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Abstract. Process-oriented observational constraints for the anthropogenic effective radiative forcing due to
aerosol–cloud interactions (ERFaci) are highly desirable because the uncertainty associated with ERFaci poses a
significant challenge to climate prediction. The contoured frequency by optical depth diagram (CFODD) analysis
supports the evaluation of model representation of cloud liquid-to-rain conversion processes because the slope of
a CFODD, generated from joint MODerate Resolution Imaging Spectroradiometer (MODIS)-CloudSat cloud re-
trievals, provides an estimate of cloud droplet collection efficiency in single-layer warm liquid clouds. Here, we
present an updated CFODD analysis as an observational constraint on the ERFaci due to warm rain processes and
apply it to the U.S. Department of Energy’s Energy Exascale Earth System Model version 2 (E3SMv2). A series
of sensitivity experiments shows that E3SMv2 droplet collection efficiencies and ERFaci are highly sensitive to
autoconversion, i.e., the rate of mass transfer from cloud liquid to rain, yielding a strong correlation between the
CFODD slope and the shortwave component of ERFaci (ERFaciSW; Pearson’s R =−0.91). E3SMv2’s CFODD
slope (0.20± 0.04) is in agreement with observations (0.20± 0.03). The strong sensitivity of ERFaciSW to the
CFODD slope provides a useful constraint on highly uncertain warm rain processes, whereby ERFaciSW, con-
strained by MODIS-CloudSat, is estimated by calculating the intercept of the linear association between the
ERFaciSW and the CFODD slopes, using the MODIS-CloudSat CFODD slope as a reference.

1 Introduction

Single-layer, low marine warm clouds cover 25 % of the
ocean surface (Charlson et al., 1987) and exert a strong cool-
ing effect on climate due to their reflectivity (Hartmann et al.,
1992; Hartmann and Short, 1980; Ramanathan et al., 1989).
Aerosols modulate multiple radiative properties of low-level
warm clouds, including droplet number concentration (Nd),
liquid water path (LWP), geometric, cloud fraction, and life-
time, and their net impact on the cloud radiative forcing is
the most uncertain component of the climate system (e.g.,
Stevens and Feingold, 2009; Christensen et al., 2020; Glass-

meier et al., 2021). Though aerosols also exert a significant
influence on ice and mixed-phase clouds, aerosol–cloud in-
teractions (ACIs) make their largest contribution to global ra-
diative forcing via liquid water clouds (Bellouin et al., 2020).

In marine warm cloud regimes, an increase in aerosol
concentrations typically leads to increasing Nd. Given con-
stant condensed water content, enhanced aerosol concentra-
tions increase cloud albedo due to higher concentrations of
smaller cloud droplets through the so-called “Twomey ef-
fect” (Twomey, 1974). However, the cooling effect of in-
creased Nd can be offset or enhanced by competing aerosol-
mediated cloud properties such as cloud fraction and LWP.
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For example, increased numbers of smaller droplets can di-
minish cloud fraction by reducing cloud droplet sedimenta-
tion (Bretherton et al., 2007) and increasing cloud-top evap-
oration and dry air entrainment (Wang et al., 2003). On
the other hand, aerosols can also increase cloud fraction
and vertical extent by suppressing precipitation (Albrecht,
1989; Pincus and Baker, 1994). Christensen et al. (2020)
demonstrated that the impact of aerosol on low-level cloud
areal coverage depends on the stability of the atmosphere:
in thermodynamically stable lower tropospheric conditions,
increased aerosol results in increased cloud fraction, life-
time, and Nd, whereas in unstable conditions, entrainment
and evaporation offset Twomey effects, resulting in relatively
smaller changes to cloud radiative properties.

Earth system models (ESMs) are relied upon for estimat-
ing the global effective radiative forcing of aerosol–cloud in-
teractions (ERFaci) due to the dearth of observations from
the pre-industrial era. ESM estimates are challenged, how-
ever, by the lack of observational constraints on ERFaci and
the cloud processes that modulate ERFaci, which must be
parameterized due to the computational expense of explic-
itly resolving them. Mülmenstädt et al. (2020) proposed a
renewed focus on process-oriented observational constraints
as a solution to “equifinality”, whereby differing representa-
tions of cloud processes can reproduce observed state vari-
ables such as LWP and cloud fraction. The problem of equi-
finality renders many global long-term observations of state
variables useless for constraining ERFaci on their own. Mül-
menstädt et al. (2020) argue that constraints based on cloud
process observations are thus highly desirable as an alter-
native approach to state-variable-based constraints because
mitigating bias in a cloud process representation will im-
prove estimates of the response of the process to aerosols.
Process-oriented constraints on ERFaci are useful for quan-
tifying the sensitivity of ERFaci to a specific process or con-
straining the component of ERFaci that is affected by a pro-
cess, rather than for constraining ERFaci overall (Mülmen-
städt and Feingold, 2018). Recent examples of process-based
diagnostics include the Earth System Model Aerosol-Cloud
Diagnostics Package (ESMAC Diags) (Tang et al., 2022,
2023), which supports the evaluation of aerosol activation
processes, and Varble et al. (2023), who demonstrated mul-
tiple model–observation comparison approaches that target
processes affecting cloud albedo susceptibility using geosta-
tionary satellite data and surface-based observations. Chris-
tensen et al. (2023) applied ground-based measurements,
satellite retrievals, and meteorological reanalysis products in
a Lagrangian framework to evaluate multiple aerosol–cloud
processes in E3SM, including cloud condensation nuclei de-
position via precipitation and the temporal response in Nd to
aerosol perturbations.

In response to the demand for process-oriented constraints
on warm liquid cloud processes, we present a constraint
on the shortwave component of ERFaci (ERFaciSW) due to
autoconversion, a parameterization representing the trans-

fer of liquid mass and number from the cloud to rain cat-
egory, based on satellite cloud retrievals. For the past 12
years, prior studies have applied the contoured frequency by
optical depth diagram (CFODD) analysis (Nakajima et al.,
2010; Suzuki et al., 2010) to evaluate model representation
of warm rain processes because the slopes of CFODDs, gen-
erated from spaceborne radar reflectivity profiles (CloudSat)
(e.g., Marchand et al., 2008) and cloud property retrievals
from the Moderate Resolution Imaging Spectroradiometer
(MODIS) (e.g., Platnick et al., 2017), provide an estimate
of cloud droplet collection efficiency in warm liquid clouds
(Suzuki et al., 2010). Here, we demonstrate how an updated
CFODD analysis can be applied to constrain ERFaci due to
autoconversion using the U.S. Department of Energy’s En-
ergy Exascale Earth System Model version 2 (E3SMv2) and
the relationship between CFODD slopes and ERFaciSW in
single-layer warm liquid clouds (SLWCs).

