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Abstract. We quantify 2019 annual mean methane emissions in the contiguous US (CONUS) at
0.25°× 0.3125° resolution by inverse analysis of atmospheric methane columns measured by the Tropospheric
Monitoring Instrument (TROPOMI). A gridded version of the US Environmental Protection Agency (EPA)
Greenhouse Gas Emissions Inventory (GHGI) serves as the basis for the prior estimate for the inversion. We
optimize emissions and quantify observing system information content for an eight-member inversion ensemble
through analytical minimization of a Bayesian cost function. We achieve high resolution with a reduced-rank
characterization of the observing system that optimally preserves information content. Our optimal (posterior)
estimate of anthropogenic emissions in CONUS is 30.9 (30.0–31.8) Tg a−1, where the values in parentheses give
the spread of the ensemble. This is a 13 % increase from the 2023 GHGI estimate for CONUS in 2019. We
find emissions for livestock of 10.4 (10.0–10.7) Tg a−1, for oil and gas of 10.4 (10.1–10.7) Tg a−1, for coal of
1.5 (1.2–1.9) Tg a−1, for landfills of 6.9 (6.4–7.5) Tg a−1, for wastewater of 0.6 (0.5–0.7), and for other anthro-
pogenic sources of 1.1 (1.0–1.2) Tg a−1. The largest increase relative to the GHGI occurs for landfills (51 %),
with smaller increases for oil and gas (12 %) and livestock (11 %). These three sectors are responsible for 89 %
of posterior anthropogenic emissions in CONUS. The largest decrease (28 %) is for coal. We exploit the high
resolution of our inversion to quantify emissions from 70 individual landfills, where we find emissions are on
median 77 % larger than the values reported to the EPA’s Greenhouse Gas Reporting Program (GHGRP), a key
data source for the GHGI. We attribute this underestimate to overestimated recovery efficiencies at landfill gas
facilities and to under-accounting of site-specific operational changes and leaks. We also quantify emissions for
the 48 individual states in CONUS, which we compare to the GHGI’s new state-level inventories and to indepen-
dent state-produced inventories. Our posterior emissions are on average 27 % larger than the GHGI in the largest
10 methane-producing states, with the biggest upward adjustments in states with large oil and gas emissions,
including Texas, New Mexico, Louisiana, and Oklahoma. We also calculate emissions for 95 geographically
diverse urban areas in CONUS. Emissions for these urban areas total 6.0 (5.4–6.7) Tg a−1 and are on average 39
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(27–52) % larger than a gridded version of the 2023 GHGI, which we attribute to underestimated landfill and gas
distribution emissions.

1 Introduction

All projected pathways that prevent global warming above
1.5 °C require methane emission reductions (IPCC, 2022).
The Global Methane Pledge, launched at a 2021 meeting
of the United Nations Framework Convention on Climate
Change (UNFCCC), aims to achieve a 30 % global reduc-
tion in methane emissions from 2020 to 2030 (About the
Global Methane Pledge, 2023). Consistent with that goal,
the US government is targeting methane emission decreases
from oil and gas, livestock, and landfills (The White House,
2021). The UNFCCC requires member parties to report their
anthropogenic methane emissions including sectoral con-
tributions from oil and gas, coal, livestock, rice, landfills,
and wastewater. The bottom-up approaches used to gener-
ate these emission inventories use information on sectoral
activity levels and emission factors, but considerable un-
certainty can exist in these values. Top-down evaluations
of bottom-up inventories use observations of atmospheric
methane to infer emissions, often through inverse analyses
using a chemical transport model. These top-down emis-
sion estimates are most useful for the evaluation of emission
inventories and emission mitigation efforts if they achieve
high spatial resolution consistent with the information con-
tent of the observation–model system. Here, we use col-
umn methane observations from the Tropospheric Monitor-
ing Instrument (TROPOMI) aboard the Sentinel-5 Precur-
sor satellite in a reduced-rank analytical inversion to infer
methane emissions and the associated information content at
0.25°× 0.3125° (≈ 25 km× 25 km) resolution over the con-
tiguous US (CONUS) for 2019, allowing for detailed analy-
sis of sectoral, state, and urban emissions.

Satellite observations of atmospheric methane column
concentrations inferred from measurement of backscattered
sunlight in the shortwave infrared have been used exten-
sively in inverse analyses of methane emissions (Streets
et al., 2013; Jacob et al., 2022). Previous satellite instru-
ments were limited by large pixel sizes (SCIAMACHY,
2003–2012) or sparse observations (GOSAT, 2009–present).
TROPOMI provides daily, global observations of atmo-
spheric methane columns at 5.5 km× 7 km nadir pixel res-
olution (Hu et al., 2018) with a∼ 3 % success rate limited by
cloud cover, optically dark surfaces, and heterogeneous ter-
rain (Hasekamp et al., 2021). Inversions of TROPOMI data
allow for high-resolution quantification of methane emis-
sions but require an understanding of the information content
of the observations.

