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Abstract. The Taklamakan Desert (TD) is a major source of mineral dust emissions into the atmosphere. These
dust particles have the ability to darken the surface of snow on the surrounding high mountains after deposition,
significantly impacting the regional radiation balance. However, previous field measurements have been unable
to capture the effects of severe dust storms accurately, and their representation on regional scales has been in-
adequate. In this study, we propose a modified remote-sensing approach that combines data from the Moderate
Resolution Imaging Spectroradiometer (MODIS) satellite and simulations from the Snow, Ice, and Aerosol Ra-
diative (SNICAR) model. This approach allows us to detect and analyze the substantial snow darkening resulting
from dust storm deposition. We focus on three typical dust events originating from the Taklamakan Desert and
observe significant snow darkening over an area of ~ 2160, ~ 610, and ~ 640 km? in the Tien Shan, Kunlun, and
Qilian mountains, respectively. Our findings reveal that the impact of dust storms extends beyond the local high
mountains, reaching mountains located approximately 1000 km away from the source. Furthermore, we observe
that dust storms not only darken the snowpack during the spring but also in the summer and autumn seasons,
leading to increased absorption of solar radiation. Specifically, the snow albedo reduction (radiative forcing)
triggered by severe dust deposition is up to 0.028-0.079 (11-31.5 W m~2), 0.088-0.136 (31-49 W m~2), and
0.092-0.153 (22—38Wm_2) across the Tien Shan, Kunlun, and Qilian mountains, respectively. This further
contributes to the aging of the snow, as evidenced by the growth of snow grain size. Comparatively, the impact
of persistent but relatively slow dust deposition over several months during non-event periods is significantly
lower than that of individual dust events. This highlights the necessity of giving more attention to the influence
of extreme events on the regional radiation balance. This study provides a deeper understanding of how a sin-
gle dust event can affect the extensive snowpack and demonstrates the potential of employing satellite remote
sensing to monitor large-scale snow darkening.
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1 Introduction

High Mountain Asia (HMA), which includes the Tibetan
Plateau (TP) and surrounding mountain ranges, holds the
largest amount of glaciers and snow outside of the poles.
This region is informally known as the “Third Pole” and
the “Asian Water Tower” (Yao et al., 2012, 2019) because
of its extreme importance as a freshwater source, with ap-
proximately 1 billion people relying on the water and hy-
dropower that the glaciers and snow across HMA regularly
provide (Immerzeel and Bierkens, 2012; Mishra et al., 2018).
The snow-covered area of HMA is a highly reflective natural
surface that has a significant impact on the regional radiation
balance (Cohen and Rind, 1991; Painter et al., 2012). Pre-
vious satellite and ground-based observations have demon-
strated that the mass and extent of the snow cover across
HMA are rapidly declining owing to recent global warm-
ing (Bormann et al., 2018; Notarnicola, 2020; Pulliainen et
al., 2020). Furthermore, growing evidence has indicated that
light-absorbing particles (LAPs) (Arun et al., 2019, 2021a, b;
Chaubey et al., 2010; Gogoi et al., 2018, 2021a, b; Thakur et
al., 2021), such as mineral dust and black carbon (BC), can
induce a snow darkening effect when they are deposited on
the snow surface (Wang et al., 2013; Qian et al., 2015; Dang
et al., 2017; Huang et al., 2022; Niu et al., 2022; Réveillet et
al., 2022; Shi et al., 2022c). This snow darkening effect in-
creases solar absorption and decreases snow albedo, result-
ing in enhanced snowmelt (Hadley and Kirchstetter, 2012;
Dumont et al., 2014; He et al., 2017, 2018; Pu et al., 2017;
Shi et al., 2021, 2022a, b; Cordero et al., 2022) and an ac-
celerated transformation of ice and snow into liquid water
in the Asian Water Tower (Yao et al., 2022). Consequently,
the snow darkening effect plays a critical role in snow de-
cline across HMA, thereby perturbing the climate system and
impacting hydrological cycles (Kraaijenbrink et al., 2017,
2021; Sang et al., 2019; Shi et al., 2019; Zhang et al., 2020;
Y. Zhang et al., 2021; Roychoudhury et al., 2022; Yang et
al., 2022).

The Taklamakan Desert (TD) in southwestern Xinjiang,
northwest China, is the second-largest shifting sand desert
on earth and accounts for 42 % of all dust emissions in East
Asia (Chen et al., 2017b). Approximately 70.54 Tg of dust
is emitted into the atmosphere annually, with the most in-
tense dust events occurring in spring (Chen et al., 2017b).
The dust in the Tarim Basin is predominantly redeposited
onto nearby regions owing to the surrounding high moun-
tains (Qiu et al., 2001; Sun et al., 2001; Shao and Dong,
2006). When the dust is uplifted above 4 km altitude, it may
eventually settle on the snow surfaces across the surrounding
high mountains, such as the Tien Shan and Kunlun moun-
tains, and subsequently induce a snow darkening effect (Ge
et al., 2014, Jia et al., 2015; Yuan et al., 2018). Furthermore,
this dust is also transported eastward beyond the Tarim Basin
and can be transported all the way to the Qilian Mountains
via the westerly winds during spring and summer, thereby in-
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ducing a snow darkening effect in this distal region to the east
of the TD (Dong et al., 2020; Han et al., 2022). Therefore,
TD dust may have a profound effect on the regional radiative
balance by darkening the snow across the high mountains
surrounding the TD. This effect may subsequently accelerate
snow melting and affect water resources for the 30+ million
people living in the Xinjiang and Gansu provinces of China
(Mishra et al., 2021).

Numerous field measurements have been undertaken in re-
cent decades to investigate the dust content of snow/glaciers
across the high mountains surrounding the TD, with mea-
sured dust contents generally varying from 1.4 to 110 ugg™!
(Wake et al., 1994; Dong et al., 2009, 2014; Wu et al., 2010;
Ming et al., 2016; Xu et al., 2016; Schmale et al., 2017;
Zhang et al., 2018; X. Zhang et al., 2021; Wang et al., 2019;
Li et al., 2021, 2022). This abundance of dust particles has
been found to induce a significant snow darkening effect
across the high-mountain snowpack, thereby increasing its
associated radiative forcing to 25.8-65.7 W m~2. Further-
more, the estimated natural dust-induced snow darkening ef-
fect can be equivalent to that induced by BC, particularly
during intense springtime dust events (Sarangi et al., 2020;
X. Zhang et al., 2021). These findings effectively highlight
the significance of the TD dust-induced snow darkening ef-
fect across the surrounding high mountains. In spite of these
invaluable in situ findings, ground-based observations are
poorly represented at the regional scale owing to limited spa-
tial coverage and temporal discontinuity (Arun et al., 2019).
Furthermore, these previous field measurements may not be
able to capture severe dust emission and loading events,
which are more likely to induce snow darkening than com-
mon dry and wet deposition processes (Dumont et al., 2020;
Pu et al., 2021; Baladima et al., 2022).