To support the application of CFODD analysis as a con-
straint on ERFaciSW, we modified the warm rain diagnos-
tics (WRDs) subroutine (Michibata et al., 2019a) that was re-
cently implemented in the Cloud Feedback Model Intercom-
parison Project (CFMIP) Observations Simulator Package
(COSPv2.0), a software package that supports climate model
evaluation against satellite observations (Michibata et al.,
2019b; Swales et al., 2018). The WRDs support evaluation
of model warm rain processes in single-layer warm liquid
clouds (SLWCs) based on joint statistics from MODIS and
CloudSat. The first diagnostic provides the fractional occur-
rence of SLWCs, classified as non-precipitating, drizzling,
or raining clouds based on CloudSat column maximum radar
reflectivity. The second diagnostic is the CFODD, which is
the probability density function (PDF) of radar reflectivity as
a function of in-cloud optical depth (ICOD), where ICOD
is the optical depth integrated from the cloud top down-
ward to each vertical layer and represents an in-cloud ver-
tical coordinate (Nakajima et al., 2010; Suzuki et al., 2010).
The CFODD shows how vertical cloud microphysical struc-
tures transition from non-precipitating to precipitating as a
function of cloud-top effective radius (Re), and the slope
of reflectivity change with ICOD provides an estimate of
droplet collection efficiency factor (Suzuki et al., 2010). Pre-
vious studies have used CFODDs to demonstrate that pollu-
tion decreases droplet collection efficiency, suppressing rain-
fall near the cloud base (Mangla et al., 2020; Michibata et
al., 2014; Suzuki et al., 2013), and to evaluate model cloud
liquid-to-rain conversion processes against satellite observa-
tions (Suzuki et al., 2015; Jing et al., 2019; Michibata and
Suzuki, 2020). Takahashi et al. (2021) proposed an updated
CFODD analysis in which Re thresholds are defined by quar-
tile distributions of SLWC samples rather than the traditional
CFODD Re thresholds to focus evaluation on warm rain pro-
cess representation rather than the bias in Re distribution.
Modifications to the WRDs in the present study include ad-
ditional diagnostics that provide SLWC sampling statistics to
illuminate how sample size affects CFODD results, the im-
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plementation of a CloudSat ground-clutter mask in the sim-
ulated WRDs, and updates to SLWC selection criteria for
better consistency between observations and satellite simu-
lators. The updated CFODD analysis is demonstrated here as
a constraint on the component of ERFaciSW that is affected
by droplet collection efficiency due to autoconversion.

2 Warm rain diagnostics overview

The WRDs and their implementation in COSPv2.0 were de-
scribed in Michibata et al. (2019b). The WRDs are designed
to run online with the host model, accumulating time step
statistics for warm rain cloud processes for subcolumns to
mitigate the risk of data-processing bottlenecks associated
with outputting large data volumes. COSPv2.0 generates en-
sembles of stochastic subcolumns from model grid box mean
variables to emulate model subgrid variability and to resolve
discrepancies in spatial resolution between observations and
the model grid (Swales et al., 2018).

To generate observational reference data for model evalua-
tion, Michibata et al. (2019b) used the MODIS and CloudSat
products 2B-TAU R04 (Polonsky, 2008) and 2B-GEOPROF
R04 (Mace et al., 2007; Marchand et al., 2008), respectively,
for SLWC detection between June 2006 and April 2011.
The SLWC detection is described in Supplement Table S1
and includes CloudSat reflectivity ≥ −30 dBZ, MODIS liq-
uid cloud optical thickness (COT)>0.3, and cloud top tem-
perature ≥ 273 K. Model-simulated SLWCs are detected
using COSPv2.0-simulated CloudSat reflectivity and mul-
tiple MODIS cloud properties, including ice water path
(IWP), liquid water path (LWP), cloud-top effective ra-
dius (Re), and cloud optical thickness (COT) (Table S1).
For the SLWC fractional occurrence (frequency) diagnos-
tic, SLWCs are binned by precipitation intensity accord-
ing to the maximum column CloudSat reflectivity (Zmax),
where non-precipitating, drizzling, and raining SLWCs cor-
respond to Zmax <−15 dBZe, −15 dBZe ≤ Zmax < 0 dBZe,
and Zmax ≥ 0 dBZe, respectively. The SLWC fractional oc-
currence diagnostic features the frequency of each precipita-
tion type relative to the total SLWC population.

To support the evaluation of liquid cloud collection effi-
ciencies and cloud to rain transition processes, CFODDs are
constructed from the PDFs of CloudSat reflectivity profiles
binned by ICOD. ICOD (τd) is parameterized as a function
of MODIS COT (τc) by invoking the adiabatic condensation
growth model to vertically slice the column COT into each
layer (Suzuki et al., 2010). The relationship between τd and
τc is as follows:

τd(h) = τc

{
1 −

(
h

H

)5/3
}
, (1)

where h is height andH is the geometric height of the cloud.
The detailed derivation of the ICOD coordinate is provided
in Suzuki et al. (2010). The slope of the resulting 2D-PDF di-

agnostic is modulated by droplet collection efficiency, with a
steeper slope implying higher efficiency. The CFODD shows
where (with ICOD on the y axis as a vertical coordinate)
the droplet collection efficiency increases and the transition
from non-precipitating to drizzling and raining occurs us-
ing the radar reflectivity as a proxy for the precipitation rate
as described above (e.g., Muhlbauer et al., 2014). CFODDs
are also typically binned by Re to reveal how droplet collec-
tion efficiency changes with droplet size (Suzuki et al., 2010;
Takahashi et al., 2021; Jing et al., 2017).

In this study, CFODD slopes are estimated using RAN-
dom SAmple Consensus (RANSAC) robust linear regres-
sion (Fischler et al., 1987). RANSAC was chosen for per-
forming linear regression due to the right-skewed distri-
bution of CFODD data sets. The regression was applied
to the MODIS-CloudSat profiles and E3SMv2 output at
4≤ ICOD≤ 20 and Z<20 dBZ. For E3SMv2 output, the re-
gression was applied to approximated source CloudSat re-
flectivity and ICOD data estimated from time-mean CFODD
frequencies. The reflectivity and ICOD thresholds were cho-
sen to reduce the effect of the Mie scattering regime where
the radar reflectivity can be saturated and to restrict analysis
to profiles where the uncertainty of MODIS COT retrievals
is lower as error can be higher in optically thin liquid clouds
(e.g., COT< 4) (Platnick et al., 2017). The uncertainty in the
RANSAC slope calculation is estimated by “bootstrapping”
(i.e., repeatedly performing RANSAC regressions on 1 000
random subsamples of 80 %) the CFODD data set to gener-
ate a distribution of slope estimates. The 1σ error and 95 %
confidence intervals were calculated from this distribution.
The residual threshold applied for RANSAC outlier detec-
tion was 0.1 and 0.5 times the median absolute error (MAE)
for MODIS-CloudSat and E3SMv2, respectively. Data points
with MAE exceeding the residual threshold are excluded
from the linear regression in RANSAC.

