. In the high-INP scenario (EXP1), the con-
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Figure 5. Vertical distribution comparison of (a) liquid water content (LWC) (g kg−1) and (b) ice water content (IWC) ( kg−1) across
EXP1–5.

version of water droplets into ice crystals occurs more rapidly
and efficiently. Consequently, this case predicts almost fully
glaciated clouds. When the number of CCN increases, more
cloud droplets are formed from within the reservoir of avail-
able water vapor. This can lead to an increase in the number
concentration of cloud droplets within the cloud as shown
in Fig. 4c, which can, in turn, reduce the size of individ-
ual cloud droplets. This reduction in droplet size increases
the altitude of the mixed-phase cloud base and reduces the
amount of precipitation, which can result in an increase in
cloud water mass, given that the cloud is not already sat-
urated with the available water vapor. In summary, the al-
teration of cloud particle concentration due to perturbations
in the aerosol concentrations leads to adjustments in cloud
and precipitation patterns, even in the absence of cloud–
dynamics interaction, as previously observed in studies by
Seifert et al. (2012), Boucher et al. (2013), Heyn et al. (2017),
Possner et al. (2017), Solomon et al. (2018), and Zhang et al.
(2018).

Next, we investigate the response of the ice-phase pro-
cesses of AMPS to the aerosol perturbations. In the AMPS
model, the mass of an ice crystal is partitioned into various
process-oriented categories, including pristine crystal mass,
aggregated mass, riming mass, and melted water mass, which
are tracked as PPVs. The bin components are created through
microphysical processes that act upon them, including va-
por deposition onto ice crystals, which produce ice crystal
mass; melting processes, which produce liquid mass; aggre-
gation processes, which generate aggregate mass; and rim-
ing processes, which produce rime mass. The sum of these

Figure 6. Temporal evolution comparison of the mean mixing ra-
tios of ice processes with the dotted line representing the average
value from 100 min, including melting, riming, aggregation, and
crystal across EXP1–5. The aggregation process is abbreviated as
“agg.”.
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four components makes up the total mass. In Fig. 6, the mix-
ing ratio of ice water content is presented separately for the
four ice-phase processes and for each of the five selected ex-
periments. High concentrations of INPs lead to an increased
number concentration of ice particles (see Fig. 4) and conse-
quently to increased ice water mass, as the presence of INPs
allows the formation of ice crystals to occur more readily, re-
sulting in an increased number of collisions and coalescence
among the ice crystals. The results demonstrate that as the
number of aerosols and concentration of INPs increase, there
is a corresponding increase in the frequency of aggregation
due to the higher concentration of ice crystals that promote
this process. Conversely, it is observed that the occurrence
of riming is reduced when there is a shortage of sustained
supercooled liquid layers.

The concentration of CCN directly impacts the conden-
sation of water vapor into liquid droplets. With an increase
in CCN concentration, a greater number of smaller liquid
droplets is formed. However, these smaller droplets have
lower inertia and are less effective at colliding with ice
particles. As a result, the efficiency of the riming process
decreases as the number of small supercooled droplets in-
creases. This observation aligns with a previous observation
study conducted by Borys et al. (2003). Additionally, the
persistence of smaller droplets that freeze before colliding
with ice particles and before being able to contribute to rim-
ing can grow via the Bergeron–Findeisen process (Bergeron,
1935; Findeisen, 1938). This process, which operates most
efficiently within the temperature range of −15 to −20 °C,
occurs in mixed-phase clouds where both supercooled water
droplets and ice particles coexist. In the Bergeron–Findeisen
process, water vapor tends to preferentially condense onto
the ice particles due to the lower saturation vapor pressure
over ice compared to water. As a result, the preferential
growth of ice particles leads to an increase in the number
of ice particles and a decrease in riming mass. Figures 4 and
5 illustrate how elevated CCN concentrations lead to an in-
crease in the number of ice particles, specifically EXP4 and
EXP5, and a decrease in riming efficiency.