Satellite remote sensing offers an effective way to over-
come the limitations of ground-based measurements by pro-
viding a more comprehensive understanding of the LAP-
induced impact on the regional radiative forcing of the snow-
pack (Skiles et al., 2018a). For example, Painter et al. (2012)
found that instantaneous LAP-induced radiative forcing can
exceed 250Wm™2 in the Hindu Kush Himalaya region
via an analysis of Moderate Resolution Imaging Spectrora-
diometer (MODIS) satellite data. Sarangi et al. (2020) further
revealed that dust is the primary factor responsible for high-
altitude snow darkening in the Hindu Kush Himalaya region.
Similarly, severe dust events from the Sahara can deposit
dust on the snowpack across the European Alps and Cauca-
sus Mountains (Di Mauro et al., 2015; Dumont et al., 2020),
with this deposition inducing a radiative forcing of up to
153 Wm™2 based on satellite retrievals in Europe. Dust de-
position has also induced extensive snow darkening across
the Upper Colorado River basin in North America, particu-
larly during extreme dust events (Skiles and Painter, 2016;
Skiles et al., 2018b; Painter et al., 2017). These studies have
demonstrated the effectiveness of employing satellite remote
sensing to estimate the dust content of the snowpack and its
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associated radiative forcing. However, detection of natural
dust deposition on the snow surfaces across high mountains
surrounding the TD is still limited.

Here we investigate the impact of dust storms on snow
albedo reduction and radiative forcing across the high moun-
tains surrounding the TD. We first capture three typical dust
events that induced snow darkening in the Tien Shan, Kun-
lun, and Qilian mountains, respectively. Next, we utilize
MODIS satellite data and the Snow, Ice, and Aerosol Ra-
diative (SNICAR) model to retrieve the dust content of the
snowpack. We then capture three typical dust events that in-
duced snow darkening in the Tien Shan, Kunlun, and Qilian
mountains, respectively. Finally, we analyze the spatial and
altitudinal variations in dust-induced snow darkening and
compare our retrievals with field measurements. Through re-
mote sensing observations, we aim to provide a new view of
the darkening effect of natural desert dust on the snowpack
of the high mountains surrounding the TD.

2 Methodology

2.1 Remote-sensing data

We accessed two MODIS datasets, the surface reflectance
(MODO09GA: https://earthdata.nasa.gov, last access: 19 April
2024); 500 x 500m resolution) and aerosol optical depth
(AOD; MCD19A2), to evaluate the impact of dust on snow
albedo. MODO09GA is the daily surface reflectance prod-
uct after the atmospheric correction from the Terra satellite,
which provides the reflectance data for seven bands (band 1,
620-670nm; band 2, 841-876 nm; band 3, 459-479 nm;
band 4, 545-565 nm; band 5, 1230-1250 nm; band 6, 1628—
1652 nm; and band 7, 2105-2155 nm). Previous studies have
indicated that the MODIS sensor on Terra is not affected by
saturation on bright snow surfaces. As a result, it has the
capability of detecting changes in reflectance in the visible
(VIS) bands caused by dust in snow (Painter et al., 2012;
Pu et al., 2019). Additionally, we used the updated MODIS
aerosol optical depth product MCD19A2, based on the MA-
IAC algorithm, to assess the AOD levels during dust events.
This is a combined product of Terra/Aqua with a spatiotem-
poral resolution of 1 km, which was resampled to 500 m res-
olution using GEE (https://earthengine.google.com/, last ac-
cess: 19 April 2024).

The daily averaged downward shortwave flux was ob-
tained from the NASA Clouds and the Earth’s Radiant En-
ergy System (CERES; 1° x 1° resolution; https://ceres.larc.
nasa.gov, last access: 19 April 2024). The CERES data
products take advantage of the synergy between collocated
CERES instruments and spectral imagers, such as MODIS
(Terra and Aqua) and the Visual Infrared Imaging Ra-
diometer Suite (S-NPP and NOAA-20). We used the down-
ward shortwave flux to estimate the daily averaged radia-
tive forcing that was due to dust deposition on the snow-
pack. The Cloud-Aerosol Lidar with Orthogonal Polarization
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(CALIOP/CALIPSO) provided by NASA is able to detect
the type and height of aerosols in the atmosphere (Huang et
al., 2007; Han et al., 2022) and can therefore be used to iden-
tify the movement of dust storms over the high mountains
surrounding the TD.

The Shuttle Radar Topography Mission (SRTM) digital el-
evation data, which have a 90 m spatial resolution, were pro-
vided by NASA and downloaded from Google Earth Engine
(https://earthengine.google.com, last access: 19 April 2024).
These data were used to correct the influence of topography
on surface reflectance.

2.2 Snow depth and wind data

The snow depth data were provided by NASA and ac-
cessed from the Modern-Era Retrospective Analysis for Re-
search and Applications, version 2 (MERRA-2; https://gmao.
gsfc.nasa.gov/, last access: 19 April 2024). The MERRA-2
snow depth product was selected because it has better ac-
curacy than those from ERA-Interim, JJA-55, and ERAS
across HMA (Orsolini et al., 2019). The wind field data
were obtained from the European Centre for Medium-Range
Weather Forecasts (ECMWF) Reanalysis version 5 (ERAS;
https://www.ecmwf.int/, last access: 19 April 2024) owing to
its superior performance in terms of its high spatial resolution
and longer time span compared with other products (Coper-
nicus Climate Change Service, 2017). Here, we used ERAS
wind data at 700 hPa to describe the atmospheric circulation
during the analyzed dust storms.

2.3 Radiative transfer model

The SNICAR model is a two-stream radiative transfer model
(Flanner et al., 2007, 2009) that has been widely used to
simulate the spectral albedo of LAP-contaminated snow
(Sarangi et al., 2019; Chen et al., 2021). The model includes
snow properties, such as snow depth and effective radius, and
accounts for the incident radiation at the surface and its spec-
tral distribution, solar zenith angle, as well as the type and
concentration of LAPs in the snowpack. In this study, dust
optical parameters are taken from SNICAR defaults, where
the refractive index is 1.56 4-0.0038i at 0.63 um (Patterson
et al., 1981; Flanner et al., 2007). In addition, a diameter bin
of 0.1-1 ym was selected according to the previous observa-
tions from Taklamakan Desert (Okada and Kai, 2004). Fur-
thermore, a single-layer snowpack model was adopted in our
study, in line with Cui et al. (2021), since the snow darken-
ing effect typically pertains to surface snow. This simplifi-
cation minimally affects the retrieval of LAPs from the sur-
face snow, despite the complex multilayer structure of natural
snowpacks.

