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Abstract. This study presents an analytical approximation of the definite Chapman integral, applicable to any
zenith angle and finite integration limits. The author also presents the asymptotic expression for the definite
Chapman integral, which enables an accurate and efficient implementation free of numerical overflows. The
maximum relative error in our analytical solution is below 0.5 %.

1 Introduction

The Chapman function, a specific improper integral, has
wide application in diverse fields of study (Chapman,
1931, 1953), including but not limited to radiative transfer
theory, aeronomy, and atmospheric absorption and scattering
in general (Bauer and Lammer, 2004; Brasseur and Solomon,
2005; Schunk and Nagy, 2009; Grieder, 2010; Engel, 2018).
It represents the integration of an exponentially varying den-
sity along a slanted path within spherical geometry. In com-
puting atmospheric attenuation and scattering over finite dis-
tances, the definite form of this integral becomes essential.
Several researchers (Green and Barnum, 1963; Fitzmaurice,
1964; Swider and Gardner, 1969; Titheridge, 1988; Kocifaj,
1996; Huestis, 2001) have proposed various analytical ap-
proximations of the Chapman function. A comprehensive re-
view and an improvement of these approximations were re-
cently offered by Vasylyev (2021). Nonetheless, a straight-
forward solution applicable to arbitrary path angles and fi-
nite integration limits remains elusive. Our work addresses
this gap by offering a comprehensive solution for the definite
Chapman integral, ensuring precision over finite distances
and aligning with the Chapman function at infinite limits.

Boltzmann’s distribution, at a constant temperature 7', de-
scribes the exponential decrease in air molecule density with
altitude A, as follows:

mgh

n(h) = n(0) e T, (D

Here, m denotes the mass of a single molecule, g the grav-
itational acceleration, kg the Boltzmann constant and T the
absolute temperature. On a planet with radius R, the assump-
tion of constant g is valid only when 7 < R.

Considering a planet of radius R, as shown in Fig. 1, start-
ing from point A in the atmosphere at distance D from the
center, along a path at angle z from the zenith, the integral of
density along the path A—B is proportional to

L
_ _
/ =/e («/D2+12+2cosle R)/Hdl’ )
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where L = |AB|. The H in the exponent is termed the scale
height. Since the integral is performed in the atmosphere, the
exponent is always negative, and the integral is well defined
and is smaller than L.

Given the average density p of the planet, gravitational ac-
celeration near the surface (A <« R) can be approximated as
g= 4”(3;” R G being the gravitational constant. For an effec-
tive molecular mass m, the scale height H can be expressed
as

_ kgT _ 3kgT

= = 3
mg  4mGpRm )

Using a molecular weight W, and substituting standard
values for G = 6.67 x 107! (in MKS units) and the ideal
gas constant 8.31Jmol~' K1, we arrive at H ~2.97 x
1013%. For Earth, with p ~5.51 x 10°kgm—3 and R ~
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Figure 1. Density integration from A to B.

6.4 x 10° m, at a temperature of 300 K and molecular weight
of 30, H is calculated to be approximately 8.5 x 10> m. More
pertinent to the Chapman integral is the ratio R/H, which
for Earth is around 700. Generally, the R/H ratio can be es-
timated as

4 pR*m N oW R?

R/H = ~ _
/ 3kpT 297 x 10837

“

For rocky planets larger than 1000 km in radius and with
similar density to Earth, the R/ H ratio is typically in the hun-
dreds. This implies a relatively thin atmospheric layer com-
pared to the planet’s size, allowing the assumption of con-
stant gravity as used in Eq. (6). We therefore propose chang-
ing the integration over travel distance in the atmosphere to
one over the change in the radial distance.

Defining A=D/H, Ry =R/D,t=1/D, and x =L/D,
we reformulate integral I as

X

— 2 —
I(x.2,0) = H)»fe A(«/ 141242t cosz Rd)dt
0
X
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0

Observing that A(1—Ry) = (D—R)/H, we define the term
in square brackets as the definite Chapman integral, i.e., the
Chapman integral with finite integration limits.