Therefore, fluctuations in CCN and INP concentrations
have significant effects on precipitation formation by modi-
fying the amount of supercooled liquid water. The results in-
dicate that polluted clouds exhibit a reduced size and higher
amounts of supercooled liquid water, resulting in precipita-
tion preferably formed through ice-phase aggregation rather
than riming processes. Conversely, pristine clouds character-
ized by a larger size and lower amounts of supercooled liquid
water predominantly generate precipitation through riming
processes.

The frequency of ice particle freezing is influenced by the
sizes of liquid particles that freeze most frequently in each
scenario. The parameterization of immersion freezing takes
into account the volume of the droplets, indicating that larger
droplets have a higher probability of freezing. However, the
number concentration of the droplets also plays a role, with

Figure 7. The mean ice particle size distribution averaged after t =
100 min.

Figure 8. Comparison of the temporal evolution of the mean aspect
ratio (AR) with the dotted black line representing the average value
from 100 min across EXP1–5.

smaller droplets being more prevalent. Consequently, draw-
ing definitive conclusions about the overall effect becomes
challenging. Figure 7 illustrates the size distribution of ice
particles based on number weighting. The results demon-
strate that an increased concentration of INPs corresponds
to a significant abundance of small ice particles. When com-
paring EXP1 and EXP2, it is worth highlighting that despite
EXP1 showing a smaller average size, it still exhibits a sub-
stantial population of small particles. This is further com-
pounded by the aggregation process, which plays a pivotal
role in transforming these initially smaller hydrometeors into
relatively larger ice particles.

In this study, Fig. 8 presents the correlation between the
number-weighted AR of ice particles and the concentrations
of INPs and CCN in mixed-phase clouds. Notably, the re-
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Figure 9. Comparative analysis of the probability of (a) ice habit
classification, including plate, dendrite, column, planar polycrys-
tal (pploy), columnar polycrystal (cpoly), and irregular polycrystals
(irpoly), and (b) mean AR and standard deviation (with error bars)
for plate and irregular polycrystals during the 2 h period following
100 min across EXP1–5.

sults indicate that regardless of the conditions, the ice parti-
cles exhibit an oblate-like shape with a specific AR within
the temperature range from −20 to −16 °C. Furthermore,
the AR decreases as the INP concentration increases. This
is attributed to the fact that higher INP concentrations pro-
mote the formation of smaller and more compact ice crys-
tals with extreme ARs, in contrast to larger crystals that
develop in low-INP environments. The smaller-sized crys-
tals exhibit a more pronounced AR due to the non-linear
feedback

(
dlc
dla
= 0(T )lc/la

)
, where 0 represents the inher-

ent growth ratio of ice crystals, reflecting the current atmo-
spheric conditions and the change in the mass of the ice
particle (Chen and Lamb, 1994; Hashino and Tripoli, 2007;
Hashino et al., 2020).

Similarly, in the scenario with low CCN concentration
(EXP4), ice particles undergo growth through the deposition
and riming process, resulting in more spherical shapes. Con-
versely, in the high-CCN scenario, the freezing of droplets
through the immersion mode occurs at smaller sizes, leading
to the nucleation of smaller ice crystals and the subsequent
formation of smaller ice particles. When comparing EXP4
and EXP5 in Fig. 7, an increase in CCN concentration is ob-
served to coincide with a significant rise in the concentra-
tion of smaller ice particles, accompanied by a decrease in
the abundance of larger ice particles around 1 mm. Conse-
quently, the overall average value exhibits a decreasing trend
with increasing CCN concentration, primarily driven by the
greater number of small ice particles. This phenomenon also
leads to an increase in ice water mass and the availability
of water vapor for ice particle growth, resulting in a higher
abundance of small ice particles and a slight decrease in the
AR, as illustrated in Fig. 8.

To gain a better understanding of the AR, we examined
the AR with each ice habit in detail. As shown in Fig. 9, the
ice particles in the mixed-phase clouds, where the tempera-
ture ranges from−20 to−16 °C, primarily exhibit an oblate-

like shape with AR (α) < 1, consisting of plates and irregu-
lar polycrystal habits. The result agrees with earlier findings
from laboratory studies (Bailey and Hallett, 2009) and ob-
servations (Auer and Veal, 1970). Most droplets that freeze
close to −20 °C are polycrystalline in nature, as observed in
polycrystalline ice habit frequency from in situ observations
(Bailey and Hallett, 2009).