The Santa Barbara DISORT Atmospheric Radiative Trans-
fer (SBDART) model is one of the most widely used mod-
els for simulating the surface solar irradiance in clear- and
cloudy-sky conditions (Ricchiazzi et al., 1998). The SB-
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DART model includes standard atmospheric models, cloud
models, extraterrestrial source spectra, gas absorption mod-
els, standard aerosol models, and surface models. Here, we
used the SBDART model to calculate the spectral surface so-
lar irradiance following the approach of Cui et al. (2021). In
this study, the cloud-free condition was set in SBDART ac-
cording to the MODIS images.

2.4 Terrain correction

The high mountains surrounding the TD have a complex ter-
rain, such that the local solar zenith angle (8) may differ from
the MODIS-derived solar zenith angle (6p). Therefore, the
topographic correction method should be used to derive B
(Teillet et al., 1982; Negi and Kokhanovsky, 2011):

cos B = cosfycosOr + sinby sinfy cos (¢ — ¢r) , €))]

where ¢y is the solar azimuth angle from MODIS, and 6t and
¢t are the surface slope and aspect from SRTM, respectively.
We then replace 6y with 8 in subsequent satellite retrievals.

2.5 Snow property retrieval

The dust-contaminated spectral snow albedo is determined
based on the dust content, snow grain size, snow depth, and
solar zenith angle (Wiscombe and Warren, 1980). The dust
content and snow depth primarily impact the snow albedo
in the ultraviolet (UV) and VIS wavelengths, with a much
smaller effect on snow albedo in the near infrared (NIR)
wavelengths (Figs. 1 and S1 in the Supplement). Conversely,
the snow grain size and solar zenith angle primarily im-
pact the snow albedo in the NIR wavelengths. The solar
zenith angle and snow depth data are from MODIS Terra and
MERRA-2, respectively. We used the SNICAR model to de-
rive the quantitative snow grain size and dust content from
the MODIS data. Then the SBDART model was combined
to estimate the dust-induced snow albedo reduction and ra-
diative forcing. Figure 2 shows the flowchart of the overall
retrieval process.

The Snow-Covered Area and Grain size (SCAG) model is
a spectral unmixing method that is widely used for identify-
ing snow-cover fraction (SCF) and snow optical effective ra-
dius (Refr), especially in complex mountain terrains (Painter
et al., 2009, 2012; Rittger et al., 2013). The SCAG model re-
trieves the SCF and R using all seven bands of the MODIS
reflectance data, which span the VIS to NIR range. It does
not consider the impact of LAPs. However, in our study, the
dust content in snow is extremely high, which will signifi-
cantly reduce the VIS snow albedo in MODIS bands 1, 3,
and 4 (Fig. 1). So, the SCAG model will introduce a large
bias in the resultant SCF and R.¢ retrievals. Furthermore,
the reflectance of fine-grained dirty snow has been com-
pared with that of pure coarse-grained snow at short-wave
infrared wavelengths, which include bands 6 and 7 (Bair
et al., 2020). The extremely high dust content in this study
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Figure 1. Snow albedo spectra for different snow optical effec-
tive radii (Refr) and dust contents that were simulated using the
SNICAR model. The orange bars denote MODIS bands and the
gray region represents the typical solar irradiance in HMA.
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Figure 2. Flowchart illustrating the step-by-step retrieval of dust
content as well as the associated snow albedo reduction and radia-
tive forcing. The pink boxes denote the external input data, while
the yellow boxes are used for calculations in this study.

therefore means that the reflectance in MODIS bands 6 and 7
is not appropriate for snow property retrieval. Instead, we
used the reflectance data in MODIS bands 2 and 5 to un-
mix the surface reflectance to derive SCF and R (Fig. 2),
similar to the approach in Painter et al. (2009). The surface

reflectance at band i (Ragno(})ils) can be expressed as follows
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(Cui et al., 2021, 2023):

MODIS
Rband i
_ Epana i X SCF x RUOPIS ™Y 4 Eyug i x (1— SCF) x Rl
Eband i
— MODIS, snow soil
= SCF % Rignq i +(1—SCF) x Rgony ; )

MODIS, snow soil i
where R -1 and Ry, ; represent the snow and soil

reflectances at band i, respectively, with Rlsjgi}d ; taken from

Siegmund and Menz (2005), and Epang i is the solar irradi-
MODIS, snow

ance at band i. The snow reflectance at band i (R, )
can be expressed as
MODIS soil
RMODIS, snow _ Roand i — (1 =SCF) X R{7y 5 3)
band i - SCF :

We then fit the SNICAR-simulated snow reflectance to the
MODIS-derived snow reflectance, which is expressed as ei-
ther

RMSE = (% ( 4 x ( RSNICAR, snow _ pMODIS, snow>2

band 2 band 2
2\ \ 2
SNICAR, snow MODIS, snow

+(Rba.nd 5 - Rband 5 ) ) ) “)
or
RMSE

soil 2
1 RSNICAR, snow RNOPS —(1=SCF) x Ryl
- E ax band 2 - SCF
MODIS il LN
RSNICAR, snow Rband 5 (1—SCF) x Rli(z;:'ld 5 2 5

+ band 5 SCF ’ ( )

where RMSE is the root mean square error, RE;ECiAR’ SIOW 4g

the SNICAR-simulated snow reflectance at band i (which is
dependent on the R.fr and solar zenith angle, where the solar
zenith angle is derived from the MODIS data), and a is an
empirical coefficient (0.1-1 range). In this study, a was set
to 0.1 to reduce the interference of dust on the snow property
retrieval because a high dust content can influence the snow
albedo at band 2 (Fig. 1). We can then derive SCF and Re¢r
by minimizing the RMSE (Painter et al., 2009).

2.6 Dust content and snow albedo reduction retrieval

We fit the SNICAR-simulated snow reflectance to the
MODIS-derived snow reflectance in bands 3 and 4, which
are the most sensitive to the dust content in snow, following
Pu et al. (2019) and Cui et al. (2021), which are expressed as
either

1 SNICAR, snow MODIS, snow 2
RMSE = 2 ((Rband 3 ~ Riana’3 )

(ST

2
SNICAR, snow MODIS, snow
+ (Rband 4 ~ Riana 4 ) ) ©)
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or

RMSE

, 2
MODI soil
_(L(( gsvicar. snow _ Ryands® — (1= SCF) x R\, 5
2 band 3 SCF
1

MODIS il 2001
+(R§$LCfR‘ snow _ (szmd4 — (1 —SCF) x Rgg;M)) )) o

SCF
where nglldC?R’ S is a function of four factors: dust con-
tent, Refr, snow depth, and solar zenith angle. The latter three
factors have been derived, leaving the dust content as the
only unknown. Therefore, the dust content can be retrieved
by minimizing Eq. (7). We assume that the derived dust con-
tent in this study accounts for the total light absorption by
all of the LAPs that are present in the snowpack. This is be-
cause our study area is close to the Taklamakan Desert (TD),
where large amounts of dust accumulate on the snow surface
annually. In contrast, anthropogenic activities and biomass
burning are rare, resulting in limited depositions of black car-
bon (BC) and organic carbon (OC) (Fig. S8). Observations
from snow and atmosphere have confirmed this phenomenon
(Wake et al., 1994; Huang et al., 2007). Therefore, our as-
sumption is plausible.