2.1 E3SMv2

Several updates to the WRDs are described in Sect. 2.2,
the impacts of which are demonstrated through an applica-
tion of the updated WRDs to the U.S. Department of En-
ergy’s Energy Exascale Earth System Model v2 (E3SMv2).
The atmosphere component of the model, E3SM Atmo-
sphere Model v2 (EAMv2), is described in detail in Golaz et
al. (2022b). Like its predecessor EAMv1, EAMv2 predicts
stratiform and shallow cumulus cloud macrophysics through
the Cloud Layers Unified by Binormals (CLUBB) parame-
terization, which unifies the treatment of planetary bound-
ary layer turbulence, shallow convection, and cloud macro-
physics through a higher-order turbulence closure scheme
(Bogenschutz et al., 2013; Golaz et al., 2002b; Larson, 2017;
Larson and Golaz, 2005). CLUBB diagnoses cloud fraction
and cloud liquid water from a joint double-Gaussian PDF.
Ice and liquid cloud fractions in CLUBB are analytically di-
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agnosed by integrating saturated proportions of the joint PDF
(Guo et al., 2015).

Cloud microphysics is represented with the “Morrison and
Gettelman version 2” (MG2) scheme (Gettelman and Mor-
rison, 2015). MG2 prognoses the mass mixing ratios and
number concentrations of cloud liquid, ice, and precipita-
tion hydrometeors. The coupled MG2 cloud microphysics
and CLUBB higher-order turbulence parametrization explic-
itly provides values for hydrometer mass and number mixing
ratios as well as cloud fraction. Deep convection is repre-
sented by the Zhang and McFarlane (1995) (ZM) scheme. As
convective cloud fraction is not parameterized in the mass-
flux-based ZM scheme, it is diagnosed from the cloud mass
flux for cloud radiation calculation (Hack et al., 1993). The
total cloud fraction in EAMv2 combines CLUBB, deep con-
vective cloud fractions, and ice cloud fraction following Park
et al. (2014). The four-mode version of the Modal Aerosol
Module (MAM4) is used to predict aerosol properties and
processes (Liu et al., 2012, 2016; Wang et al., 2020).

EAMv2 runs on 72 vertical atmospheric levels with a top
level at 0.1 hPa (Rasch et al., 2019; Xie et al., 2018). How-
ever, distinct from its predecessor EAMv1, EAMv2 has two
separate parameterized physics and dynamics grids (Han-
nah et al., 2021), with average horizontal grid spacings of
∼ 165 km and ∼ 110 km, respectively.

A 6-year E3SMv2 simulation with transient, present-
day forcing was run between 2006 and 2011 with online
COSPv2.0 for comparison with A-Train observations of
SLWCs, allowing 1 additional year (2005) for model spin-
up. To facilitate comparison with observations, large-scale
winds were constrained via the “nudging” technique (Lin
et al., 2016; Ma et al., 2014; Zhang et al., 2014), in which
horizontal and vertical winds are relaxed toward the Modern
Era-Retrospective Analysis for Research and Applications,
Version 2 (MERRA2) reanalysis data (Gelaro et al., 2017)
with a 6 h timescale. MERRA2 data are read every 3 h and
linearly interpolated to model times. COSPv2.0 is called at
every time step (0.5 h) and run with 10 subcolumns. We ob-
served little change in CFODD results for increased numbers
of subcolumns of 20 to 50.

2.2 COSPv2.0

Cloud-observing instrument simulators support the evalua-
tion of model cloud representation by translating grid box
mean model variables (e.g., cloud fraction, hydrometeor
mass mixing ratio, precipitation) into quantities that are
measured by a cloud sensor (e.g., reflectivity). COSPv2.0
includes multiple cloud-observing satellite simulators and
has been used extensively to diagnose issues in model
cloud representation (Cesana and Chepfer, 2012; Kay et al.,
2016; Song et al., 2018a; Zhang et al., 2010). Recently,
Zhang et al. (2022) used the COSPv2.0 CALIPSO simula-
tor to demonstrate that changes to the Wegener–Bergeron–
Findeisen process in EAMv2 decreased an ice cloud fraction

low bias in the Arctic compared to EAMv1 but did not cor-
rect excesses of supercooled liquid.

There are known limitations to COSPv2.0 that affect its
application to E3SM for cloud representation evaluation.
The subgrid distribution of cloud variables generated by
COSPv2.0 does not match E3SM subgrid variability. Hy-
drometeor species are distributed homogeneously across the
subcolumns generated by COSPv2.0 via the subcolumn gen-
erator, Subgrid Cloud Overlap Profile Sampler (SCOPS)
(Klein and Jakob, 1999), such that the ensemble of sub-
columns reproduces the grid box cloud fraction but not the
subgrid distribution of liquid and ice within the simulated
clouds (Dewald, 2021). Song et al. (2018b) demonstrated
that the default “homogeneous hydrometeor scheme” from
SCOPS results in the overestimation of radar reflectivity
in warm liquid clouds, thus resulting in the overestimation
of precipitating clouds since maximum column reflectivity
is often used to distinguish precipitating clouds (as in the
WRDs). Errors in simulated satellite retrievals have also been
attributed to SCOPS overlap assumptions (Hillman et al.,
2018). Such a bias from SCOPS can result in the unfair ob-
servational evaluation of a host model such as E3SMv2. In-
consistencies in microphysical assumptions between the host
model and COSP pose another challenge. While many mi-
crophysical assumptions in COSPv2.0 can be configured for
agreement with E3SMv2 microphysics (MG2), some incon-
sistencies remain, including gamma distribution shape pa-
rameters for hydrometeor size distributions and hydrome-
teor vertical overlap assumptions (Wang et al., 2021). Next-
generation E3SM development includes efforts to improve
agreement in the subgrid variability and microphysical as-
sumptions involved in forward-simulating satellite retrievals.
Other issues include the simplified treatment of satellite
cloud detection in simulators. For example, the CloudSat
cloud profiling radar (CPR) cloud mask value threshold≥ 30
is applied for cloud detection in the WRDs’ A-Train analysis
to indicate “good” or “strong” echo with high confidence de-
tection (see next section and Supplement Table S1). The CPR
cloud mask confidence levels consider signal-to-noise ratios,
horizontal averaging, and spatial continuity (Marchand et al.,
2008), but as this cloud mask is not available in COSPv2.0,
CloudSat cloud detection is simulated by applying a reflec-
tivity threshold of −30≤ Ze ≤ 20 dBZ.