To clarify, in the AMPS model, if the maximum dimen-
sion of the ice crystal is less than 20 µm and the temperature
is below −20 °C, the growth regime is determined using the
corresponding cumulative relative frequency of habits and a
random number generator. In this case, small ice crystals can
exhibit growth modes that differ from the habit diagnosed at
the start of the time step. However, for temperatures above
−20 °C, it is assumed that polycrystals do not form. Once
the maximum dimension of the ice crystal exceeds 20 µm,
it is assumed to follow the growth of the diagnosed habit
at the beginning of the time step. This indicates that most
irregular polycrystals observed in this experiment primarily
formed within the initial cloud top layer, where temperatures
are near −20 °C. The result is consistent with the findings of
Hashino et al. (2020).

Figure 9a provides insights into the predominant shape of
ice particles, with plates representing the majority of the par-
ticles. EXP1 exhibits a plate fraction of 68 %, while the re-
maining experiments range from 75 % to 85 %. As the con-
centration of INPs increases, a greater number of ice par-
ticles forms, as shown in Fig. 4. Over time, the initially
formed plate-shaped ice crystals undergo a transformation
influenced by the aggregation process, resulting in the emer-
gence of irregular polycrystals. Notably, the AR of plates
gradually decreases compared to that of irregular polycrys-
tals as the INP concentration increases. In EXP1, as depicted
in Fig. 8, the AR demonstrates an increase after 200 min, pri-
marily attributed to the formation of irregular polycrystals.
This phenomenon arises from the aggregation process in-
volving newly formed small ice particles and pre-existing ice
particles. The resulting irregular polycrystals exhibit a higher
AR compared to the plate-shaped crystals, contributing to an
overall increase in the average AR. In EXP1, the aggregation
process becomes more pronounced, leading to the formation
of fully glaciated clouds and a notable increase in the occur-
rence of irregular polycrystals. A comparison between EXP4
and EXP5 in Fig. 9a reveals similar proportions of the plate
and irregular polycrystal shapes. However, Fig. 9b shows that
the AR is smaller in EXP5. This observation is consistent
with previous results, indicating that higher concentrations
of CCN lead to higher ice particle concentrations, resulting
in a lower AR.

In conclusion, Fig. 9 provides compelling evidence of a
correlation between the concentration of INPs, CCN, and the
AR of ice particles. The findings indicate a decrease in the
AR as the concentrations of INPs and CCN increase.
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4.2 Sensitivity test

In Sect. 4.1 of this study, the primary focus is the analysis
and comparison of the five most frequently observed scenar-
ios, exploring the changes observed over the entire duration
of the experiment. Now, in Sect. 4.2, the focus shifts to ex-
amining the average values, specifically excluding the initial
100 min for each experiment. The objective of this section is
to investigate the tendencies and influences of individual ice
microphysical processes, as well as to assess the impacts of
varying dynamics and initial INP types across a total of 15
setups.

Figure 10 illustrates the mean freezing rate of ice particles
under different CCN and INP scenarios. In the AMPS model,
the source terms of ice mass include ice nucleation, vapor
deposition, aggregation, riming, hydrodynamic breakup, and
melting–shedding. In mixed-phase clouds, ice particles pri-
marily grow through vapor deposition, a process in which
water vapor molecules freeze onto their surface. According
to the experiments, deposition is the primary process for ice
growth, further enhanced by increasing CCN and INP con-
centrations. The riming and aggregation processes are the
next significant contributors, followed by the nucleation pro-
cess. The hydrodynamic breakup and melting–shedding pro-
cesses are not activated in this experiment.