The dust-induced broadband albedo reduction (A«) can
then be calculated as follows:

Ao

ZA:ZSOO nm g
A=300nm “A A 8
= A=2500nm g A o . ®
A=300nm FA°

(R)SLNICAR. pure—snow RSNICAR, snow) CAX

SNICAR, pure—
where R} pure=snow are the

SNICAR-simulated pure and polluted snow albedo using
the snow grain size and dust content retrieved above, solar
zenith angle from MODIS, and snow depth from MERRA?2,
respectively. E, represents the spectral solar irradiance

at wavelength A simulated from the SBDART model, AA

. SNICAR, pure—s
is 10nm, and R} PUreTsnow: and R)%NICAR’ SOV are

the SNICAR-simulated pure and polluted snow albedo,
respectively. The spectral irradiance from SBDART is
only used for integrating the spectral MODIS albedo to
achieve broadband albedo. Thus, the uncertainty in solar
irradiance from the assumed atmospheric properties has
limited influence on the retrieval of snow albedo reduction
(Cui et al., 2021).

The dust-induced radiative forcing (RF) is calculated as
follows:

and R)SLNICAR, Snow

RF = Ax - SW, 9

where SW is the downward shortwave flux, which is obtained
from CERES.

The in situ dust content was not measured to ver-
ify the MODIS retrievals because of the challenging ge-
ographical conditions surrounding the TD. Nevertheless,
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Cui et al. (2021) verified a similar retrieval method
across the Northern Hemisphere. They considered that
the accuracy of MODIS surface reflectance is typi-
cally (0.005 + 0.05 x reflectance) under conditions where
aerosol optical depth (AOD) is less than 5.0 and solar zenith
angle is less than 75°, as stated in the MODIS Surface Re-
flectance user’s guide (Collection 6; https://modis.gsfc.nasa.
gov/data/dataprod/mod09.php; last access: 19 January 2024).
In addition, the bias for snow grain size retrieval was as-
sumed to be 30 % according to the studies of Pu et al. (2019)
and Wang et al. (2017). These biases led to an overall uncer-
tainty ranging from 10 % to 110 % in the retrieval of LAPs
across the Northern Hemisphere. The study revealed that un-
certainty decreased as LAP concentration increased, with re-
ported uncertainties dropping to below approximately 30 %
in regions of high pollution, such as northeast China. In our
study, the snowpack was also significantly polluted due to
severe dust depositions, leading us to consider a retrieval un-
certainty of 30 % for LAPs, in alignment with the findings of
Cui et al. (2021). Then, the overall lower bound and upper
bound of the uncertainty value of snow albedo reduction re-
trieval was calculated and will be discussed in the following
section. Moreover, we utilized the LAPs and the correspond-
ing albedo reduction retrieved at the local time of 10:30 (the
time of the MODIS Terra satellite overpass) as the proxy for
daily averages following Painter et al. (2012). This approxi-
mation was reasonable, given that the content of LAPs exhib-
ited little variation over a diurnal cycle (Painter et al., 2009;
Zege et al., 2011). The variation in snow albedo throughout
the day was primarily attributed to changes in the solar zenith
angle (Fig. S1). Since the solar zenith angle predominantly
influences snow albedo in NIR, with little impact on the VIS,
the diurnal variation in LAP-induced snow albedo reduction
was also considered limited.

As noted above, the snow albedo reduction is mainly de-
pendent on the dust content, Refr, snow depth, and solar
zenith angle. The Ry and snow depth can be categorized
as snow properties. We compared the dust content, snow
properties, and solar zenith angle to discuss their contribu-
tions to the spatial variations in snow albedo reduction (Pu et
al., 2019; Cui et al., 2021). The Supplement contains a thor-
ough derivation of this method.

3 Results

3.1 Remote sensing of the snow darkening effect
across the high mountains surrounding the TD

The TD is located in the northern part of HMA and is sur-
rounded by some of the highest mountain ranges on earth, in-
cluding the Kunlun, Tien Shan, and Pamir mountains (Fig. 3a
and b). The TD region emits vast amounts of dust particles
into the atmosphere each year, particularly during the spring
and summer (Wang et al., 2008; Chen et al., 2013, 2017a;
Kang et al., 2016; Wu et al., 2021; Tang et al., 2022). This
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phenomenon is confirmed by the high AOD levels at 550 nm
from March to August (Fig. 3c). A significant amount of this
dust is ultimately redeposited across the Tarim Basin and the
surrounding mountains. The Tien Shan and Kunlun moun-
tains are two regions that experience high levels of dust de-
position owing to the local topography and atmospheric cir-
culation patterns (Fig. 3d) (Huang et al., 2007, 2014; Ge et
al., 2014; Dong et al., 2022). Therefore, we selected two typ-
ical cases to demonstrate the snow darkening effect across
the mountains surrounding the TD, a springtime dust event
across the Tien Shan and a summertime dust event across the
Kunlun Mountains.

3.1.1 Dust-induced snow darkening across the Tien
Shan

A significant dust storm occurred across the TD region on
18-22 May 2019 (Figs. 4 and S2). The 21 May 2019 Ter-
ra/MODIS satellite image (Fig. 4b) showed that the dust
plumes had spread to the north and east owing to an upper
anticyclone system in the Tarim Basin (Fig. 4h). Some dust
particles were uplifted to > 4 km altitude, as shown in the
CALIPSO aerosol vertical profiles (Fig. 4j and k). These dust
particles were then transported to the snow-covered high-
elevation areas of the Tien Shan, as illustrated in the MODIS
AOD images (Fig. 4h and 1). Dust plumes were also observed
in a satellite image that spanned the broadly snow-covered
central Tien Shan (Fig. 4e), and the snow appeared to darken
in the 22 May 2019 Terra/MODIS satellite image that was
acquired under the first clear-sky conditions after this severe
dust event. However, the snow was much whiter prior to the
passage of this dust storm, as shown in Fig. 4d and f. Fig-
ure 4g further illustrates changes in the surface reflectance of
the snow-covered areas, providing a more intuitive influence
of dust deposition on the snow physical properties. The re-
flectance was around 0.8 in the VIS spectrum on 15 May
2019, but it quickly decreased to < 0.7 on 22 May 2019,
after the passage of the dust plumes. The reduction in VIS
wavelengths was up to > 0.1 during this short time interval.
These observations show that the dust plumes from the TD
can significantly darken the snowpack across the Tien Shan
through heavy dust deposition. Furthermore, the progression
of air-temperature-induced snow aging cannot effectively ex-
plain this phenomenon. This result is consistent with pre-
vious satellite observations over the Himalayas (Gautam et
al., 2013).