The WRDs rely on COSPv2.0-simulated MODIS and
CloudSat retrievals. The WRDs in COSPv2.0 work as fol-
lows: first, COSPv2.0 takes in model atmospheric state and
cloud variables, including temperature, pressure, water va-
por, and hydrometeor mass mixing ratios; hydrometeor Re;
large-scale stratiform cloud fraction; convective cloud frac-
tion; and precipitation rate. The COSPv2.0 subcolumn gen-
erator SCOPS then produces subgrid distributions of clouds
and precipitation for better comparison with smaller-scale
satellite pixel measurements. SCOPS subcolumns are ho-
mogenous, discrete samples generated such that a sufficiently
large ensemble reproduces the model column profile of bulk
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cloud properties (Webb et al., 2001; Swales et al., 2018).
SCOPS assigns each subcolumn a type (large-scale strati-
form, convective, or clear-sky) according to the host model’s
convective and large-scale stratiform cloud fraction. Cloud
properties such as hydrometeor mass mixing ratios and Re
are distributed homogeneously across the subcolumns by
cloud type (i.e., all stratiform cloud subcolumns are assigned
the same stratiform ice and liquid mixing ratios as SCOPS
only takes total convective and stratiform cloud fraction as
input and does not consider stratiform liquid and ice cloud
fraction in its default configuration). “Maximum-random”
cloud overlap is applied to subcolumns, consistent with the
model parameterizations. The MODIS and CloudSat simu-
lators apply simplified versions of their respective retrieval
algorithms to each subcolumn, emulating MODIS retrievals
of cloud properties, radar reflectivity, and lidar backscatter,
respectively. Grid box mean values are estimated from accu-
mulated subcolumn statistics. The WRDs take as inputs the
MODIS retrievals of LWP, IWP, COT, andRe, as well as sub-
grid CloudSat reflectivity profiles, simulated by the grid box
mean. The simulated MODIS COT represents in-cloud mean,
as do the other MODIS variables used in the WRDs (e.g.,
LWP, Re). For example, the MODIS liquid COT is computed
by averaging the MODIS liquid COT in cloudy subcolumns
across the grid box. In E3SMv2-COSP, the same in-cloud
stratiform COT value from the E3SMv2 radiative transfer
module is distributed across all the subcolumns designated as
stratiform cloud by SCOPS, as described above. These val-
ues and cloud/clear-sky designations for each subcolumn are
used as input to the MODIS simulator to calculate the in-
cloud MODIS liquid COT. Subcolumn-level SLWC reflec-
tivity profiles are used as input to the WRDs, also with cloud
properties homogenously distributed across the subcolumns
of a given classification. Thus, in E3SM-COSP, the SLWC
samples within a grid box that have the same subcolumn clas-
sification (i.e., stratiform liquid or stratiform rain) will have
the same simulated MODIS COT and CloudSat reflectivity
profile.

Deviations from the original WRDs implemented in
COSPv2.0 (Michibata et al., 2019b) include the application
of the simulated CloudSat ground-clutter filter (available in
COSPv2.0 but not applied to the WRDs previously) for better
comparison with CloudSat retrievals and the elimination of
the “fracout” input used in the SLWC detection scheme from
SCOPS. Fracout is the subcolumn-level cloud classification
by vertical level from SCOPS, where each level of each sub-
column is designated as large-scale stratiform, convective, or
clear-sky. This input was removed from the WRDs’ SLWC
detection algorithm because of the lack of comparable cloud-
type designation in the observations and CloudSat simulator
and because fracout vertical cloud profiles were observed to
deviate significantly from CloudSat reflectivity profiles (i.e.,
fracout indicates clear-sky where CloudSat reflectivity indi-
cates cloud, or vice versa).

2.3 Satellite data

The MOD06-1KM-AUX R05 product (Platnick et al., 2017),
which provides MODIS Collection 6 retrievals at 1 km reso-
lution along the CloudSat footprint, supplied the six MODIS
cloud retrievals required for the SLWC detection described
in Suzuki et al. (2010): LWP, IWP, Re, COT, cloud top pres-
sure, and cloud layer number. Standard MODIS products
from the 2.1 µm channel were used for Re, consistent with
the simulated MODIS Re used in the WRDs. Atmospheric
temperature profiles were obtained from ECMWF-AUX R05
(Partain and Cronk, 2017), which includes temperature pro-
files from the European Centre for Medium-Range Weather
Forecasts (ECMWF) model (Dee et al., 2011) interpolated
to the CloudSat footprint. 2B-GEOPROF R05 provided the
CloudSat reflectivity profiles, the cloud profiling radar (CPR)
cloud mask and echo top characterization at 1.8 km reso-
lution (Marchand et al., 2008). The detection of SLWCs
and CFODD analysis in the present study follows Suzuki et
al. (2010) (see Supplement Table S1 for details) with one
exception: a COT threshold was decreased from 15 to 0.3.
This had a substantial impact on cloud occurrence (Fig. 1;
described next) and is consistent with the COT threshold
implemented in the COSPv2.0 WRDs. The decreased COT
threshold also increases the weight of optically thin SLWCs,
as the linear regression is applied to the CFODD source data
directly (i.e., the ICOD and reflectivity profiles).

2.4 Autoconversion sensitivity experiments and ERFaci

The autoconversion parameterization in E3SMv2 is a mod-
ified Khairoutdinov and Kogan (2000) scheme (hereafter
KK2000) in which coefficients were updated in response to
large uncertainties in different cloud regimes and to improve
fidelity in climate simulations. The KK2000 autoconversion
scheme is δqr

δt auto
= AQα

cN
β

d , where qr is the rainwater mix-
ing ratio, Qc is the cloud water mixing ratio; Nd is the cloud
droplet number concentration; and A, α, and β are the mod-
ified coefficients.

To develop a constraint on the ERFaci due to autocon-
version, we performed multiple pairs of simulations featur-
ing pre-industrial (PI) and present-day (PD) aerosol emis-
sions. In each pair of simulations, one of the three coef-
ficients (A, α, or β) was modified to its KK2000 value, a
value reported by Wood (2005), a value from Kogan (2013),
or a value within a range bounded by the three studies.
The Kogan (2013) coefficient values were derived from a
large-eddy simulation (LES) with bin-resolved microphysics
for cumulus clouds, whereas the focus of Wood (2005)
and KK2000 was stratocumulus clouds from observational
and LES perspectives, respectively. One additional exper-
iment on the KK2000 parameterization for the accretion
rate was performed, the formulation of which is δqr

δt accre
=

F1F267(QcQr)1.15ρ−1.3, where Qr is the rainwater mixing
ratio, F1 represents subgrid Qc variability, ρ is air density,

https://doi.org/10.5194/acp-24-5287-2024 Atmos. Chem. Phys., 24, 5287–5302, 2024



5292 C. M. Beall et al.: Droplet collection efficiencies inferred from satellite retrievals

Table 1. KK2000 coefficient and accretion enhancement factor val-
ues applied in 12 sensitivity experiments. Dashes (“–”) indicate that
the coefficient value was unchanged from the default E3SMv2 pa-
rameterization (equal to the “CNTL” simulation value).

Name A α β accre

CNTL 3.05× 104 3.19 −1.4 1.75
alpha01 – 4.22 – –
beta01 – – −1.0
acoef100× 3.05× 106 – – –
alpha02 – 2.47 – –
acoef0.05× 1.35× 103 – – –
alpha03 – 3.00 – –
beta03 – – −1.79 –
beta04 – – −3.01 –
acoef10× 3.05× 105 – – –
acoef5× 1.53× 105 – – –
acoef50× 1.53× 106 – – –
accre01 – – – 5

and F2 is an accretion rate enhancement factor. F2 was in-
creased by a factor of ∼ 3 in the accretion sensitivity experi-
ment. F2 is considered a tunable parameter in E3SM (Ma et
al., 2022). The experiment details are provided in Table 1.