Inverse analyses optimize methane emissions (the state
vector) by fitting observations to simulated concentrations

from a chemical transport model (CTM) that serves as the in-
version forward model. The optimization is typically done by
minimizing a Bayesian cost function regularized by a prior
emission estimate given by a bottom-up inventory. When
a linear relationship exists between emissions and concen-
trations, as in the case of methane, the optimal (posterior)
solution and the associated error covariances and informa-
tion content can be found analytically (Brasseur and Jacob,
2017). However, this requires the computationally expensive
but embarrassingly parallel construction of the Jacobian ma-
trix that represents the relationship between emissions and
concentrations in the CTM. This matrix is typically con-
structed by conducting a CTM perturbation simulation for
each optimized emission element, limiting either the spa-
tial resolution of the optimized emissions or the size of the
inversion domain. Nesser et al. (2021) demonstrated an al-
ternative method that approximates the Jacobian matrix by
perturbing emission patterns that are optimally informed by
both the prior emissions and the observations. This approach
optimally exploits the information content of the observa-
tions, quantifying emissions at the highest resolution possi-
ble where the satellite–model observing system provides a
constraint and defaulting to the prior estimate elsewhere.

Many inverse studies that have quantified US methane
emissions using surface, aircraft, or satellite observations
have found large discrepancies with the US Environmental
Protection Agency’s (EPA) Greenhouse Gas Emissions In-
ventory (GHGI), which is the bottom-up emission estimate
reported by the US to the UNFCCC (EPA, 2023b). Wecht et
al. (2014a) found livestock emissions that were 40 % larger
than the GHGI for the summer of 2004. Miller et al. (2013)
inferred emissions that were 50 % larger than the GHGI for
2007 and 2008, which they attributed to underestimated oil,
gas, and livestock emissions. Turner et al. (2015) found simi-
lar results for 2009 to 2011. Maasakkers et al. (2021) inferred
oil and gas emissions that were 35 % and 22 % higher than
the GHGI, respectively, for 2010 to 2015. Lu et al. (2022)
found mean 2010–2017 anthropogenic emissions that were
42 % larger than the GHGI, which they attributed largely to
oil and gas emissions.

Higher-resolution regional studies have targeted specific
aspects of US methane emissions, including contributions
from different sectors, states, and urban areas. Karion et
al. (2015) found oil and gas emissions in the Barnett Shale
in eastern Texas that were consistent with the GHGI when
scaled by the region’s relative contribution to national gas
production but larger than reported by most basin facilities
to the EPA’s Greenhouse Gas Reporting Program (GHGRP).
A series of studies inferred much higher emissions in the
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Permian Basin than implied by a spatially allocated (grid-
ded) version of the GHGI (Zhang et al., 2020; Schneising
et al., 2020; Liu et al., 2021; Chen et al., 2022; Varon et
al., 2023). Chen et al. (2018) and Yu et al. (2021) found
underestimated livestock emissions in the gridded GHGI in
the Upper Midwest. Jeong et al. (2016) inferred Californian
emissions that were 20 % to 80 % larger than a state inven-
tory from the California Air Resources Board (CARB). Plant
et al. (2019) found methane emissions from six East Coast
urban areas in 2012 to be more than 2 times larger than the
gridded GHGI.

Here, we use the reduced-rank method of Nesser et
al. (2021) in an analytical inversion of 2019 TROPOMI
observations to quantify annual mean emissions at
0.25°× 0.3125° resolution over North America using
national emission inventories reported by the US, Mexico,
and Canada to the UNFCCC as prior estimates. The reduced-
rank approach decreases the computational cost by an order
of magnitude compared with conventional methods while
maximizing the information content from TROPOMI. We
focus our analysis on CONUS, paying particular attention
to emissions from individual landfills, states, and urban
areas. We compare our results to the 2023 GHGI, including
estimates for individual states (EPA, 2023b, c). Our inversion
provides the first observational evaluation for these state
inventories. We also compare our results to inventories
prepared by individual states and cities.

2 Data and methods

We conduct an ensemble of inversions of 2019 TROPOMI
methane observations over the North American domain
shown in Fig. 1 (9.75–60° N, 130–60° W) using the nested
GEOS-Chem CTM at 0.25°× 0.3125° resolution as the for-
ward model. The m= 2 919 358 TROPOMI observations
are fit to simulated GEOS-Chem concentrations to op-
timize annual mean methane emissions for 2019 at the
0.25°× 0.3125° GEOS-Chem resolution. This corresponds
to n= 23 691 emission grid cells with prior methane emis-
sions larger than 0.1 Mg km−2 a−1, accounting for over 99 %
of North American methane emissions. In a subset of the
ensemble, we optimize boundary conditions for the nested
GEOS-Chem simulation for each of the four cardinal direc-
tions (north, south, east, and west). Methane chemical and
soil sinks are not optimized because they are relatively small
compared with emissions.

2.1 Reduced-rank analytical inversion

The inversion uses m observed concentrations arranged in a
vector y to optimize n gridded emissions arranged in the state
vector x by minimizing a Bayesian cost function J assuming
normal errors and regularized by the prior emission estimate

xA (Rodgers, 2000):

J (x)= (x− xA)TS−1
A (x− xA)

+ γ (y−Kx)TS−1
O (y−Kx) . (1)

The prior and observing system error covariance matrices
SA and SO, respectively, are assumed to be diagonal in the
absence of better information. The regularization factor γ
corrects for the absence of covariance in SO (Chevallier,
2007). We generate an eight-member inversion ensemble us-
ing a range of prior error variances and γ values to capture
the inversion’s sensitivity to uncertainty in these parameters
(Sect. 2.7). The reduced-rank Jacobian matrix K= ∂y

/
∂x

represents the sensitivity of concentrations to emissions in
the CTM. We construct a rank-k Jacobian matrix for the
0.25°× 0.3125° GEOS-Chem grid by perturbing in the CTM
the k emission patterns that best capture the prior emissions
and the information content of the TROPOMI observations
(Sect. 2.6).