We also derived the spectral snow albedo and retrieved
several parameters to quantitatively assess the impact of this
dust deposition on snow darkening. The SNICAR-simulated
spectral snow albedo (solid lines) and MODIS-derived 5-
band snow albedo (dots) in Fig. 5a are averaged over the
area in Fig. 5c. These results demonstrate an agreement of
> 95 %, thereby indicating the reliability of our retrievals.
The spectral snow albedo reductions on 15 and 22 May 2019
are shown in Fig. 5b. There were significant increases in the
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Figure 3. Mountain ranges surrounding the Taklamakan Desert, as well as AOD and dust deposition distributions across the Taklamakan
Desert and surrounding region. Panels (a) and (b) show the geographic location of the Taklamakan Desert and surrounding mountains.
Satellite images are from Terra/MODIS (https://worldview.earthdata.nasa.gov, last access: 19 April 2024). The red box defines the area
in (b). Shown also are the spatial distributions of the averaged (¢) AOD and (d) dust deposition values, which were derived from MCD19A2

and MERRA-2 during the March to August 2019 period.

albedo reductions as the wavelength decreased, particularly
on 22 May 2019, which is consistent with theoretical sim-
ulations of the dust-induced snow darkening effect (Fig. 1).
However, the spectral curve differed from the BC-induced
results in the anthropogenically influenced areas of north-
east China (Wang et al., 2017; Niu et al., 2022) and north-
west China (Shi et al., 2020). Therefore, we indicate that the
observed snow darkening in this study was mainly caused
by natural dust emissions, as opposed to BC and organic
carbon (OC) emissions from anthropogenic activities and/or
biomass burning. There was a spectral snow albedo reduc-
tion of 0.02-0.08 in the VIS on 15 May 2019, which rep-
resents persistent but relatively low dust deposition during
spring. However, the severe dust event caused a rapid in-
crease in spectral snow albedo reduction to 0.045-0.18 in a
matter of days. The approximate doubling of the albedo re-
duction indicates that the increase in the dust concentration
was much greater than 100 % based on the nonlinear the-
ory of the snow albedo feedback to the dust concentration
(Fig. 1). This implies that it is important to consider both
the frequency and intensity of dust events when examining
their impact on snow albedo. Similar phenomena that were
induced by catastrophic wildfire events have been observed
in the snowpack across New Zealand (Pu et al., 2021). These
results suggest that extreme events may reflect the more pro-
nounced impact of climate warming on our planet (Liang et
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al., 2021; Gui et al., 2022). Therefore, it is important to pay
more attention to extreme events, rather than just conducting
either annual or monthly averaged analyses, to fully capture
the influence of climate change on snow albedo.

Figure 5c and d illustrate the spatial distributions of the
dust concentration in the snowpack on 15 and 22 May 2019,
respectively. There was a sharp increase in the dust content
from 2-55 to 42-192 ug g~ ! (~ 2.67-fold increase) following
the severe dust event, with the lower elevations possessing
higher dust concentrations and greater dust content increases
(Figs. 5d, e, and S3). Snow darkening was observed across
all of the snow-covered areas (> 2100km?), including the
summits, thereby highlighting the extensive influence of this
severe dust event across the central Tien Shan. Furthermore,
these results demonstrate the capability and effectiveness
of employing satellite remote sensing to observe or moni-
tor large-scale snow darkening. The dust-induced broadband
snow albedo reductions and radiative forcing are shown in
Fig. 5f-k, with observed spatial patterns that are largely sim-
ilar to the dust content distributions. The snow albedo re-
duction increased by 0.008-0.052, with an observed increase
from 0.002-0.032 on 15 May to 0.028-0.079 on 22 May.
The radiative forcing increased by 2.5-20.5 W m~2, with an
observed increase from 0.5-12.5Wm™2 on 15 May to 11—
31.5Wm~2 on 22 May (Fig. S4). Both the snow albedo re-
duction and radiative forcing increased by a factor of ~ 2.39,
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Figure 4. Satellite observations during the 18-22 May 2019 severe dust event across the Tien Shan. Panels (a) and (d) are Terra/MODIS
satellite true-color images acquired on 15 May 2019, prior to the dust storm. Panels (b) and (e) are Terra/MODIS satellite images acquired
on 21 May 2019, with the dust storm transport from the TD to the Tien Shan indicated by the red arrow in (b). Panels (c¢) and (f) are
Terra/MODIS satellite images acquired on 22 May 2019, with significant snow darkening observed across the Tien Shan after the dust
storm. Satellite images (a)—(f) are from Terra/MODIS (https://worldview.earthdata.nasa.gov, last access: 19 April 2024). Panel (g) shows
MODO09GA spectral surface reflectance across snow-covered areas on 10 May 2019 (blue), 15 May 2019 (green), and 22 May 2019 (red).
Panel (h) is a MODIS AOD image acquired on 21 May 2019, with the ERAS5 daily mean wind vector at 700 hPa overlain. Panel (i) is a
MODIS AOD image across the Tien Shan acquired on 21 May 2019. Gray lines denote the 3000 m elevation contour. CALIPSO (j) vertical

feature mask and (k) backscatter coefficient on 21 May 2019.

which directly reflects its significant impact on the regional
radiation balance and climate (Dumont et al., 2020). Snow
darkening can also accelerate snow aging by absorbing more
shortwave radiation in a warming spring, as characterized by
the Refr growth (Fig. S3a, b, and c). Figure S5a—d show the
overall uncertainty in snow albedo reduction retrieval in Tien
Shan, with the uncertainty bounds averaging 24 % (—26 %)
on 15 May and 22 % (—24 %) on 22 May, respectively. As
the dust content increases, the uncertainty in the snow albedo
reduction decreases.