ERFaci for each pair of simulations was calculated follow-
ing the Ghan (2013) method, where ERFaci= 1(Fclean−

Fclear,clean). Fclean is the radiative flux at the top of atmo-
sphere (TOA) neglecting the absorption and scattering of
aerosols, and Fclear,clean is the radiative flux at the TOA ne-
glecting both clouds and the absorption and scattering of
aerosols. The 1 indicates the PD−PI difference. While the
PD−PI approach is a common strategy for estimating ER-
Faci, Christensen et al. (2023) demonstrated that it may yield
a different estimate than the PD approach, where components
of ERFaci (LWP adjustment, Nd adjustment, and cloud frac-
tion adjustment) are estimated by regressions of cloud prop-
erties multiplied by the anthropogenic aerosol fraction. We
calculate ERFaci for SLWCs only, binned by the MODIS Re
range corresponding to the CFODD analysis.

A constraint on ERFaciSW was calculated from the linear
regression between E3SMv2 CFODD slopes and ERFaciSW,
using the MODIS-CloudSat CFODD slope as a reference.
A 95 % confidence interval for the linear fit was estimated
by bootstrapping the linear regression within the uncertainty
in the CFODD slopes. CFODD slope values were randomly
sampled 1000 times within their 1σ error and repeatedly re-
gressed with ERFaciSW. The original data (i.e., RANSAC
CFODD slope values and corresponding ERFaciSW values)
were additionally resampled with replacement to generate
a distribution of coefficients for the ordinary least squares
(OLS) regression. The 95 % confidence interval for the linear
fit was then calculated from the combined linear regression
coefficient distributions to reflect uncertainty from both the
OLS fit and the CFODD slopes.

3 Updates to MODIS and CloudSat SLWC analysis
and reference data

The first diagnostic in the original WRDs featured rela-
tive frequencies of SLWCs by precipitation intensity in both
the A-Train reference data and the COSPv2.0 output (e.g.,
Fig. 1m–o). We have updated this diagnostic using all-
sky frequencies and by decreasing the lower MODIS COT
threshold from 15 to 0.3 for consistency with the WRDs
implemented in COSPv2.0 (Fig. 1a–l). SLWCs featured in
Fig. 1 and all following figures and analyses are ocean-only
due to higher uncertainties in MODIS retrievals over land
(Platnick et al., 2017).

Figure 1 also shows that decreasing the lower MODIS
COT threshold from 15 to 0.3 in the updated A-Train
analysis (Sect. 2.3) increased total SLWC sampling 5-fold
(global ocean mean; see Sect. 2.3) compared to the origi-
nal CFODD analysis in Michibata et al. (2019a) and Michi-
bata et al. (2019b). The increase in SLWC sampling in the
reference data affects multiple outcomes of the model eval-
uation; in this case, E3SMv2 underrepresents (rather than
overrepresents) total SLWCs, and the SLWCs that are miss-
ing from E3SMv2 are entirely the precipitating SLWC pop-
ulations. The underrepresentation of precipitating SLWCs in
E3SMv2-COSP indicates that any bias from SCOPS towards
increased precipitation in warm liquid clouds is relatively
minor (Sect. 2.2; Song et al., 2018). Not all the differences
between the original and updated reference data can be ex-
plained by the change in COT threshold, however, as we were
unable to reproduce the original CFODD data with the up-
dated satellite products used in this study. Figures S1 and S2
show that increasing the lower COT threshold from 0.3 to 15
yields SLWC frequencies that are much closer to the original
reference data (+25 %) than the updated reference data, but
significant differences remain in the CFODDs.

The effects of the increased SLWC sampling in the A-
Train reference data also significantly affected the CFODDs
and thus the comparison between A-Train and E3SMv2
droplet collection efficiencies. Figure 2 shows CloudSat re-
flectivity frequency binned by ICOD for the original A-
Train reference data (Fig. 2a–c), the updated A-Train ref-
erence data ( d–f) and E3SMv2 ( j–l) and RANSAC ro-
bust linear regression slopes at 4≤ ICOD≤ 20. In com-
parisons with various other linear regression techniques,
we found that RANSAC best supported the comparison of
CFODD slopes between E3SMv2 and observations because
of the right-skewed distribution of CloudSat reflectivities at
0≤ ICOD≤ 20 in E3SMv2 CFODDs (Fig. 2j–l). RANSAC
minimizes the median absolute error (MAE) and is less sen-
sitive to strong outliers in the dimension of the predicted
variable (Ze in this case) compared to other linear regression
techniques.

The updated A-Train CFODD distributions are signifi-
cantly different than the original CFODD distributions (2D-
Kolmogorov–Smirnov test, p� 0.05). Compared to updated
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Figure 1. All-sky frequencies of total SLWCs June 2006–April 2011, non-precipitating (Zmax <−15 dBZe), drizzling (−15 dBZe ≤
Zmax < 0 dBZe), and raining (Zmax ≥ 0 dBZe) ocean-only SLWCs according to original reference analysis of MODIS and CloudSat ob-
servations (Michibata et al., 2019a, b) (a–d), updated reference MODIS and CloudSat analysis (e–h), and E3SMv2-COSPv2.0 (i–l). Figures
(m–o) show frequencies of non-precipitating, drizzling, and raining SLWCs relative to the total SLWCs simulated by E3SMv2. Values in
blue boxes indicate global ocean-only grid-weighted mean frequency. SLWCs were undersampled in original reference A-Train analysis by
a factor of ∼ 5. Compared to the original reference A-Train data, the updated analysis demonstrates that E3SM underrepresents total SLWC
and that precipitating SLWCs are underrepresented by a factor of 6 compared to observations.

A-Train CFODDs, the E3SMv2 CFODDs show decreased
droplet collection efficiencies and an increased range of re-
flectivities near the cloud top in all size bins, indicating that
regardless of Re, SLWCs are drizzling and raining near the
cloud top with significantly higher frequency than SLWCs in
observations but have decreased collection efficiency below
cloud top compared to MODIS-CloudSat.

The high reflectivities near the cloud top are pronounced in
the subset of E3SMv2 SLWCs with 4<MODIS COT< 20
(Fig. S3), indicating that the high reflectivity at low ICOD
in Fig. 2j–l is not just a product of a subset of precipitat-
ing, optically thin SLWCs but that layers near the cloud top
in deeper SLWCs are also precipitating. The reflectivity pro-
files used to generate the CFODD come from the CloudSat
simulator, which was not modified for this study. Examples
of simulated CloudSat reflectivity profiles in SLWCs with
Ze>0 dBZ near cloud top are shown in Fig. S4. The source
of this issue and its implications for E3SMv2 representation
of liquid cloud properties warrant further investigation that is
beyond the scope of the present study.

Figure 2 shows absolute frequencies of SLWCs binned by
MODIS COT in each CFODD Re bin for the updated A-
Train analysis (Fig. 2g–i) and E3SMv2 only (Fig. 2m–o).
Note this information was unavailable in the original refer-
ence data (Michibata et al., 2019a). Compared to COT dis-
tributions in the updated A-Train analysis, E3SMv2 shows
decreasing SLWC frequency with Re and an underrepresen-

tation of SLWCs with large Re, which aligns with the under-
representation of precipitating SLWCs in Fig. 1. Figure 2o
also shows that few SLWCs with large Re have a COT> 20,
indicating that the CFODD reflectivity profile in Fig. 2l at
ICOD> 20 is comprised of few samples. The SLWC COT
PDFs have been implemented in the WRDs to support the
interpretation of CFODD statistics.