The increase in INP concentration amplifies the contact
nucleation process, aggregation process, and subsequent de-
positional growth, while the riming-related growth and im-
mersion nucleation process show a decline. At low INP con-
centrations, the riming-related growth is comparable to depo-
sition. However, as the INP concentration rises, the contribu-
tion of riming diminishes considerably, as discussed earlier.
Consequently, the availability of liquid becomes a limiting
factor for riming. The contribution of riming exhibits a sig-
nificant decrease with increasing CCN concentration, except
in low-INP conditions. Notably, when a substantial differ-
ence exists, the difference can exceed 10 times the values
observed in between different scenarios. The major micro-
physical processes, including vapor deposition, riming, and
nucleation, exhibit high sensitivity to INPs. Their sensitivity
becomes more significant in high-INP conditions, accompa-
nied by significant changes in dynamics and thermodynam-
ics. To investigate the impact of dynamic factors, we de-
creasedw1 from 1.0 to 0.5ms−1 in Eq. (2), leveraging the ca-
pability of KiD-AMPS to differentiate between dynamic and
microphysical effects. The results confirm that an increase in
w1 amplifies the vapor deposition rate, aggregation rate, and
contact nucleation processes while reducing the immersion
freezing rate. However, the overall trends exhibit a similar
pattern.

According to Hashino et al. (2020), the volume-dependent
Bigg’s immersion method (Diehl and Wurzler, 2004) is a
suitable approach for modeling mixed-phase clouds (see
Eq. 1 in Hashino et al., 2020). To account for this infor-
mation, we adapt Bigg’s immersion freezing scheme for our

study. In this scheme, the freezing rate is strongly influenced
by the droplet mass as well as Bh and temperature. Bh rep-
resents the freezing efficiency of insoluble material in the
droplet and is currently set to 3.2× 10−5 cm−3 for montmo-
rillonite, as reported by Diehl and Wurzler (2004). To explore
the effects of varying Bh, we multiplied the parameter by a
factor of 10 and compared the resulting changes in freezing
rates. The findings are presented in Fig. 11, indicating that
an increase in Bh results in an increase in immersion freez-
ing rate, aggregation production rate, and a minor increase in
vapor deposition rate, while the effect of contact nucleation
decreases. Nonetheless, the vapor deposition process remains
the dominant factor, impacting the AR by reducing it as Bh
increases. This is similar to the effect of INP increase, which
generates smaller AR. The prominence of this effect can be
attributed to the enhanced production of small droplets, as
depicted in Fig. 7.

The relationship between CCN concentration and the rate
of ice production through immersion freezing in mixed-
phase clouds is complex and depends on multiple factors.
In theory, an increase in CCN concentration can result in the
formation of more cloud droplets. If these droplets become
supercooled, they can potentially serve as sites for ice for-
mation through immersion freezing when INPs are present.
This suggests a potential increase in the rate of ice produc-
tion with higher CCN concentration. However, the results re-
veal a decrease in the contribution of immersion nucleation
with increasing CCN concentration. This can be attributed
to the twofold effect of increasing CCN. On the one hand,
it can lead to a higher number of cloud droplets available for
freezing. On the other hand, it tends to produce smaller cloud
droplets due to increased competition for available water va-
por, known as the Twomey effect (Twomey, 1974). Smaller
droplets require colder temperatures to freeze, making them
less likely to initiate ice formation. As a result, an increase
in CCN concentration does not lead to a corresponding in-
crease in the rate of ice production if the droplets are too
small to freeze. Moreover, as the concentration of INP in-
creases, the mass contribution of the immersion freezing rate
also decreases. As depicted in Fig. 5, an increase in INP con-
centration leads to a decrease in LWC, as well as a reduction
in the areas of ice particles and coexistence. The immersion
freezing rate is influenced by the average mass of droplets in
the same mass bin and location. Therefore, it is evident that
the immersion freezing rate also declines with increasing INP
concentrations.

To sum up, the relationship between aerosol concentration
and the rate of ice production through immersion freezing
is intricate and influenced by various factors, including the
properties and concentration of CCN and INPs, temperature,
and supersaturation level within the cloud. To definitively de-
termine the actual effect of increasing INPs and CCN on the
rate of ice production through contact freezing and immer-
sion freezing, careful cloud microphysical modeling or ob-
servations are necessary.
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Figure 10. Comparison of mean freezing process rates, including (a) vapor deposition, (b) aggregation, (c) riming, (d) contact nucleation,
and (e) immersion nucleation across 15 cases. The model outputs for the process rates are recorded every 1 min, and the data are spatially
averaged over the domain grid points, excluding the first 100 min. The dashed line represents the value of w1 when we decrease from 1.0 to
0.5 ms−1, as defined in Eq. (2).