Analytical minimization of the cost function following
Rodgers (2000) yields the optimal (posterior) state vector es-
timate x̂, error covariance matrix Ŝ, and information con-
tent given by the averaging kernel matrix A= ∂x̂

/
∂x =

I− ŜS−1
A , which describes the sensitivity of the posterior es-

timate to the true state vector. However, this solution requires
inverting the cost function Hessian, which produces numer-
ical instabilities due to the rank reduction of the Jacobian
matrix. Here, we use a reduced-rank approximation of the
posterior solution following Bousserez and Henze (2018) to
solve the inversion on an orthonormal basis that optimally
spans the information content of the satellite–forward-model
observing system. The basis is given by the eigendecomposi-
tion of the prior-preconditioned Hessian of the cost function:

Ĥp = S1/2
A KTS−1

O KS1/2
A = V3VT , (2)

where the columns of V are the eigenvectors and 3 is a
diagonal matrix with entries equal to the eigenvalues. The
calculation of Ĥp requires substantial memory for large m
and n, for which we use Dask, a Python parallelization
package (Dask Development Team, 2016). The reduced-
rank posterior approximation is then generated using the
largest k eigenvalues 3k and the associated eigenvectors Vk
(Bousserez and Henze, 2018):

AK = γS1/2
A Vk3k(Ik + γ3k)−1VT

kS−1/2
A , (3)

ŜK = (In−AK)SA, and (4)

x̂FR = xA+ γ ŜKKTS−1
O (y−F (xA)) . (5)

Here, x̂FR approximates the full-rank (FR) posterior x̂ by
minimizing the difference between the two, and ŜK and AK
are the optimal posterior error covariance and averaging ker-
nel matrices, respectively, for an inversion solved with a
reduced-rank forward model. We set k to match the rank of
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Figure 1. Bottom-up methane emission inventories used as prior estimates for the inversion. Panels show annual mean methane emissions
for different sectors. Anthropogenic sectors are given by the gridded versions of the national inventories of Canada (ECCC), the US (EPA
GHGI), and Mexico (INECC) reported to the UNFCCC (Maasakkers et al., 2016; Scarpelli et al., 2020, 2021). US oil and gas emissions are
updated as described in Sect. 2.2. Wetland emissions are given by the high-performance subset of the WetCHARTs version 1.3.1 wetlands
inventory ensemble (Ma et al., 2021), excluding two ensemble members as described in Sect. 2.2. Emissions are shown on the 0.25°× 0.3125°
GEOS-Chem grid used for the inversion.

the reduced-rank Jacobian matrix, which is chosen to maxi-
mize information content within the available computational
resources (Sect. 2.6). The diagonal elements of AK are often
referred to as averaging kernel sensitivities and are a measure
of the dependence of the optimized emissions on the prior es-
timate. Their sum (trace of AK) gives the degrees of freedom
for signal (DOFS) that represent the number of pieces of in-
formation independently quantified by the observing system
(Rodgers, 2000). The reduced-rank inversion and Jacobian
matrix do not attempt to optimize emissions in areas with
low information content, so we default to the prior estimate
for grid cells with averaging kernel sensitivities less than 0.05
(Nesser et al., 2021).

2.2 Prior estimates and errors

Figure 1 shows the annual-average prior emission estimates
for different sectors. Anthropogenic emissions are given by
the spatially disaggregated (gridded) versions of the 2016
EPA GHGI for the US for 2012 (Maasakkers et al., 2016),
the Instituto Nacional de Ecología y Cambio Climático (IN-
ECC) inventory for Mexico for 2015 (Scarpelli et al., 2020),
and the Environment and Climate Change Canada (ECCC)
inventory for Canada for 2018 (Scarpelli et al., 2021). We
update the distribution and magnitude of GHGI oil and gas
emissions to the 2020 GHGI for 2018 following Shen et
al. (2022) and use the Environmental Defense Fund’s inven-
tory for the Permian Basin for 2019 (Zhang et al., 2020),

where GHGI estimates are known to be too low (Zhang et
al., 2020; Schneising et al., 2020; Liu et al., 2021; Chen et
al., 2022; Varon et al., 2023). We treat oil and gas as a single
sector in our analysis due to significant source co-location
and uncertainty in the partitioning of oil and gas wells. The
magnitude of GHGI livestock, landfill, and wastewater emis-
sions changed by less than 10 % from 2012 to 2019, while
coal emissions decreased by 26 %. The distribution of these
sources is unlikely to have changed significantly. Anthro-
pogenic emissions for Central America and the Caribbean
islands are from the EDGAR v4.3.2 global emission in-
ventory for 2012 (Janssens-Maenhout et al., 2019). Anthro-
pogenic emissions are assumed to be aseasonal except for
manure management and rice cultivation, for which we ap-
ply monthly scaling factors as described by Maasakkers et
al. (2016) and Zhang et al. (2018), respectively.

Prior monthly emissions for wetlands are given by the
high-performance subset of the WetCHARTs ensemble ver-
sion 1.3.1, which includes the nine ensemble members that
best match global GOSAT inversion results (Ma et al., 2021).
In an inversion of GOSAT data over North America, Lu et
al. (2022) found that this high-performance subset overesti-
mated wetland methane emissions, particularly at high lat-
itudes. We remove the two members (WetCHARTs models
1923 and 2913; Bloom et al., 2017) that are most responsi-
ble for this overestimate from the ensemble. Other natural
methane emission sources are minor and include open fires,
termites, and geological seeps, for which we follow the emis-
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sions described in Lu et al. (2022). Methane losses from ox-
idation and soil uptake are prescribed as in Maasakkers et
al. (2019) and are not optimized in the inversion.