4 Results and discussion

4.1 CFODD analysis to constrain ERFaci due to warm
rain processes

To demonstrate the potential of the CFODD analysis de-
scribed above for constraining ERFaciSW due to warm rain
processes, we performed 12 experiments featuring varia-
tions in E3SMv2’s autoconversion and accretion parameter-
izations, computing ERFaciSW for the SLWC samples rep-
resented in each CFODD and the corresponding Re bin
(hereafter “ERFaciSW_SLWCs”) following Ghan (2013; see
Sect. 2.4). In each experiment, a single coefficient of ei-
ther the KK2000 autoconversion or accretion parameteriza-
tion was perturbed, each of which is treated as a tunable
parameter in E3SMv2. The uncertain KK2000 coefficients,
coupled with parameterization simplifications (e.g., bulk mo-
ments and assumed droplet size distributions), result in un-
certainties and biases in the model representation of raindrop
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Figure 2. Contoured frequency by optical depth diagrams (CFODDs) for SLWCs (June 2006–April 2011) binned by MODIS cloud top ef-
fective radius (Re) from original reference MODIS-CloudSat observations analysis (a–c), updated reference MODIS-CloudSat observations
analysis (d–f), and E3SMv2 (j–l). RANdom SAmple Consensus (RANSAC) linear regressions were applied to the CFODD at 4≤ ICOD≤ 20
to estimate droplet collection efficiencies. RANSAC slopes and median absolute error (MAE) values are shown in blue boxes. Droplet col-
lection efficiencies increase with MODIS Re as expected, except for the largest Re size bin in the original reference data (Fig. S2c). Panels
(g)–(i) and (m)–(o) show absolute frequencies of SLWCs by MODIS COT, demonstrating that E3SMv2 overrepresents SLWCs with small
Re relative to medium and large Re, compared to observations.

formation and growth. The experiments are described in Ta-
ble 1, and the CFODDs for each experiment are shown in
Fig. S5.

Figure 3 shows a strong negative correlation between
E3SMv2 ERFaciSW_SLWCs with “small” or “medium” Re
(i.e., 5≤ Re<18 µm) and the corresponding combined 5≤
Re<18 µm CFODD slope (Pearson’s R=−0.91). SLWCs
with large Re (18≤ Re<30 µm) were excluded from the
analysis in Fig. 3 because this population represents a neg-
ligible fraction of total SLWCs in E3SMv2 (see Fig. S6),
resulting in poor sampling statistics and larger regres-
sion uncertainties. As CFODD slopes represent an estimate
of droplet collection efficiency, Fig. 3 demonstrates that
ERFaciSW strengthens (increases in magnitude) with increas-
ing droplet collection efficiency in E3SMv2 SLWCs with Re
between 5 and 18 µm. One possible physical explanation for
the relationship between autoconversion, droplet collection
efficiency, and ERFaciSW is that increased autoconversion
rates increase the susceptibility of clouds to precipitation
suppression by aerosols. For a given optical depth, SLWCs
with lower LWP and/or higherNd will precipitate more when
the autoconversion rate is increased. A larger population of

precipitating SLWCs results in increased susceptibility to
precipitation suppression by aerosols overall. When aerosols
suppress precipitation (e.g., Suzuki et al., 2013), LWP and/or
cloud fraction may be enhanced, resulting in brighter clouds
and stronger ERFaciSW. The relationship between aerosols,
LWP, and cloud fraction (Albrecht, 1989), however, is highly
uncertain, varies regionally (Sato et al., 2018), and is in-
fluenced by processes that are buffered over multiple spa-
tiotemporal scales (Stevens and Feingold, 2009). Addition-
ally, E3SMv2’s CFODD slope (“CNTL” simulation) agrees
with MODIS-CloudSat within uncertainty, indicating that
droplet collection efficiency is well-represented according to
CFODD analysis.

In Fig. 3, we constrain ERFaciSW due to autoconversion
uncertainties using the linear regression between the simu-
lated CFODD slopes and ERFaciSW_SLWCs. ERFaciSW and
ERFaciSW_SLWCs values were calculated following Ghan et
al. (2013), which considers the difference in TOA radia-
tive flux between the PD and PI experiments, neglecting
the direct forcing of aerosols (see Sect. 2.4 for details).
The constrained value of ERFaciSW_SLWCs is estimated at
the intercept of the linear relationship with the observed
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Figure 3. Linear regression between E3SMv2 ERFaciSW_SLWCs
and CFODD slopes, generated from SLWCs with MODIS Re be-
tween 5 and 18 µm, in 12 PD autoconversion and accretion sensitiv-
ity experiments. ERFaciSW_SLWCs values reflect the SLWCs rep-
resented in the corresponding CFODD (i.e., with Re correspond-
ing to the CFODD Re bin). Results show a strong negative correla-
tion between E3SMv2 ERFaciSW_SLWCs and CFODD slopes. We
constrain the ERFaciSW by predicting the ERFaciSW_SLWCs value
at the reference MODIS-CloudSat 5≤ Re<18 µm CFODD slope
(dashed purple line) from the linear regression (intercept shown in
blue box). Error bars represent 1σ error estimated from RANSAC-
fit bootstrapping (Sect. 2). Grey and pink shaded regions indicate
the 68 % and 95 % confidence intervals for the MODIS-CloudSat
CFODD slope, respectively. Labels indicate the sensitivity experi-
ment names (Table 1).

MODIS-CloudSat CFODD slope (Fig. 4). We find that the
ERFaciSW_SLWCs predicted by the linear regression at the
MODIS-CloudSat slope value (−0.066± 0.06 W m−2) ap-
proaches agreement with the ERFaciSW_SLWCs value pre-
dicted by the E3SMv2 CNTL simulation (−0.077 W m−2),
particularly considering the additional uncertainties imposed
by the limited number of sensitivity experiments that are
not represented in the regression’s 95 % confidence inter-
val. The agreement between the constrained and predicted
value of ERFaciSW_SLWCs indicates that the ERFaciSW due
to autoconversion is well-represented in E3SMv2 according
to CFODD analysis.