X

— 2 S 7 —
Cd(x,z,x)zxfe M(Viraeoi-) 6)
0
Specifically, we identify
Cd(o0, z,A) = Ch(A, 2), @)

where Ch(}, z) is the Chapman function as defined in Chap-
man (1931).
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2 Analytical solution of the definite Chapman
integral

To perform the integral Cd in Eq. (6), we make the following
change of variable:

u(t)=v1+1t2+2tcosz—1. (8)

Restricting z to [0, /2], there is a one-to-one mapping
between ¢ and u. Using the relationship g—; = utl

2+ 2utcos?z’
the integral is transformed to
y=u(x) 1

Cd(x,z,0) =2 T4 gy, ©)

(14 u)? —sin’z

Geometrically, referring to Fig. 1, the upper limit of the
integral y = |OB|/D — 1, denoting the variation in radial dis-
tance at the boundary of integration, normalized by the initial
distance. Given that the atmospheric thickness of a planet is
significantly less than its radius, the upper limit y is much
smaller than 1 (1 <y < 1). With the range of z confined to
[0, /2], sinz is non-negative, this permits the approxima-
tion /1+u+sinz ~ /1 +sinz. With this simplification,
the above integral can be approximated as follows:

)7
A / 1+u
V1+sinzJ +/1+4+u—sinz
0

Cd(x,z, 1) ~ e Mdu.  (10)

Since A is large, the main contribution to the integral
comes from small u values. Moreover, the assumption of
constant gravity in deriving the exponential drop of density
is valid only when the atmosphere depth is much smaller
than planet radius. These considerations further justify our
approximation.

By another change of variable, w = 1 4+ u — sinz, then in-
tegrate by parts, the integral can be analytically expressed
using the erfc(¢) function (complementary error function),
which is defined as 1 — Z/nfot exp(—u?)du.

To simplify the expression of our result, we define function
Y(y,z,A) for z € [0, /2],

__ -t 2 /a(1+y—sinz)
Y(y,z,k)—m[e A(l4+y—sinz)

. 1
+ ﬁem*sm“ (A sinz + E)
erfe (V1 +y—sinz))], (11

and define function Cy(y, z, 1) as
Cy(y.z. M) =Y(y,z,A) = Y(0,2,2). (12)
The definite Chapman integral is found to be

Cd(x, z,A) =Cy(y,z, M), (13)
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Figure 2. Illustration of the density integral from point A to B,
with zenith angles greater than 7 /2 at both endpoints. The integral
is divided into two parts at point A’, enabling the application of the
Y function.

where y is defined by Eq. (8);i.e., y =+/1 + xZ +2xcosz —
1. Geometrically, y = Dg/D—1, Dp being the distance from
the end point to the center of the planet.

To study the behavior of Cy(y, z, ), we examine its first
derivative:

dCy(y,z,A) M1+ y)e™
dy VA Fsinz)(T+y—sinz)

(14)

Since dY /dy is always positive, Y (y, z, 1) increases mono-
tonically with y. Moreover, due to the factor e~ the deriva-
tive quickly approaches 0 at Ay > 1. This indicates that
the integral’s primary contribution comes from within a few
multiples of the scale height, while the contribution from
higher altitudes becomes inconsequential. For instance,with
A =500, Y(y, z, 1) plateaus around y = 0.02. Consequently,
Cy(y = 10/A, z, A) serves as an excellent approximation for
the Chapman function, despite the latter having the integra-
tion limit extended to infinity. Our results (Eqs. 11-13) agree
with the approximate formulas tabulated in Vasylyev (2021)
when evaluated under appropriate limits.

Our result is an analytical solution for the definite Chap-
man integral applicable to zenith angles z restricted to the
range [0,7/2]. In this context, y must be positive. How-
ever, our solution can be easily extended to situations where
z > /2, involving a decrease in radial distance along the in-
tegration path. In the simplest scenario, reversing the start
and end points of the integration ensures that the zenith an-
gle is z <=m /2 at the starting point. For such cases, it is
merely a matter of redefining D and z based on the new start-
ing point.

Figure 2 depicts a more intricate scenario, where the zenith
angles at both integration ends exceed /2.

To adapt the Y (y, z, A) function to the case illustrated in
Fig. 2, the approach involves altering the integration’s start-
ing point. This is achieved by drawing a perpendicular line
from the center of the planet to the line AB and taking the in-
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Analytical vs Numerical Integral at Different A Values (y=0.1)
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Figure 3. Comparison of the analytical result and numerical inte-
gration.

Relative Error (%) Analytical vs. Numerical Integral (y=0.1)
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Figure 4. Relative error of the analytical result compared to numer-
ical integration.

tersection point A’ as the new starting point. The ¥ function
is then applied to two segments, from A’ to A and from A’ to
B, both with a zenith angle of 7 /2.