Figure 11. Comparison of the mean freezing process rates, including vapor deposition, riming, contact nucleation, and immersion nucleation,
across 15 cases. The data presented in the plots were processed using the same methodology as described in Fig. 10. The dashed line in the
plots represents the enhanced value of the immersion freezing rate (Bh= 3.2× 10−4 cm−3) as defined in Eq. (1) in the study by Hashino
et al. (2020).

4.3 PAMTRA coupled with AMPS

In this final result section, the application of PAMTRA to the
EXP1–5 simulations is elaborated on to demonstrate the sen-
sitivity of radar observations to changes in CCN and INPs.

As radar reflectivity is determined by multiple parameters,
including size, density, and AR (see Eq. 1), forward simu-
lations are required in order to evaluate the effects of INP

and CCN perturbations on observable parameters such as the
radar reflectivity. The results of the forward simulations for
the five experiments, as explained in Sect. 2.3, are shown
in Fig. 12. The spectral bin model reveals a clear decrease
in particle size as aerosol loads increase, which leads to a
decrease in radar reflectivity due to the strong dependence
of backscattering on particle size to the power of 6. How-

https://doi.org/10.5194/acp-24-5737-2024 Atmos. Chem. Phys., 24, 5737–5756, 2024



5750 J. Lee et al.: Simulations of the impact of CCN and INP perturbations

Figure 12. Comparison of the distribution and mean vertical profile
of the forward-modeled radar reflectivity factor Ze (dBZ) at Ka-
band using the PAMTRA across EXP1–5.

ever, as shown in Fig. 12, the radar reflectivity increases with
increasing INP concentrations, which is consistent with ob-
servations (Zhang et al., 2018; Radenz et al., 2021). The in-
crease in reflectivity is attributed not only to changes in par-
ticle size but also to alterations in number concentration, AR,
and other parameters.

In the context of analyzing radar reflectivity data, it is es-
sential to determine the mean vertical profile in order to un-
derstand the atmospheric structure and characteristics at var-
ious altitudes. This information provides valuable insights
into the vertical distribution of hydrometeors. Examining the
profiles in Fig. 12, we observe a noticeable increase in reflec-
tivity at the cloud bottom (at around 300 m) as the CCN con-
centration rises. This increase can be attributed to the greater
number of cloud droplets resulting from the higher CCN con-
centration. It is noteworthy that EXP5 displays a remarkably
low standard deviation in the cloud bottom at 300 m, indicat-
ing a relatively uniform distribution of particle sizes in that
region. Consistent with expectations, an increase in the INP
concentration leads to elevated reflectivity across different
altitude levels, accompanied by an increased standard devia-
tion. Higher mean reflectivity values in EXP1 show a larger
abundance of hydrometeors in the observed scenarios. How-
ever, an intriguing finding is the contrasting pattern observed
in the cloud top, where the standard deviation demonstrates
a decrease.

Table 3 presents the comprehensive statistics of reflec-
tivity, detailing the total (temporal and vertical) mean (µ),
standard deviation (σ ), and skewness (M̃). Our examina-
tion of radar reflectivity data unveils distinct statistical pat-
terns that are influenced by the concentrations of CCN and

INPs. For instance, we find that the mean radar reflectiv-
ity is −10.09 dBZ, accompanied by a standard deviation of
5.60 dBZ and a skewness of 1.19 for the reference mixed-
phase stratocumulus cloud case in EXP2. These values indi-
cate a relatively symmetrical distribution with a slight right-
ward skew. As the CCN concentration increases while main-
taining the same INP level in EXP5, we observe a marginal
rise in the mean reflectivity to −9.87 dBZ, a decrease in the
standard deviation to 5.0 dBZ, and an increase in the skew-
ness to 1.71, suggesting a more pronounced skewness in the
distribution.