As ERFaciSW is the result of many cloud processes, the
updated CFODD analysis should be interpreted as a con-
straint on the component of ERFaciSW that is modulated by
droplet collection efficiency due to autoconversion. In other
words, the updated CFODD analysis shows the change in
ERFaciSW one would expect if the bias in ERFaciSW due
to a specific process representation affecting droplet collec-
tion efficiency were eliminated. Base cloud processes that
are independent of aerosol also contribute significantly to
ERFaci estimates (Mülmenstädt et al., 2020). Autoconver-
sion perturbations affect base cloud state (e.g., LWP, cloud
fraction) and could, for example, cause stronger ERFaci by
increasing cloud amount rather than increasing the impact

of ACI on SW radiative forcing. Jing et al. (2019) evalu-
ated different autoconversion parameterization schemes in
an ESM using the CFODD analysis described in Michibata
et al. (2019b) and found that the autoconversion scheme
that yielded the best warm rain representation predicted a
significantly stronger ERFaci that exceeded the uncertainty
range of the Intergovernmental Panel on Climate Change
(IPCC) AR5 and canceled out much of the warming trend
of the last century. The conflict between process represen-
tation and ERFaci predictions in Jing et al. (2019) under-
scores a challenge with process-based constraints: improv-
ing the representation of a process can result in adverse out-
comes to climate prediction due to compensating biases in
the model. This challenge is particularly troublesome for
constraints on processes like autoconversion that affect the
base cloud state because decreasing autoconversion rates can
increase total cloud quantity, which can yield stronger ER-
Faci. Thus, a decreased autoconversion rate may improve
precipitation outcomes in an ESM that presents the common
“too frequent” warm rain bias (e.g., Stephens et al., 2010),
yet cause improbably strong ERFaci. However, our results
show that decreased autoconversion rates result in weaker
ERFaciSW_SLWCs (Fig. 3), demonstrating that the base cloud
state issue presented in prior studies of autoconversion is not
a dominant factor contributing to the ERFaciSW of warm rain
processes in E3SMv2.

Figure 5a shows the linear relationship between
ERFaciSW_SLWCs normalized by the PI SW cloud ra-
diative effect (SWCRE), which represents the fraction of
ERFaci that is independent from base cloud state changes,
and CFODD slope. The correlation coefficient in Fig. 5a
(Pearson’s R = 0.74) is decreased compared to Fig. 3
(Pearson’s R =−0.91). However, comparing the negative
correlations between CFODD slope and PI SLWC cloud
fraction (Fig. 5b; Pearson’s R =−0.64) and LWP (Fig. 5c;
Pearson’s R =−0.89) with Fig. 3, the ERFaciSW_SLWCs
increases in magnitude as LWP and cloud fraction decrease,
further demonstrating that the contribution of base cloud
state to ERFaciSW_SLWCs is relatively minor. The decreased
correlation coefficient in Fig. 5a could also be influenced by
poor sampling statistics in the “acoef100×” experiment. The
acoef100× was the only one of six experiments involving
perturbations of the A coefficient in KK2000 (Table 1;
Sect. 2.4) in which the CFODD slope did not increase with
an increase in magnitude of the “A” coefficient. Given
the significant decrease in SLWC cloud fraction in this
experiment compared to the others (Fig. 5b, Table S2),
the CFODD slope result may be affected by insufficient
sample size, an additional uncertainty in the CFODD linear
regression that is not reflected in the bootstrapping-based
uncertainty estimate (Sect. 2).

While we derive a constraint on ERFaciSW using the com-
bined small and medium Re CFODDs, when the Re subsets
are considered individually, they show distinct contributions
to ERFaciSW_SLWCs. Figure S7 shows that SLWCs with small
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Figure 4. CFODDs for subset of SLWCs with max CloudSat reflectivity < 20 dBZ and COT< 20 (June 2006–April 2011) binned by
MODIS Re from updated reference MODIS-CloudSat observations analysis (a–b) and with combined “small” and “medium” Re SLWCs in
(c). RANSAC linear regressions were applied to the CFODD at 4≤ ICOD≤ 20 to estimate droplet collection efficiencies. RANSAC slopes
and median absolute error (MAE) values are shown in blue boxes.

Figure 5. Linear regression between (a) E3SMv2 ERFaciSW_SLWCs normalized by SWCRE, (b) SLWC cloud fraction, (c) SLWC LWP,
and CFODD slopes in 12 PD autoconversion and accretion sensitivity experiments, calculated for SLWCs with MODIS Re between 5 and
18 µm. ERFaciSW_SLWCs values reflect the SLWCs represented in the corresponding CFODD (i.e., with Re corresponding to 5<Re<18 µm).
Error bars represent 1σ error estimated from RANSAC-fit bootstrapping (Sect. 2). Grey and pink shaded regions indicate the 68 % and 95 %
confidence intervals for the MODIS-CloudSat CFODD slope, respectively. Labels indicate the sensitivity experiment names (Table 1).

Re have a negative ERFaciSW_SLWCs but that SLWCs in the
medium and large Re subsets have positive ERFaciSW_SLWCs
values. This indicates that the dominant effect of aerosols on
shortwave radiative forcing in the medium and large SLWC
subsets is decreased cloud fraction, which is reflected in the
decreased SLWC sample sizes in the PD simulations com-
pared to PI (Figs. S8, S9). The negative linear relationship
between ERFaciSW_SLWCs and CFODD slope in the medium
and large Re subsets indicates that increasing droplet col-
lection efficiency partially counteracts the decrease in cloud
fraction due to aerosol. The small Re SLWCs, however,
show a positive correlation between ERFaciSW and CFODD
slope, indicating that ERFaciSW weakens as autoconversion
rates increase, likely due to decreased precipitation suppres-
sion susceptibility in this subset. The combined small and
medium CFODD and ERFaciSW_SLWCs, therefore, represent
the convolution of two populations with differing ERFaciSW
sensitivities to autoconversion perturbations. We chose to
constrain ERFaciSW using the combined small and medium

CFODDs and ERFaciSW_SLWCs due to the correlation perfor-
mance and the dearth of large Re SLWCs in E3SMv2. How-
ever, constraints for ERFaciSW could potentially be derived
for each individualRe subset or various combinations thereof
depending on the distribution of SLWCs among the Re size
bins and their contribution to the host model’s ERFaci. Con-
sidering that constrained ERFaciSW increases in magnitude
with increasing Re in Fig. S7, the shortwave component of
ERFaci is significantly larger than the longwave in CMIP6
models (Smith et al., 2020), and E3SMv2’s total ERFaci
(−1.50 W m−2) is relatively strong compared to the IPCC
AR6 “very likely” range (−1.0± 0.7 W m−2) (Forster et al.,
2021), the underrepresentation of SLWCs with large Re in
E3SMv2 represents a compensating bias, without which the
total ERFaci would be even stronger compared to IPCC AR6.