With this change of the starting point, let D’ = Dsingz,
A = Dsinz/H, yy = 1/sinz— 1 and y, = |OB|/D’ — 1:

Cd(x,z,A) =Y (y1,7m/2,Asinz) 4+ Y (y2, /2, Asin7)
—2Y(0,7/2, Asinz). (15)

3 Asymptotic expression

Given that A is significantly greater than 1, the erfc func-
tion values in Eq. (11) rapidly converge to O at both limits
for most z values (for instance, erfc(3) ~ 2.2 x 1073 ). Simul-
taneously, the exponential factor of the second term inside
the equation’s brackets becomes exceedingly large for most
z values. As previously mentioned, the original integral re-
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mains well defined and is smaller than the length of integra-
tion. Therefore, Eq. (12) is dependent on the near cancella-
tion of erfc values at the integration limits:

A@JJ):&&(JMI—ﬁn@)—m&(JMl+y—ﬁn@) (16)

For high values of A, attempting a direct numerical calcu-
lation using Eqgs. (11)—(12) could lead to overflow issues with
the exponential term and imprecise results in the A term, due
to the limitations in floating-point precision. It is crucial to
analytically neutralize the positive exponent in the second
term of Eq. (11). When A(1—sinz) > 1, by retaining only the
principal term in the asymptotic expansion of erfc(x), namely
exp(—x2)/x /7, we can simplify the A expression:

—A(1—sinz) 1 —si
A,z ) = e (1= [ ) (17)
7/ A1 —sinz) y+1—sinz

Using the above result, at large A(1 —sinz), Eq. (13) be-
comes

Cd(x,z, M)~ A1 —sing)

1
NG +sinz)|:
— e /Ay +1—sinz)

)»sinz—{—l e
+ M (1 e llsm.z)], (18)
VA(l —sinzg) y+1—sinz

and when Ay > 1, the exponentially small terms in
Cd(x, z, A) above can be dropped. The formula is reduced
to the well-known result in the limiting case.

Cd(x,z,A) ~

(19)
cosz cosz

It is important to observe that this approximation holds
true only when A(1 —sinz) > 1, and cosz is non-zero at this
limit. This indicates that for small zenith angles, the atmo-
spheric curvature can be disregarded, and the optical depth
calculations can be based simply on the length of the slanted
path.

4 Numerical evaluation

The sole approximation in our derivation was made in
Eq. (10). Our analytical results, spanning Egs. (11)—(15), are
valid for any zenith angle, including z = 90°. To evaluate our
solution, we compared the analytical results from Y (y, z, A)
(Egs. 11-12) with direct numerical integration of the original
integral Cd(x, z, 1) in Eq. (6), across a range of A values and
zenith angles within [0, /2]. Then we plotted the relative
error of our analytical solution, calculated as the discrepancy
between the analytical and numerical results, normalized by
the numerical integral. The full evaluation is demonstrated in
the GitHub repository (Yue, 2024). The key resulting plots
are presented in Figs. 3 and 4.
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Our numerical evaluations revealed that the maximum rel-
ative error in the analytical solution remained under 0.5 % for
A values ranging from 50 to 10 000. Furthermore, the asymp-
totic approximation in Eq. (18) demonstrates high accuracy,
with the maximum relative error of less than 1% when it
is applied at /A(T —sinz) > 7.0. Even when the asymptotic
approximation is switched on at +/A(T — sinz) > 3.0, the rel-
ative error stayed below 5 %.

Additionally, we assessed our analytical results at an upper
limit of y =0.1 for A values between 50 and 10000, juxta-
posing them with the numerical values of the Chapman func-
tion. The comparisons indicated that they are within 0.5 % of
each other.

5 Conclusions

In summary, our study provides a comprehensive analytical
solution for the definite Chapman integral, applicable to any
zenith angle and realistic A values. The accuracy of our solu-
tion has been rigorously tested against direct numerical inte-
grations, demonstrating a high degree of precision with rela-
tive errors consistently below 0.5 %. The solution is notable
in its simplicity and versatility. This work paves the way for
more efficient and accurate atmospheric effect analyses and
related studies.

Code and data availability. The Python code for evaluating the
analytical approximation of the definite Chapman is available online
on GitHub https://github.com/ydx2021/yuedx/, last access: 22 De-
cember 2023 (Yue, 2024).
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