We assume uniform relative error standard deviations for
the prior emissions of between 50 % and 100 % for the differ-
ent members of our inversion ensemble, with no error covari-
ance between grid cells. Previous inversions that optimized
methane emissions over North America assumed prior error
standard deviations up to 50 %. We inflate errors up to 100 %
in our ensemble to account for increased errors at high res-
olution (Maasakkers et al., 2016). Errors for each ensemble
member are chosen as described in Sect. 2.7.

2.3 Forward model

We use the nested version of the GEOS-Chem CTM
12.7.1 (https://doi.org/10.5281/zenodo.3676008, Developers
of GEOS-Chem, 2020) at 0.25°× 0.3125° resolution over
North America as the forward model for the inversion. Ear-
lier versions of the methane simulation have been described
by Wecht et al. (2014a) and Turner et al. (2015). The model
is driven by GEOS-FP meteorological fields from the NASA
Global Modeling and Assimilation Office (Lucchesi, 2017).
Methane sinks from OH, Cl, soil uptake, and stratospheric
oxidation are as described in Maasakkers et al. (2019). Initial
conditions for 1 January 2019 and 3-hourly boundary con-
ditions for the year are specified by methane concentration
fields from a global GEOS-Chem simulation at 2°× 2.5° res-
olution using optimized emissions from a global inversion of
TROPOMI observations (Qu et al., 2021).

2.4 TROPOMI observations

TROPOMI has provided daily, global observations of dry
column methane mixing ratios at 7 km× 7 km nadir pixel
resolution since May 2018 and at 5.5 km× 7 km nadir
pixel resolution since August 2019 (Lorente et al., 2021a).
TROPOMI measures backscattered solar radiation in the
2.3 µm methane absorption band from a Sun-synchronous or-
bit with a local overpass time of 13:30 (Veefkind et al., 2012).
Methane concentrations are inferred from a full-physics re-
trieval with a ∼ 3 % success rate limited by cloud cover,
variable topography, low or heterogeneous albedo, and high
aerosol loading (Hasekamp et al., 2021). We use retrieval
v14 as described by Lorente et al. (2021a), which has a
−3.4± 5.6 ppb bias relative to the Total Carbon Column Ob-
serving Network (TCCON). We use only retrievals with qual-
ity assessment flag equal to 1.

Previous analyses of TROPOMI data have identified sur-
face artifacts (Barré et al., 2021) and spatially variable bi-
ases relative to the more accurate but sparser GOSAT data
(Jacob et al., 2022). We filter the data to remove snow- and
ice-covered scenes using blended albedo, an empirical pa-
rameter developed by Wunch et al. (2011) and suggested
for the TROPOMI data by Lorente et al. (2021a). We re-

move scenes with a blended albedo greater than 0.75 in non-
summer seasons. We also remove scenes with albedo in the
shortwave infrared of less than 0.05 following de Gouw et
al. (2020), which account for most of the remaining unphys-
ical TROPOMI observations (methane mixing ratio less than
1700 ppb), and scenes north of 50° N in winter.

Figure 2 shows the final m= 2 919 358 observations used
for the inversion on the GEOS-Chem 0.25°× 0.3125° grid.
The data are dense and seasonally consistent across high-
emission regions of CONUS (Fig. S1 in the Supplement).
The filters preserve 69 % of the high-quality retrievals of
TROPOMI v14 and increase the GOSAT–TROPOMI cor-
relation in all seasons, with the largest increases in winter
and spring (Fig. S2). Seasonal regional biases decrease by
between 7 % and 21 % and are always within the 1 stan-
dard deviation range of both the TROPOMI and GOSAT
data. Comparison to a GEOS-Chem simulation driven by the
prior emissions (Fig. S3) shows a mean aseasonal (GEOS-
Chem–TROPOMI) bias of ξ = 9.1 ppb over North America
that we attribute to errors in the boundary conditions. This
bias can also be fit as a linear function of degrees latitude θ
as ξ =−5.40+ 0.39θ . We correct the bias in our inversion
ensemble members by removing either the continental mean
bias or the latitude-dependent correction from the GEOS-
Chem concentrations.

2.5 Observing system errors

The observing system error covariance matrix SO includes
contributions from forward-model, instrument, and represen-
tation errors (Brasseur and Jacob, 2017). Forward-model er-
rors include contributions from transport and from random
temporal variability unresolved by the prior emissions es-
timate. We calculate the total observing system error vari-
ances using the residual error method (Heald et al., 2004).
This method assumes that the mean difference between the
TROPOMI observations and the prior GEOS-Chem simula-
tion, calculated here on a seasonal 2°× 2° grid, is caused by
errors in emissions that will be corrected by the inversion.
The standard deviation of the residual errors after subtract-
ing the mean gridded errors then defines the standard devia-
tion of the observing system errors. We set a minimum error
standard deviation of 10 ppb, which applies to 32 % of ob-
servations. We find a mean observing system error standard
deviation of 11.5 ppb, with the largest errors in winter and at
high latitudes. The resulting error variances are the diagonal
elements of SO. Off-diagonal terms are assumed to be zero in
the absence of better information, which we account for with
the regularization factor γ (Chevallier, 2007). We describe
the choice of γ in Sect. 2.7.
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Figure 2. TROPOMI methane observations in 2019. Panel (a) shows the annual average column dry methane mixing ratios for 2019 averaged
on the 0.25°× 0.3125° GEOS-Chem grid. Panel (b) shows the number of observations for the year on the same grid. The observations have
been filtered as described in Sect. 2.4.