3.1.2 Dust-induced snow darkening across the Kunlun
Mountains

The Kunlun Mountains are located along the southern (north-
ern) edge of the Tarim Basin (Tibetan Plateau). The northern
slope of the central/west Kunlun Mountains directly faces
the TD (Fig. 1a) and should have experienced the most se-
vere dust-induced snow darkening. Similar conditions also
exist across the Himalayas, where the south slope faces both
the Thar Desert in India and the Middle East. We captured
a typical dust storm event with associated dust deposition
and snow darkening that occurred between 5 and 11 May
2020 along the northern slope of the Kunlun Mountains us-
ing MODIS satellite images (Fig. S6). The previously men-
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tioned spring phenomenon is well known due to intense
springtime dust emissions from the TD, whereas the sum-
mer phenomenon is usually overlooked. However, it has been
shown that dust can more effectively cross the Kunlun Moun-
tains during the summer months, with the potential to induce
changes in atmospheric dynamics and thermal effects (Yuan
et al., 2018). Therefore, we specifically chose a summer case
to highlight snow darkening across the Kunlun Mountains.
A significant dust event that impacted the northern slope of
the Kunlun Mountains occurred from 26 August to 8 Septem-
ber 2019 (Figs. 6b and S7). The Terra/MODIS satellite im-
ages on 5 September 2019 (Fig. 6b and e) show the ac-
cumulation of dust plumes along the southern edge of the
Tarim Basin. In summer, the westerlies weaken and shift to
the north, leading to more accumulation of dust locally in-
stead of transporting it eastward (Chen et al., 2017b; Yuan
et al., 2018). Furthermore, the enhanced sensible heat flux
favors the southward transport of uplifted dust, leading to
cyclonic convergence at the surface and anticyclonic diver-
gence at the top of the troposphere above the TD (Fig. 6h).
The synergistic effects of atmospheric dynamic and thermal
forcing can cause the dust plumes to be uplifted to ~5km
altitude (Fig. 6j and k). This uplift effectively facilitated the
dust plume ascent to the snow-covered areas across the north-
ern slope of the Kunlun Mountains (Fig. 6e and i). A com-
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Figure 5. Panel (a) shows the averaged SNICAR-simulated spectral snow albedo (solid lines) and MODIS-derived five-band snow albedo
(dots) for the region across the Tien Shan impacted by the 18-22 May 2019 severe dust event. Panel (b) shows the snow albedo reduction
on 15 May 2019 (green) and 22 May 2019 (red). Shadings indicate the retrieval uncertainty. Spatial distributions of the average (c, d) dust,
(£, g) albedo reduction, and (i, j) radiative forcing on 15 and 22 May 2019, respectively. Spatial distributions of the differences in (e) dust,
(h) albedo reduction, and (k) radiative forcing between 15 and 22 May 2019. The background image in (¢)—(k) is a grayscale topographic

map of the Tien Shan.

parison of the MODIS images that were acquired on 23 Au-
gust and 6 September 2019 highlighted snow darkening after
this severe dust storm (Fig. 6d and f). The surface reflectance
decreased by ~ 0.22 in the VIS spectrum, decreasing from
0.285 on 23 August to ~0.065 on 5 September. These ob-
servations indicate that this summertime dust event caused
significant snow darkening across the Kunlun Mountains.
Figure 7 provides a more quantitative investigation of the
impact of this severe dust event on the snowpack across the
Kunlun Mountains, whereby a significant increase in dust
content from 12-50 ugg ™" on 23 August to 170-360 ugg~!
on 6 September (~ 6.45-fold increase) is observed after this
severe dust event (Fig. S8). The darkened snow-covered area
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spans > 600 km?, with a clear south—north gradient in the
dust concentration distribution that is influenced by both the
orientation and elevation of the mountains. This large dust
deposition induced a 0.015-0.106 increase in snow albedo
reduction, with an observed increase from 0.013-0.032 on
23 August to 0.088-0.136 on 6 September. There was also a
substantial increase in radiative forcing of 4.1-37.5W m™2,
with an observed increase from 3—-11 W m~2 on 23 August
to 31-49W m~2 on 6 September (Fig. S4). Note that these
increases in both the snow albedo reduction and radiative
forcing are approximately two times larger than those ob-
served over the Tien Shan (Figs. S3 and S8). These findings
indicate accelerated snow aging, as evidenced by the faster
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Figure 6. Satellite observations during the 26 August to 8 September 2019 dust storm across the Kunlun Mountains. Panels (a) and (d) are
Terra/MODIS satellite true-color images acquired on 23 August 2019, prior to the dust storm. Panels (b) and (e) are Terra/MODIS satellite
images acquired on 5 September 2019, with the dust storm transport from the TD to the Kunlun Mountains indicated by the red arrow in (b).
Panels (c) and (f) are Terra/MODIS satellite images acquired on 6 September 2019, with significant snow darkening across the Kunlun
Mountains after the dust storm. Satellite images (a)—(f) are from Terra/MODIS (https://worldview.earthdata.nasa.gov, last access: 19 April
2024). Panel (g) shows MODO9GA spectral surface reflectance over the snow-covered areas on 20 July 2019 (blue), 23 August 2019 (green),
and 6 September 2019 (red). Panel (h) is a MODIS AOD image acquired on 5 September 2019, with the ERAS daily mean wind vector at
700 hPa overlain. Panel (i) is a MODIS AOD image across the Kunlun Mountains from 5 September 2019. Gray lines denote the 3000 m

elevation contour. CALIPSO (j) vertical feature mask and (k) backscatter coefficient on 4 September 2019.

growth rate of the R observed across the Kunlun Moun-
tains (Fig. S9). Furthermore, Fig. S5e—h show the overall un-
certainty in snow albedo reduction retrieval in Kunlun Moun-
tains, with the uncertainty bounds averaging 23 % (—25 %)
on 23 August and 7 % (—21 %) on 6 September, respectively.
Notably, compared with the Tien Shan dust event described
in Sect. 3.1.1, the Kunlun Mountains event demonstrates a
more significant reduction in the uncertainty of snow albedo
reduction as the dust content increases, especially in the up-
per bound of the uncertainty. This observation aligns with
findings reported by Cui et al. (2021).

3.1.3 Snow darkening across the Qilian Mountains

Unlike the Tien Shan and Kunlun mountains, the Qilian
Mountains are located approximately 1000km east of the
Tarim Basin. The Hexi Corridor, a narrow and relatively flat
plain that lies between the high-elevation, inhospitable ter-
rains of the Mongolian and Tibetan plateaus (see Fig. 3), is
situated to the north of the Qilian Mountains. The unique ter-
rain of the region results in TD dust plumes following a pre-
ferred transport route across the Hexi Corridor to East Asia
(Zhang et al., 2008; Meng et al., 2018). These dust plumes
are generally uplifted to > 4 km altitude and entrained in the
westerlies (Huang et al., 2008; Dong et al., 2014; Chen et
al., 2022), thereby providing a means for dust deposition onto
the snowpack across the Qilian Mountains.
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Figure 8 illustrates a severe dust event that occurred from
2 to 4 November 2012 (Fig. S10), when abundant dust
plumes were being transported across the narrow Hexi Cor-
ridor (Fig. 8b and h). The dust content was much more in-
tense in this region, possessing AOD levels of up to > 0.8.
Furthermore, the CALIPSO observations indicated that the
dust plumes were uplifted to ~ 10 km altitude (Fig. 8j and k),
thereby allowing some dust particles to cross over the north-
ern slopes of the Qilian Mountains and spread across its west-
ern extent (Fig. 8e and i). The average reflectance in the
VIS spectrum was stable at around 0.7-0.8 across the snow-
covered areas about a week before the severe dust event but
then significantly decreased to 0.6—0.7 owing to heavy dust
deposition.