4.2 Limitations of CFODD-based constraint on ERFaci

There are multiple limitations to the CFODD analysis that
should be considered in its application as a constraint on ER-
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Faci. First, droplet collection is not explicitly represented in
ESMs with bulk microphysical schemes, such as E3SMv2,
but is instead implicit in an amalgamation of processes and
drop size distribution parameterizations controlling the evo-
lution of the cloud and precipitation. Delving into the im-
pact of these individual processes on CFODD-based con-
straint on ERFaci is a good target for future work, while
autoconversion modulation of ERFaci was the primary fo-
cus here. Furthermore, simulated radar reflectivity is highly
sensitive to particle size distribution assumptions in the for-
ward simulator (e.g., Bodas-Salcedo et al., 2011; Wang et
al., 2021). The host model, therefore, could represent warm
rain microphysical processes with high fidelity but still pro-
duce biased CFODD profiles when compared with observa-
tions. In COSPv2.0, the CloudSat simulator calculates size
distributions from an assumed distribution (e.g., log-normal,
gamma, exponential) as well as mass mixing ratios, precip-
itation fluxes, and grid box mean Re from the host model.
Default COSPv2.0 size distributions were used in this study
(i.e., log-normal for large-scale stratiform and convective
cloud liquid and exponential for large-scale stratiform and
convective cloud rain). The CFODD analysis itself is sub-
ject to multiple uncertainties, including the use of simple
adiabatic and condensational growth assumptions to scale
MODIS COT to ICOD. These assumptions result in a ver-
tical distribution of optical depth, mass concentrations, and
particle size that may not reflect reality. For example, in
the CFODD, particle size and mass concentration are as-
sumed to monotonically increase with height, yet particle
sizes may decrease near the cloud top due to evaporation and
entrainment in the real cloud (Suzuki et al., 2010). The un-
certainties from assumed hydrometeor size distributions and
CFODD construction should be carefully considered when
using the CFODD to evaluate model droplet collection effi-
ciencies against observations and in the application as an ER-
Faci constraint. Simulated reflectivity biases affect the eval-
uation of the model CFODD slope against the observational
CFODD slope and thus affect the estimation of ERFaci bias.

A few additional limitations on CFODD analysis are im-
posed by biases in E3SMv2 SLWC representation. The ER-
Faci constraint is restricted to the small and medium Re
CFODDs because of the underrepresentation of SLWCs with
large Re. SLWCs with medium Re are also underrepre-
sented in E3SMv2, further limiting the CFODD analysis of
E3SMv2 ERFaci because process perturbations are limited
to the extent that they do not significantly reduce the number
of SLWCs with medium Re. The high reflectivity near cloud
top at ICOD< 4 in E3SMv2 CFODDs presents another lim-
itation. SLWCs with COT< 4 represent a significant frac-
tion of the SLWC population in both A-Train and E3SMv2
(Fig. 2), so including optically thin SLWCs in the linear re-
gression would likely affect the CFODD slope and droplet
collection efficiency estimates.

Despite these limitations and the uncertainty associated
with estimates of droplet collection efficiency from simu-

lated radar reflectivity, CFODD analysis offers a highly de-
sired process-oriented constraint on ERFaci due to warm
rain processes. In E3SMv2, the CFODD slope exhibits the
expected behavior in response to autoconversion perturba-
tions: slope increases with perturbations that increase the au-
toconversion rate and decreases with perturbations that de-
crease the autoconversion rate. Our results also show that
the model ERFaciSW is highly sensitive to the processes that
the CFODD represents, enabling the constraint on ERFaciSW
against the CFODD slope derived from MODIS-CloudSat
cloud retrievals. Prior studies have demonstrated that radar
reflectivity biases can be partially mitigated by bringing
the forward simulator into better agreement with the host
model’s microphysics parameterization and subgrid variabil-
ity (Song et al., 2018b; Wang et al., 2021). Modified versions
of COSP featuring improved consistency with E3SM are to
be implemented in future E3SM model versions, which will
decrease the uncertainties associated with CFODD analysis
of E3SM.

5 Summary

In this study, we present an updated CFODD analysis and
demonstrate how it can be applied to ESMs as a process-
oriented constraint on ERFaci and find that E3SMv2’s
ERFaciSW agrees with the MODIS-CloudSat constrained
value within uncertainty. Demonstrated here as a constraint
on the component of ERFaciSW that is modulated by auto-
conversion, CFODD analysis represents a highly desirable
constraint on a process, circumventing the equifinality issue
that bedevils atmospheric-state-variable-based approaches
(Mülmenstädt et al., 2020). Limitations of CFODD-based
constraints on ERFaci include the implicit representation
of droplet collection efficiency in many ESMs (including
E3SMv2), the sensitivity of simulated radar reflectivity to
droplet size distribution representations, and simplified as-
sumptions applied to construct the CFODD (e.g., adiabatic-
condensational growth). While this study focuses on auto-
conversion, future studies should apply CFODD analysis to
other microphysical processes that affect droplet collection
efficiency (e.g., accretion, droplet breakup, evaporation) to
generate additional ERFaci constraints.

Several updates to the WRDs package in COSPv2.0 were
made to support the application of CFODD analysis to
ESMs. In addition to the original WRDs featuring relative
frequencies of SLWCs by precipitation intensity and the
CFODD by Re, we have implemented additional diagnos-
tics in the WRDs that include all-sky SLWC frequency maps
and MODIS SLWC COT distributions for CFODD sampling
statistics. Other updates include the estimation of CFODD
slopes using RANdom SAmple Consensus robust linear re-
gression and changes to the SLWC detection schemes for
better comparison between observations and satellite simu-
lators.
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In addition to the modifications of the WRDs described
above, the MODIS and CloudSat observational reference
data have been updated for consistency with COSPv2.0
SLWC detection. SLWC detection is increased 5-fold in the
updated reference data. The increase in SLWC sampling also
significantly affected the CFODD distributions and, conse-
quently, the A-Train reference droplet collection efficiency at
large Re (18 µm≤Re<30 µm). The updated WRDs showed
that droplet collection efficiencies in E3SMv2 are decreased
compared to observations and SLWCs with small MODIS
Re (5 µm≥Re>12 µm) are overrepresented. The E3SMv2
CFODD results also show reflectivities exceeding 0 dBZ
near cloud top at 2< ICOD< 4 yet relatively low reflectiv-
ities at ICOD> 5. The unreasonably high reflectivities near
cloud top may indicate artifacts due to inconsistencies be-
tween E3SMv2 outputs and COSPv2.0 inputs to the Cloud-
Sat simulator. This issue motivates further investigation in fu-
ture studies involving applications of the CloudSat simulator
to E3SM. The updates described herein have increased the
WRDs’ utility for evaluating model warm rain process rep-
resentation and support the analysis needed to derive a con-
straint on ERFaci from CFODD analysis. Through an evalu-
ation of E3SMv2, we demonstrate that the updated WRDs il-
luminate specific biases in SLWC representation and provide
contextual sampling statistics that are critical for interpreting
CFODD results for future applications of this observational
constraint on ERFaci.

Code and data availability. The CloudSat and MODIS
data products are available from the CloudSat Data
Processing Center at CIRA/Colorado State University
(https://www.cloudsat.cira.colostate.edu/, NASA, 2023). The
reference A-Train data used in this study are available
here: https://doi.org/10.5281/zenodo.8384180 (Beall et al.,
2023a). The modified source code of COSPv2.0 is avail-
able here: https://doi.org/10.5281/zenodo.8371120 (Beall et
al., 2023b). The Python package for the two-dimensional
Kolmogorov–Smirnov test applied in this study is available here:
https://github.com/syrte/ndtest/tree/master (ndtest, 2024). The
Python package scikit-learn was used for robust linear regression
analysis (https://scikit-learn.org/stable/, last access: 28 June 2023,
Grisel et al., 2024).
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