2.6 Jacobian matrix

Constructing the Jacobian matrix K for our inversion would
normally require conducting a 1-year perturbation simula-
tion for each of the n= 23 691 grid cells optimized. This is
computationally intractable. We construct the Jacobian ma-
trix at substantially decreased computational cost using the
reduced-rank method introduced by Nesser et al. (2021),
which takes advantage of the heterogeneous information con-
tent of the TROPOMI observations. This method updates an
initial, low-cost estimate of the Jacobian matrix by perturb-
ing the patterns that best explain the information content of
the observing system, constructing a reduced-rank Jacobian
matrix that optimally preserves information content.

We construct the initial, low-cost estimate of the Jaco-
bian matrix K(0) using the mass-balance approach described
by Nesser et al. (2021). We assume that a perturbation of
methane emissions1xj in grid cell j (with units kg m−2 s−1)
produces column mixing ratio enhancements 1yi over grid
cell i according to

1yi = αij
Mair

MCH4

Lg

Up
1xj , (6)

where αij ∈ [0, 1] is a dimensionless coefficient providing a
crude representation of turbulent diffusion; Mair and MCH4

are the molecular weights of dry air and methane, respec-
tively; L is a ventilation length scale equal to the square root
of the grid cell area; g is gravitational acceleration; U is the
wind speed, taken here as 5 km h−1; and p is the surface pres-
sure, taken here as 1000 hPa. The use of αij produces off-
diagonal structure in K(0), which Nesser et al. (2021) found
to be necessary for an effective first estimate. We apply a
simple isotropic turbulent diffusion scheme in which the in-
fluence of emissions spreads linearly to concentric rings of
grid cells. This is represented as αij = (8−‖i− j‖)/36c,

where ‖i− j‖ = {0, 1, . . . ,7} gives the distance in latitude
or longitude grid cell index between i and j , 36 is the sum
of ‖i− j + 1‖ values, and c gives the number of grid cells in
the corresponding concentric ring. For ‖i− j‖ ≥ 8, αij = 0.

We use K(0) together with the error covariance matrices SA
and SO to calculate the initial patterns of information con-
tent that are perturbed in the forward model. We calculate
the prior preconditioned Hessian (Eq. 2) using K(0) and per-
form its eigendecomposition. The resulting matrix of eigen-
vectors V(0) is related to the patterns of information content
via S1/2

A V(0), which is equivalent to the eigenvector matrix of
the averaging kernel matrix calculated with K(0) (Bousserez
and Henze, 2018). We perturb the k1 = 434 eigenvectors that
capture 50 % of the DOFS generated with K(0). We then ap-
ply an optimal operator that restores the original state di-
mension and minimizes information content loss to yield an
updated reduced-rank Jacobian matrix estimate K(1). We re-
compute the eigenvectors, perturb the k2 = 1952 eigenvec-
tors that explain 80 % of the initial DOFS, and construct the
final reduced-rank Jacobian matrix K(2). This iterative update
scheme optimizes the information content of the posterior so-
lution while reducing the computational cost by an order of
magnitude (Nesser et al., 2021).

2.7 Inversion ensemble

The posterior error covariance matrix that results from
Bayesian optimization (Eq. 4) does not account for errors in
inversion parameters including the prior and observing sys-
tem error covariance matrices (Houweling et al., 2014). The
analytical solution readily allows for the creation of an en-
semble of inversions that reflects the sensitivity of the re-
sults to the chosen setup, including parameters. Table 1 sum-
marizes our quality-controlled ensemble of inversions. We
conduct inversions that do or do not optimize the boundary
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Table 1. The eight members of the inversion ensemble.

Optimized Bias Prior error Regularization
boundary correction2 standard factor3

conditions1 deviation3

Yes Latitudinal
50 % 0.2

75 % 0.45

50 % 0.175

Yes Mean 75 % 0.3

100 % 0.5

No Latitudinal
50 % 0.175

75 % 0.35

No Mean 75 % 0.175

1 We conduct inversions that either do or do not optimize the boundary
conditions. In inversions with optimized boundary conditions, we include four
boundary condition elements, corresponding to the northern, eastern, southern,
and western borders of the North American domain, in the inversion state
vector.
2 We also conduct inversions that apply either a latitudinal or mean bias
correction to the prior (model–observation) difference. The latitudinal
correction fits the bias with a first-order polynomial. In inversions with a mean
bias correction, we remove the mean prior (model–observation) difference as
driven by boundary condition biases.
3 We balance the prior and observing system errors to avoid overfitting the
emissions to the observations. The regularization factor γ is applied to the
inverse observing system error covariance matrix S−1

O so that values less than
1 increase the observing system errors. We choose the value of the
regularization factor and the prior error standard deviation for a given inversion
so that the prior term of the posterior cost function is approximately 1, as
required by chi-square statistics (Sect. 2.7).

conditions and apply either a latitudinal or mean bias cor-
rection to the prior (model–observation) difference as driven
by boundary condition biases. For each inversion, we choose
the relative prior error (50 %, 75 %, or 100 %) and regu-
larization factor (between 0.175 and 0.5) so that the prior
term of the cost function evaluated at the posterior solu-
tion JA

(
x̂
)
=

(
x̂− xA

)TS−1
A

(
x̂− xA

)
averages to 1 across

all grid cells optimized by the reduced-rank inversion as ex-
pected from the chi-square distribution, which JA (x) follows
by definition (Lu et al., 2021). This yields an ensemble of
eight quality-controlled inversions with indistinguishable va-
lidity. All inversions have few grid cells with negative emis-
sions, most of which are of the same order of magnitude as
the soil sink. Unless otherwise noted, our results give the
mean posterior emissions for the ensemble, with uncertainty
ranges given by the ensemble range.