On the other hand, where the INP concentration is ele-
vated to 10 L−1 at a CCN concentration of 50 cm−3 in EXP1,
we note a significant increase in the mean reflectivity to
4.65 dBZ, a larger standard deviation of 12.47 dBZ, and a
substantially higher skewness of 2.87. These findings signify
a more dispersed and highly skewed distribution, possibly in-
dicating the presence of different hydrometeor types and size
variations, including precipitation particles. In this study, this
is linked to the aggregation of ice particles. Hydrometeors
are plate and irregular polycrystals, most of which are plates.
However, as depicted in Fig. 7, the size distribution of ice
particles is quite diverse in EXP1. Conversely, when the INP
concentration is very low at 0.001 L−1 while maintaining a
CCN concentration of 50 cm−3, the mean radar reflectivity
measures −11.83 dBZ, the standard deviation is 9.12 dBZ,
and the skewness is 0.36, implying a homogeneous distri-
bution with a slight leftward skew and a low number of ice
and liquid particles. Comparing the mean Z values between
EXP2 and EXP3 shows minimal differences. However, dis-
tinct variations in distribution are observed based on the val-
ues of σ and M̃ .

5 Summary and conclusions

This study examines how perturbations in CCN and INP con-
centrations affect the shape of ice particles in mixed-phase
clouds. The results reveal that both CCN and INP concentra-
tions play a vital role in determining the shape of ice particles
and influencing cloud microphysics. The effective diameter
of ice particles, which indicates their size, is found to be in-
fluenced by the concentrations of CCN and INPs. Higher INP
concentrations result in smaller effective diameters, while in-
creased CCN concentrations lead to a slight increase in size.
The size distribution of ice particles ranges from tens of mi-
crometers to thousands of micrometers, consistent with pre-
vious observations. Analysis of the ice particle shapes shows
that oblate-like crystal shapes are most common in the tem-
perature range from −20 to −16 °C. However, a significant
presence of irregular polycrystals is observed, especially in
scenarios with high INP concentrations. In scenarios with
high INP concentrations, we observe a complex interplay of
nucleation, aggregation, and collision phenomena. These oc-
cur against a backdrop of dynamic changes in cloud stabil-
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Table 3. Statistical analysis of the radar reflectivity factor (Ze) (dBZ) distribution, which includes the computation of mean (µ), standard
deviation (σ ), and skewness (M̃) values. The data are spatially averaged over the grid points of the domain, excluding the initial 100 min.

CCN (cm−3)

(µ,σ,M̃) 10 50 500

0.001 EXP3 (−11.83, 9.12, 0.36)
INP (L−1) 0.1 EXP4 (−10.23, 5.70, 1.63) EXP2 (−10.09, 5.60, 1.19) EXP5 (−9.87, 5.05, 1.71)

10 EXP1 (4.65, 12.47, 2.87)

ity and limited LWC. Collectively, these processes lead to a
broader distribution of ice particle sizes, ranging from larger
to smaller, a pattern that is corroborated by our experimental
data. The AR of ice particles is affected by both CCN and
INP concentrations, with higher concentrations leading to
smaller AR values. This indicates that the concentrations of
CCN and INPs have an impact on the growth and shape of ice
particles in mixed-phase clouds. The relationship between
CCN concentration and ice particle shape is more complex
than that of INPs. Increased CCN concentrations promote
the formation of more cloud droplets but result in smaller
droplet sizes. As a result, the efficiency of the riming pro-
cess, where supercooled droplets collide with ice particles,
decreases with higher CCN concentrations. In conclusion,
the concentrations of CCN and INPs significantly influence
the shape and morphology of ice particles in mixed-phase
clouds. Higher INP concentrations lead to smaller and more
compact ice particles, while increased CCN concentrations
result in a decrease in the AR of ice particles. These findings
highlight the intricate connection between aerosol concen-
trations, microphysical processes, and ice particle shapes in
cloud systems. Accurate modeling and prediction of cloud
behavior and precipitation require a comprehensive under-
standing of these relationships.