Figure 9 presents the quantitative satellite-derived results,
which highlight a rapid increase in dust content from 110-
228 to 194-360pugg~" (~ 1.53-fold increase) that spanned
a snow-covered area of >630km? (Fig. 9f, g, and h). This
significant increase in dust content led to a considerable in-
crease in snow albedo reduction (radiative forcing) of 0.018-
0.067 (3-16 Wm~2), which increased from 0.042-0.076
(11-20Wm~2) on 1 November 2012 to 0.092-0.153 (22—
38 Wm™2) on 4 November 2012 (Fig. S4). This > 1.5-fold
increase in snow albedo reduction (radiative forcing) was not
solely due to the deposition of dust (Fig. S11). Accelerated
snow aging, which was observed from the enhanced Re¢r
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Figure 7. Panel (a) shows the averaged SNICAR-simulated spectral snow albedo (solid lines) and MODIS-derived five-band snow albedo
(dots) for the region across the Kunlun Mountains impacted by the 26 August to 8 September 2019 severe dust event. Panel (b) shows
the snow albedo reductions on 23 August 2019 (green) and 6 September 2019 (red). Shadings indicate the retrieval uncertainty. Spatial
distributions of the average (c, d) dust, (f, g) albedo reduction, and (i, j) radiative forcing on 23 August and 6 September 2019, respectively.
Spatial distributions of the differences in (e) dust, (h) albedo reduction, and (k) radiative forcing between 23 August and 6 September 2019.
The background image in (¢)—(k) is a grayscale topographic map of the Kunlun Mountains.

growth (Fig. S9), also contributed to the observed increase
in snow albedo reduction (radiative forcing); this trend was
similar to that observed across the Kunlun Mountains. Fig-
ure S5i—1 show the overall uncertainty in snow albedo reduc-
tion retrieval in the Qilian Mountains, with the uncertainty
bounds averaging 16 % (—21 %) on 1 November and 11 %
(=20 %) on 4 November, respectively. Our approach uses
satellite remote sensing to obtain a more complete spatiotem-
poral evolution of the TD dust storm, including its emis-
sion, long-range transport, and deposition, across the Qilian
Mountains, which offers advantages over previous field mea-
surements (Wei et al., 2017).

3.2 Contributions to the spatial and altitudinal variations
in dust-induced snow darkening

We quantified the contributions of the three key factors (dust
content, snow properties, and solar zenith) to the spatial vari-
ations in snow albedo reduction (Fig. 10) using the method
described in Sect. 2.6. The dust content was the dominant
contributor to the spatial variations in snow darkening. This
is at least partially attributed to the greater spatial differences
in dust content compared with those of the other factors, as
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shown in Figs. 5, 7, and 9. Furthermore, theoretical modeling
has indicated that the snow albedo reduction is more sensi-
tive to changes in dust content than to changes in the snow
properties and solar zenith angle (Flanner et al., 2021; Usha
et al., 2022; Zhao et al., 2022). Laboratory experiments also
support these findings (Zhang et al., 2018; Li et al., 2022).
The contribution of the dust content also increased as the
elevation in each mountain range increased, whereas a de-
creasing trend was observed for the snow parameters. This is
because the dust content exhibits spatial differences across
all of the elevations owing to its widespread and hetero-
geneous depositions. However, the snow depth has a more
semi-infinite nature and R.fr exhibits greater spatial homo-
geneity at higher elevations owing to slower snow aging.
Scatter plots of the snow albedo reduction for the eleva-
tions across the Tien Shan, Kunlun, and Qilian mountains
are shown in Fig. 11. The snow albedo reduction across the
Tien Shan decreased with increasing elevation prior to the
dust storm. However, the most severe dust deposition oc-
curred within the 40004500 m elevation range, resulting in
the most significant enhancement of snow albedo reduction
in this elevation range. These findings are consistent with
those reported for the Himalayas (Sarangi et al., 2020). The
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Figure 8. Satellite observations during the 2—4 November 2012 dust storm across the Qilian Mountains. Panels (a) and (d) are Terra/MODIS
satellite true-color images acquired on 1 November 2012, prior to the dust storm. Panels (b) and (e) are Terra/MODIS satellite images ac-
quired on 3 November 2012, with the dust transport from the TD to the Qilian Mountains indicated by the red arrow in (b). Panels (¢) and
(f) are Terra/MODIS satellite images acquired on 4 November 2012, with significant snow darkening observed across the Qilian Moun-
tains after the dust storm. Satellite images (a)—(f) are from Terra/MODIS (https://worldview.earthdata.nasa.gov, last access: 19 April 2024).
Panel (g) shows MODO9GA spectral surface reflectance over the snow-covered areas on 26 October 2012 (blue), 1 November 2012 (green),
and 4 November 2012 (red). Panel (h) is a MODIS AOD image acquired on 3 November 2012, with the ERAS daily mean wind vector at
700 hPa overlain. Panel (i) is a MODIS AOD image across the Qilian Mountains from 3 November 2012. The gray line denotes the 3000 m
elevation contour. CALIPSO (j) vertical feature mask and (k) backscatter coefficient on 3 November 2012.

snow albedo reduction was generally low across the Kunlun despite the significant impact of dust on snow darkening
Mountains for all of the elevation ranges. However, dust de- in these regions. Here we provide an overview of previous
position caused the most significant albedo reduction within in situ dust-content measurements in the snowpack across
the 4500-5500 m elevation range, with a dramatic decrease the study region for comparison with our satellite remote-
in its influence above 6000 m. These findings correspond to sensing results (see Fig. 12). In the Tien Shan region, Ming
the CALIPSO aerosol vertical profile observations (Fig. 6j et al. (2016), Xu et al. (2016), Li et al. (2021), and X. Zhang
and k). The snow albedo reduction across the Qilian Moun- etal. (2021) reported a dust content of 19.3-110 ugg~" in the

tains initially increased with elevation up to ~ 5000 m and snowpack across Urumqi Glacier No. 1. Dong et al. (2009)
then decreased at high elevations prior to the dust storm. observed an average dust content of 0.97-3.69 ugg™! in the
However, the most severe dust deposition occurred across snowpack across Urumgqi Glacier No. 1, Haxilegen Glacier
the lower elevations, leading to the most significant enhance- No. 51, and Miaoergou Glacier. Schmale et al. (2017) found
ment of snow albedo reduction across these lower-elevation a variable dust content of 68.1-125.9ugg~! in the snow-