2.8 Source attribution

The high resolution of the inversion facilitates the attribu-
tion of the posterior emission estimates to individual source
sectors or regions, including states and urban areas. We ag-
gregate the native resolution emission and error estimates to
the corresponding p sectors, states, or urban areas using a

summation matrix W ∈ Rp×n. The rows of W are given by
the relative contribution of each grid cell to each source cat-
egory. For sectoral attribution, the rows are given by the rela-
tive, area-normalized contribution of each grid cell to a given
sector in the prior emission estimate. For state attribution,
the rows are given by the fraction of each grid cell within
a given state. For urban area attribution, the rows have bi-
nary values depending on whether the grid cell overlaps with
a given urban area. If the grid cell contains multiple urban
areas, the fractional contribution of the grid cell to a given
urban area is used instead. The reduced-dimension posterior
estimate x̂FR, red, posterior covariance matrix ŜK,red, and av-
eraging kernel matrix AK,red are then given by

x̂FR, red =Wx̂FR , (7)

ŜK,red =WŜKWT , and (8)

AK,red =WAKW∗ , (9)

where W∗ =WT(
WWT)−1 is the Moore–Penrose pseudoin-

verse (Calisesi et al., 2005). In the case of disaggregating
our emission estimates to individual landfills, we scale the
posterior estimate in the corresponding grid cell by the frac-
tion of emissions attributed to landfills in the prior estimate.
These approaches to source aggregation and disaggregation
assume that the prior fractional sectoral contributions are cor-
rect in each grid cell and that emission sources are evenly dis-
tributed in grid cells that cross state lines. The uncertainty of
this method is not reflected in the reported error bounds, but
the high resolution of our emission estimates decreases the
influence of these assumptions relative to coarser-resolution
estimates. Newly developed methods use prior and posterior
error covariances to improve upon these assumptions (Cus-
worth et al., 2021).

3 Results and discussion

Figure 3 shows the ensemble mean posterior scale factors
relative to the annual average prior emission estimate as de-
scribed in Sect. 2.2 (left) and the corresponding averaging
kernel sensitivities (right). Grid cells unoptimized by the in-
version (mean averaging kernel sensitivity less than 0.05)
are left blank. We find 772 (421–1279) DOFS for the do-
main, where the values in parentheses here and elsewhere
are the quality-controlled, eight-member inversion ensem-
ble minimum and maximum, respectively. This represents a
large increase in information content relative to past inver-
sions over North America: Lu et al. (2022) found 114 DOFS
in a joint inversion of data from GOSAT and the National
Oceanic and Atmospheric Administration’s (NOAA) GLOB-
ALVIEWplus ObsPack in situ data, while Shen et al. (2022)
found 201 DOFS in an inversion of TROPOMI observations
over 14 oil and gas basins. This increase reflects both the im-
proved coverage from TROPOMI and the benefit of achiev-
ing 0.25°× 0.3125° resolution on the continental scale. Of
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these DOFS, 641 (350–1058) are found for CONUS, 86 (53–
134) for Mexico, and 37 (15–69) for Canada. The high infor-
mation content for CONUS reflects both the large emissions
(Fig. 1) and the high density and consistency of TROPOMI
observations (Fig. 2). As a result, we focus our discussion on
CONUS. We isolate anthropogenic emissions by removing
contributions from wetlands and other natural sources fol-
lowing Sect. 2.8. We compare our posterior emissions to the
2023 EPA GHGI inventory for 2019, including to the emis-
sion estimates for individual states (EPA, 2023b, c). We re-
move emissions from Hawaii and Alaska from the GHGI to-
tal using these state estimates, which account for less than
0.5 % of the national total.

We evaluate the inversion results by comparing simulated
observations from GEOS-Chem driven by either the prior or
the mean posterior emissions to TROPOMI observations and
to independent in situ surface and tower observations from
NOAA’s GLOBALVIEWplus CH4 ObsPack v3.0 database
(Schuldt et al., 2019). We follow Lu et al. (2021) and use
only daytime ObsPack observations with outliers excluded.
We use monthly average ObsPack observations over CONUS
to increase consistency with the annual temporal resolution
of our inversion and its distribution of information content.
Compared to TROPOMI, both the prior and posterior GEOS-
Chem simulations produce similar coefficients of determina-
tion (R2) and root-mean-square errors (RMSEs). Compared
with ObsPack, the posterior simulation improves upon the
prior simulation, increasing the R2 value from 0.55 to 0.65
and decreasing the RMSE from 80 to 73 ppb, similar to pre-
vious inversions of satellite data (Lu et al., 2021). The broad
agreement of both simulations with observations reflects the
high quality of the prior emission estimate in North America
(Maasakkers et al., 2019).