In our study, we employed the radar forward simulator
PAMTRA to analyze simulation results and derive radar
variables, uncovering significant disparities in the findings.
When INP concentrations are at low to moderate levels, the
mean value of Ze remains relatively consistent, indicating a
stable trend. However, distinct variations are observed in the
Ze distributions characterized by µ,σ , and skew M̃ . There-
fore, for future observational studies investigating the impact
of aerosols on mixed-phase clouds, it is important to consider
incorporating Ze variability, under the condition that the ac-
tual cloud conditions align with the assumptions made in our
model. In scenarios with substantial differences in INP con-
centrations, we observed discrepancies of 5.5 dB. This find-
ing aligns with the results reported by Radenz et al. (2021),
where a difference of 5–10 dB was observed between conti-
nental (Leipzig) and pristine (Punta Arenas) locations within
specific temperature ranges. Furthermore, their study reveals
that the disparity in INP concentrations is at least 1 order of
magnitude higher and has the potential to be even greater if

the contribution of continental aerosols in Punta Arenas is
lower than the maximum assumed value.

The formation of ice crystals with different ARs has been
linked to variations in CCN and INP concentrations. How-
ever, it is important to acknowledge that factors such as tem-
perature, humidity, and wind shear can also have a signifi-
cant influence on ice crystal ARs (Barrett and Hoose, 2023).
Additionally, the choice of modeling schemes can introduce
sensitivity to these ratios. Interestingly, our findings show a
decrease in AR with increasing INP concentration, which
contradicts the results of a previous study by Ong et al.
(2022) where an increase in Bh led to an increase in AR.
Ong et al. (2022) also discussed the formation of colum-
nar crystals with an AR greater than 1, which they attributed
to slight variations in temperature conditions. Consequently,
the AR varied as the INP concentration increased. Moreover,
the occurrence of irregular polycrystals at approximately the
200 min mark highlights the intricate interplay between the
initial conditions, dynamics, and microphysics of the sim-
ulation in the high-INP case. This particular timing, which
is unique to our experiment, demonstrates the susceptibility
of ice particle formation processes to different conditions.
It is noteworthy that, given the consistent vertical wind and
humidity conditions established in our simulation, extend-
ing the duration would likely result in the persistence of ob-
served cyclical AR patterns rather than a stabilization of AR
values. The complex relationship between ice particle shape
and aerosol load is still not fully understood, and further re-
search is needed to unravel the underlying mechanisms gov-
erning ice crystal formation and ARs in different environ-
mental contexts.

The research employed the KiD model to investigate cloud
microphysics processes, but it is important to consider the
limitations of this one-dimensional framework. The simpli-
fied nature of the model may not fully capture the complexi-
ties and interactions observed in real three-dimensional cloud
systems. Additionally, focusing solely on individual micro-
physical processes within the model might overlook potential
uncertainties that arise from their interactions within larger-
scale weather models. It is crucial to interpret the findings
of this study while recognizing the limitations of the models
used, including the omission of key processes such as radi-
ation. The KiD model was developed to understand micro-
physics schemes without the inclusion of dynamic or radia-
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tive feedbacks, which play a significant role in cloud layer
heating, cooling, and their impact on cloud microphysics and
dynamics. Neglecting these processes could lead to inaccura-
cies in the representation of cloud temperature, water vapor
distribution, and vertical motions within mixed-phase clouds.

To address these limitations, future research will ex-
plore shape-integrated simulation model AMPS coupled with
three-dimensional dynamic cores such as the ICOsahedral
Non-hydrostatic (ICON; Zängl et al., 2015) modeling frame-
work. The simulation data can then be compared to observa-
tional radar data using a radar forward simulator, selecting an
observation dataset from field experiments. By incorporating
more sophisticated tools and remote sensing techniques, a
more comprehensive and accurate analysis of cloud behavior
can be achieved. The aim is to enhance cloud simulations by
incorporating these processes to improve realism and accu-
racy. Furthermore, there is a pressing need for future exper-
iments that address a more detailed distribution of INP and
CCN perturbations. Such studies aim to deepen our under-
standing of the dynamics of aerosol–cloud interactions. This
entails evaluating how aerosol perturbations influence the
evolution of idealized stratiform mixed-phase clouds, a nec-
essary step before a precise general assessment of aerosol–
cloud interactions can be realized. Such efforts will be instru-
mental in improving the realism and accuracy of cloud sim-
ulations by incorporating sophisticated modeling and remote
sensing techniques, thereby enhancing our ability to predict
cloud behavior and its implications for the climate accurately.
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