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S1 Method

S1.1 Attribution of the spatial variation in snow albedo reduction

As noted above, the snow albedo reduction depends mainly on the dust content, snow
optical effective radius (Refr), snow depth (SD) and solar zenith angle (SZ). Snow
optical effective radius and snow depth can be categorized as the snow properties (SP).
Here we choose these three variables to discuss their fractional contributions to the
spatial variability in snow albedo reduction. Aa can be expressed as

Aa=f(dust,SP,SZ). (S1)

The spatial variability about snow albedo reduction due to dust can be described as

Aa(dust)=f(dust,SP,SZ), (S2)

where SP and SZ indicate spatial-mean values of SP, and SZ. Similarly, we can

obtain the following equations:

Aa(SP)=f(dust,SP,SZ), (S3)

Aa(SZ)=f(dust,SP,SZ). (S4)

We fit the Aa based on multiple linear regression, we can express it as
Aag=axAa(dust)+bxAa(SP)+cxAa(SZ), (S5)

where Aayg; is the fitted snow albedo reduction, and a, b, c represent the regression
coefficients. As a result, we can use Aoy, to replace Aa to access the contribution to

spatial variation of individual variables, Eq. (14) can be written as follows:

Aag-Aag=ax(Aa(dust)—Aa(dust) ) +bx(Aa(SP)-Aa(SP) +cx(Aa(SZ)-Aa(SZ)),(S6)

where we use Aag—Aayg; represent snow albedo reduction anomaly

(Aa%rtlomaly). After, Eq. (15) can be written as
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Aa?'lrtloma Y= ax AOtanomaly (duSt) +bx AOcanomaly (SP) +ex AOcanomaly (SZ) .

(87)

According to Pu et al. (2019) and Cui (2021), the fractional contribution of dust to the

spatial variability in snow albedo reduction (Fy,) can be written as

. Z (@%Atgnomary (dust))’
duSt_n : )(l )

X}Z(LZ X AOzanomaly (dUSt) i)2+(bx AOzanomaly (SP)i)2+(CX AOzanomaly (SZ) i)2 .

(S8)

(S9)

where n represent the length of the data set. Similarly, we can get the Fgp and Fgy.
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Figure S1. Variations in spectral snow albedo due to (a) dust content (ug g'), (b)
snow depth (m), (¢) snow grain size (um), and (d) solar zenith angle (°) while the
other three parameters are kept constant.
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Figure S2. Satellite observations during the 15-22 May 2019 severe dust event
across the Tien Shan (a-h). Satellite images (a-h) are from Terra/MODIS
(https://worldview.earthdata.nasa.gov).
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Figure S3. Spatial distribution of the ratios between 15 May 2019 and 22 May 2019
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Figure SS5. The overall lower bound and upper bound of the uncertainty value of
snow albedo reduction retrieval due to atmospheric correction in Tien Shan (a-d),
Kunlun Mountains (e-h) and Qilian Mountains (i-1).

(a) 05 Mar 2020
=

d) 11 Mar 2020

Figure S6. Satellite observations during the 05-11 March 2020 severe dust event
across the Kunlun Mountains. (a, ¢) Terra/MODIS satellite true-color images
acquired on 05 March 2020, prior to the dust storm. (b, d) Terra/MODIS satellite
images acquired on 11 March 2020, with significant snow darkening across the
Kunlun Mountains after the dust storm. Satellite images (a-d) are from
Terra/MODIS (https://worldview.earthdata.nasa.gov).
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Figure S7. Satellite observations during the 23 August to 06 September 2019
severe dust event across the Kunlun Mountains (a-0). Satellite images (a-0) are
from Terra/MODIS (https://worldview.earthdata.nasa.gov).
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Figure S8. Spatial distribution of the ratio between 23 Aug 2019 and 06 Sep 2019
of (a) dust, (b) albedo reduction, (c) radiative forcing and (d) Resr. The background
images in (a-d) show the elevation of Kunlun Mountains.
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Figure S9. Spatial distributions of the average values and differences of Refr across
the (a-c) Tien Shan, (d-f) Kunlun Mountains and (g-i) Qilian Mountains,
respectively.
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Figure S10. Satellite observations during the 01-04 November 2012 severe dust
event across the Qilian Mountains (a-d). Satellite images (a-d) are from
Terra/MODIS (https://worldview.earthdata.nasa.gov).
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Figure S11. Spatial distribution of the ratio between 01 Nov 2012 and 04 Nov 2012
of (a) dust, (b) albedo reduction, (c) radiative forcing and (d) Refr. The background
images in (a-d) show the elevation of Qilian Mountains.
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Figure S12. Spatial distributions of the averaged MERRA-2 (a) BC, (b) dust and
(c) OC deposition rate from March to August 2019.
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Figure S13. Satellite observations during the 29 September to 02 October 2015
severe dust event across the Tien Shan (a-f). Satellite images (a-f) are from
Terra/MODIS (https://worldview.earthdata.nasa.gov).

(b) 04 Mar 2016 c) 06 Mar 2016
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Figure S14. Satellite observations during the 01-06 March 2016 severe dust event

across the Tien Shan (a-f). Satellite images (a-f) are from Terra/MODIS
(https://worldview.earthdata.nasa.gov).
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Figure S15. Satellite observations during the 04—-11 March 2023 severe dust event

across the Tien Shan (a-f). Satellite images (a-f) are from Terra/MODIS
(https://worldview.earthdata.nasa.gov).
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Figure S16. Satellite observations during the 28 January to 03 February 2019
severe dust event across the Kunlun Mountains (a-f). Satellite images (a-f) are
from Terra/MODIS (https://worldview.earthdata.nasa.gov).

(a) 16 Mar 2019 (b) 21 Mar 2019
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Figure S17. Satellite observations during the 16-23 March 2019 severe dust event

across the Kunlun Mountains (a-f). Satellite images (a-f) are from Terra/MODIS
(https://worldview.earthdata.nasa.gov).
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Figure S18. Satellite observations during the 23-27 July 2019 severe dust event

across the Kunlun Mountains (a-f). Satellite images (a-f) are from Terra/MODIS
(https://worldview.earthdata.nasa.gov).

(a) 03 Dec 2014

(c) 12 Dec 2014

Figure S19. Satellite observations during the 03-12 December 2014 severe dust

event across the Qilian Mountains (a-f). Satellite images (a-f) are from
Terra/MODIS (https://worldview.earthdata.nasa.gov).
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Figure S20. Satellite observations during the 25-30 December 2017 severe dust
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event across the Qilian Mountains (a-f). Satellite images (a-f) are from
Terra/MODIS (https://worldview.earthdata.nasa.gov).
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Figure S21. Satellite observations during the 31 January to 03 February 2019
severe dust event across the Qilian Mountains (a-f). Satellite images (a-f) are from
Terra/MODIS (https://worldview.earthdata.nasa.gov).