We also compare the TROPOMI v14 data used here to the
most recent data (v19), which have improved bias corrections
and performance compared with GOSAT in North America
(Balasus et al., 2023). We define the grid cells containing ob-
servations sensitive to the optimized emissions by calculat-
ing the row-wise sum of the Jacobian matrix weighted by the
prior and observing system error standard deviations, lim-
ited to emission grid cells with averaging kernel sensitivi-
ties greater than 0.05. Of the 95 % of observation grid cells
most sensitive to the optimized emissions, only 14 % have
an average mean-bias-corrected (v14–v19) difference greater
than 5 ppb, while less than 2 % have a difference greater than
10 ppb. We similarly define the observation grid cells that
influence the optimized emission grid cells using the Jaco-
bian matrix columns. We find that the average mean-bias-
corrected (v14–v19) difference for the observational grid
cells influenced by optimized grid cells is −0.05 ppb with
a standard deviation of 0.1 ppb, indicating that there is little
bias in the observations that influence any single grid cell. We
finally find no correlation (R2

= 0.03) between our posterior
scaling factors and the mean (v14–v19) difference, suggest-

ing that biases in the v14 data do not influence our posterior
emissions.

3.1 CONUS sectoral emissions

We find posterior anthropogenic methane emissions of 30.9
(30.0–31.8) Tg a−1 for CONUS in 2019, a 13 % increase
from the GHGI estimate of 27.3 (25.1–30.6) Tg a−1, where
the values in parentheses represent the GHGI 95 % confi-
dence interval (EPA, 2023b). This estimate excludes Alaska
and Hawaii, which likely represent a small (∼ 1 %) contribu-
tion to the national anthropogenic total (Miller et al., 2016;
Konan and Chan, 2010). Lu et al. (2022) found larger anthro-
pogenic emissions of 36.2 (32.1–37.6) Tg a−1 over the same
domain for 2017 by optimizing emissions and trends in a
joint inversion of GOSAT and in situ observations for 2010 to
2017. Worden et al. (2022) found lower anthropogenic emis-
sions of 27.6 (24.3–30.9) Tg a−1 over the US for 2019 by
regridding global inversions of GOSAT data that optimized
emissions at 2°× 2.5° resolution using uncertainties for the
prior and posterior estimates. Deng et al. (2022) reviewed
an ensemble of global inversions and found median US
posterior anthropogenic emissions for 2019 of 26.5 (20.8–
38.7) Tg a−1 with GOSAT data and 31.9 (23.9–43.1) Tg a−1

with in situ data.
We allocate our national total to individual emission sec-

tors using the attribution method described in Sect. 2.8. From
the off-diagonal structure of ŜK,red (Eq. 8), we find very
low posterior error correlation between all anthropogenic and
biogenic sectors (mean error correlation coefficients less than
0.2), indicating that we can accurately separate sectoral emis-
sions. Figure 4 and Table 2 summarize the results compared
to the GHGI. Livestock, oil and gas, and landfills account
for 89 % of posterior anthropogenic emissions, and all of the
aforementioned sectors show increases relative to the GHGI.
We find a significant decrease from the GHGI only for coal.
For these four sectors, we find sectoral averaging kernel sen-
sitivities of between 0.47 and 0.91, larger than the values
found by Lu et al. (2022) from GOSAT and in situ data,
indicating that TROPOMI constrains most of the emissions
from these sources. We find a small but significant increase
in wetland emissions that is consistent with the large range
found by Lu et al. (2022). However, the reduced-rank ob-
serving system only optimizes about half of wetland emis-
sions, with most of the inferred increase limited to the south
eastern coast, including South Carolina, Georgia, and eastern
Florida.

Landfill emissions show the largest relative and abso-
lute increase from the GHGI for 2019. We find posterior
emissions of 6.9 (6.4–7.5) Tg a−1, a 51 % increase rela-
tive to the GHGI estimate of 4.6 (3.7–5.8) Tg a−1. Lu et
al. (2022) found similar posterior landfill emissions of 7.5
(5.9–7.7) Tg a−1 for 2017. We attribute the GHGI underes-
timate to two components of the GHGRP landfill inventory
methodologies that produce key inputs for the GHGI, which
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Figure 3. Optimization of methane emissions for 2019 by inversion of TROPOMI observations. Panel (a) shows the scale factors relative
to the prior estimate for the inversion given by gridded versions of the national anthropogenic emissions inventories for the US (EPA
GHGI), Mexico (INECC), and Canada (ECCC), with US oil and gas emissions updated as described in Sect. 2.2, and by WetCHARTs
wetland emissions (top left panel of Fig. 1). Panel (b) shows the observing system information content as measured by the averaging kernel
sensitivities (the diagonal elements of the averaging kernel matrix). Values of 1 indicate that TROPOMI quantifies emissions independently
of the prior estimate, while values of 0 indicate that emissions are not optimized by the inversion. The sum of the averaging kernel sensitivities
gives the degrees of freedom for signal (DOFS), shown inset, which defines the number of independent pieces of information quantified by
the observing system. Grid cells with averaging kernel sensitivities less than 0.05 are left blank.

Table 2. The 2019 methane emissions for the contiguous United States (CONUS).

Inventory emissions1 Posterior emissions2 Sensitivity3

Total sources (Tg a−1) 35.1 39.3 (38.2–40.3)

Anthropogenic sources 27.3 (25.1–30.6) 30.9 (30.0–31.8)

Livestock 9.4 (8.5–10.7) 10.4 (10.0–10.7) 0.66 (0.55–0.76)
Oil and natural gas 9.3 (8.1–10.6) 10.4 (10.1–10.7) 0.91 (0.88–0.95)
Coal 2.1 (1.9–2.5) 1.5 (1.2–1.9) 0.60 (0.45–0.80)
Landfills 4.6 (3.7–5.8) 6.9 (6.4–7.5) 0.47 (0.34–0.64)
Wastewater 0.8 (0.5–1.0) 0.6 (0.5–0.7) 0.33 (0.16–0.60)
Other anthropogenic 1.2 (0.7–1.8) 1.1 (1.0–1.2) 0.59 (0.44–0.76)