regions. Our elevation analysis revealed a consistent outcome pack across Suek Zapadniy, No. 354, and Golubin glaciers
whereby the dust storms significantly darkened the snowpack in the western Tien Shan. In the Kunlun Mountains, Wake
up to > 5000 m elevation across the three analyzed mountain et al. (1994) reported a dust content of up to ~8pugg™!
ranges. in the snow/ice across the western Kunlun Mountains. Wu
et al. (2010) and Xu et al. (2016) measured dust contents
of ~8.68 and 16.24 ugg™" in the ice core and snowpack
4 Discussion across Muztagata Glacier in the northwestern Tibetan Plateau
(Wu et al., 2010; Xu et al., 2016), respectively. In the Qil-
The snow darkening effect and its resultant radiative forcing ~ ian Mountains, Wu et al. (2010) analyzed ice cores from

have gained increasing attention in recent decades owing to  Dunde Glacier and measured a dust content of ~21pgg™".
their significant impacts on regional climate and hydrological =~ The measured dust contents in the snowpack across Lao-
systems. However, studies in the Tien Shan, Kunlun, and Qil- hugou Glacier ranged from around 3 to 93.2 ugg~! (Dong et

ian mountains have been limited to local-scale observations, al., 2014; Xu et al., 2016; Zhang et al., 2018; Li et al., 2022).
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Figure 9. Panel (a) shows the averaged SNICAR-simulated spectral snow albedo (solid lines) and MODIS-derived five-band snow albedo
(dots) for the region across the Qilian Mountains impacted by the 2—4 November 2012 severe dust event. Panel (b) shows the snow albedo
reductions on 1 November 2012 (green) and 4 November 2012 (red). Shadings indicate the retrieval uncertainty. Spatial distributions of the
average (c, d) dust, (f, g) albedo reduction, and (i, j) radiative forcing on 1 and 4 November 2012, respectively. Spatial distributions of the
differences in (e) dust, (h) albedo reduction, and (k) radiative forcing between 1 and 4 November 2012. The background image in (¢)—(Kk) is
a grayscale image of the Qilian Mountains.

Wang et al. (2019) measured a variable dust content of 1.4— snow darkening events due to severe dust storms, which fur-
1.9ugg~! in the fresh snow across Qiyi, Meikuang, and ther highlights the advantage of employing remote-sensing
Yuzhufeng glaciers. Overall, previous field studies have re- techniques to observe extreme snow darkening phenomena
ported dust contents of 0.97-125.9, 6.78-16.24, and 1.4— (Li et al., 2020). We do note that satellite-derived approaches
93.2ug g_1 for the Tien Shan, Kunlun, and Qilian mountains, possess their own uncertainties, which arise from the data
respectively. resolution and accuracy, algorithm assumptions, as well as

Our satellite-derived approach has yielded much higher atmospheric and underlying surface interferences (Cui et
dust contents than those obtained via in situ field measure- al., 2021). Nevertheless, this satellite-derived approach re-
ments, with 42-196, 170-360, and 194-360ugg~" deter- mains a valuable tool for effectively and rapidly studying
mined for the Tien Shan, Kunlun, and Qilian mountains, re- extreme events, which cannot be captured by field measure-
spectively. A key reason for this discrepancy could be that the ments or climate model simulations, particularly as these ex-
field measurements usually record the background dust con- treme events will become increasingly important for climate
tent signal, which includes a gradual natural deposition of and hydrological systems as the global climate continues to
dust, whereas our analysis specifically focused on significant warm (Clow et al., 2016; Dumont et al., 2020).
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Figure 10. Contributions of the spatial variations in dust content
(blue), snow parameters (green), and solar zenith angle (red) to the
snow albedo reduction at different elevations across the (a) Tien
Shan, (b) Kunlun, and (c) Qilian mountains.

Given the significant snow darkening effect highlighted in
this study and recent observations of decreasing snow cover
across the Tien Shan, Kunlun, and Qilian mountains (She et
al., 2015; Liet al., 2020; Zhu et al., 2022), it is crucial to eval-
uate the impact of snow darkening on regional hydrological
cycles and local freshwater supplies. However, snow aging
and melting mechanisms are complex and therefore require
complementary observations, because remote sensing alone
cannot distinguish the influences of augmented shortwave ra-
diation owing to dust and increased air temperatures on snow
aging and melting (Gautam et al., 2013). Additional research
that integrates model simulations and satellite observations
is necessary to differentiate the roles of snow darkening and
global warming in enhancing snow aging and melting, and
the resultant changes in glacier runoff in the future.
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Figure 11. Scatter plots of the snow albedo reductions for the an-
alyzed elevation ranges across the (a) Tien Shan, (b) Kunlun, and
(¢) Qilian mountains. Each box plot shows the statistical results for
a 400 m elevation interval.

5 Conclusions

Our study focused on the impact of the annual vast dust
emissions from the Taklamakan Desert on the surrounding
high mountain snowpack. Using a combination of MODIS
satellite data analysis and SNICAR model simulations, we
aimed to reveal significant snow darkening events and quan-
tify the resulting snow albedo reduction and radiative forc-
ing caused by severe dust storms. Our analysis of the satel-
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lite data revealed significant snow darkening over the 3000-
6000 m elevation range across the Tien Shan and Kunlun
mountains. This phenomenon was attributed to the high up-
lift of dust owing to the local topography and atmospheric
circulation. The impacted area, spanning the track of the dust
storm, encompassed almost all of the snow-covered areas
across the Tien Shan (> 2100 km?) and Kunlun (> 600 km?)
mountains, including the summits. The dust content in the
snowpack increased to 42—192 and 170-360 ugg~!, resulting
in significant increases in snow albedo reduction (radiative
forcing) of 0.028-0.079 (11-31.5W m~2) and 0.088-0.136
(31-49 W m~2) across the Tien Shan and Kunlun moun-
tains, respectively. Additionally, the dust storms accelerated
snow aging, as indicated by the growth of Ref. Further-
more, the dust plumes from the Taklamakan Desert trav-
eled eastward, depositing dust across much of the snow-
covered area (> 630km?) in the Qilian Mountains, where
the dust content significantly increased to 194-360ugg™",
causing a considerable increase in snow albedo reduction (ra-
diative forcing) of 0.092-0.153 (22-38 W m~2). The spatial
distribution of the snow darkening effect varied across all
three mountain ranges due to the uneven deposition of dust,
with the most significant snow darkening observed in the
high-elevation range of 4000-5500 m. Moreover, by com-
paring our satellite-derived results with previous field mea-
surements, we found that severe dust storms, occurring over
short periods, have a more profound effect on snow dark-
ening compared with the relatively slow deposition of dust
in the absence of dust storms. These severe snow darkening
events were not limited to the three typical cases but instead
occurred widely (Figs. S13—S21). This highlights the impor-
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tance of satellite-derived analyses in capturing extreme dust
deposition events that may be challenging to detect through
field measurements and climate model simulations. Our find-
ings underscore the significance of understanding the impact
of dust deposition on snow albedo and radiative forcing for
accurate assessment of the environmental effects of these ex-
treme events.
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