Natural sources 7.8 8.4 (8.1–8.6)

Wetlands 6.6 7.2 (7.0–7.4) 0.35 (0.16–0.55)
Other biogenic 1.1 1.2 (1.2–1.2) 0.25 (0.19–0.32)

1 Inventory estimates of sectoral methane emissions. Anthropogenic emissions are given by the EPA 2023 GHGI for 2019, with
error ranges inferred from the sum in quadrature of bottom-up subsector errors given as 95 % confidence intervals. Wetland
emissions are from a subset of the high-performance WetCHARTs ensemble version 1.3.1; see Sect. 2.2 for details.
2 Optimized emissions from the inversion of TROPOMI data, with the range from the eight members of the inversion ensemble
shown in parentheses.
3 The sensitivity of the posterior emissions to the observing system is given by the diagonal elements of the sectoral averaging
kernel matrix calculated as described in Sect. 2.8. The values in parentheses give the range of the inversion ensemble. Values
range from 0 (no sensitivity) to 1 (full sensitivity).

we discuss in detail in Sect. 3.2. First, for landfills with gas
recovery systems, the GHGRP assumes overly high collec-
tion efficiencies. Second, the GHGRP does not account for
site-specific operations that may produce anomalous emis-
sions.

Coal mining emissions of 1.5 (1.2–1.9) Tg a−1 exhibit the
largest decrease in sectoral emissions relative to the GHGI
estimate of 2.1 (1.9–2.5) Tg a−1. Lu et al. (2022) found
much larger posterior emissions of 2.9 (2.3–3.4) Tg a−1 for
2017, and Worden et al. (2022) found similar values of
2.8± 0.4 Tg a−1 for 2019. Compared with these studies, we
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Figure 4. Sectoral methane emissions in the contiguous United
States (CONUS) for 2019. The 2023 EPA GHGI emissions for 2019
(top bars) and posterior estimates given by inversion of TROPOMI
data for 2019 (bottom bars) are shown for different sectors. For wet-
land emissions, we show the WetCHARTs estimate (top bar). The
shading corresponds to emissions in grid cells that are optimized by
the inversion (grid cells with averaging kernel sensitivities greater
than 0.05), while the white represents emissions not optimized by
the inversion so that the posterior defaults to the prior estimate. Er-
ror bars on the GHGI emissions represent the GHGI 95 % confi-
dence intervals. Error bars on the posterior emissions are given by
the spread of the eight-member inversion ensemble. Also shown are
independent sectoral emission estimates from previous inversions.

achieve a stronger constraint on coal emissions as mea-
sured by averaging kernel sensitivities, reflecting the in-
creased coverage from TROPOMI compared with GOSAT.
Our lower estimate better reflects the 30 % decrease in
CONUS coal production from 2012 to 2019 (EIA, 2021),
which is also shown in the 30 % decrease in GHGI coal emis-
sions over the same period (EPA, 2023b). As expected, emis-
sions correlate with underground coal mining: Appalachia
generated 56 % of US coal from underground mines in 2019
and 64 % of posterior emissions from coal, while the Illinois
Basin yielded 30 % of US underground coal and 20 % of pos-
terior emissions (EIA, 2021).

Livestock emissions show broad agreement with the
GHGI, with posterior emissions of 10.4 (10.0–10.7) Tg a−1

representing an 11 % increase from the GHGI estimate of
9.4 (8.5–10.7) Tg a−1. Lu et al. (2022) found similar mean
posterior livestock emissions of 10.4 (8.8–11.6) Tg a−1 over
CONUS for 2017, and Worden et al. (2022) found similar
values of 9.9± 0.4 Tg a−1 for 2019. Yu et al. (2021) con-
ducted a seasonal inversion of aircraft observations over the
northern central US and southern central Canada for 2017–
2018 and found mean posterior livestock emissions of 5.5
(5.1–6.2) Tg a−1, which agrees with our livestock estimate

of 5.4 (5.2–5.6) Tg a−1 over the same region. Despite agree-
ment with total GHGI livestock estimates, we find a signif-
icant increase in manure management emissions from 2.3
(1.9–2.8) Tg a−1 to 3.1 (2.9–3.2) Tg a−1, which would almost
entirely explain the observed discrepancy between the mean
GHGI and posterior emissions. The increase in manure man-
agement emissions is concentrated over the Californian Cen-
tral Valley, northern Iowa, and Sampson and Duplin counties
in North Carolina. California is home to more dairy cattle
than any other state, Iowa is the largest pork-producing state,
and Sampson and Duplin counties are the two largest pork-
producing counties in CONUS (USDA, 2019). We find no
correlation between our inferred increase and dairy cattle or
hog populations, which could reflect variability in manure
management practices.

Posterior oil and gas emissions are 10.4 (10.1–
10.7) Tg a−1, a 12 % increase from the GHGI estimate of 9.3
(8.1–10.6) Tg a−1. Lu et al. (2022) found much larger poste-
rior emissions of 4.8 (3.1–4.9) Tg a−1 for oil and 8.9 (8.0–
9.8) Tg a−1 for gas in 2017, and Lu et al. (2023) used the
same inversion framework to find even larger total oil and
gas emissions of 15.6 (12.8–17.1) Tg a−1 for 2019 driven by
increased emissions in the Anadarko, Marcellus, Barnett, and
Haynesville shales. Although we find good agreement on av-
erage with the basin-level emissions from Lu et al. (2023),
we find much smaller emissions in the Anadarko and Mar-
cellus shales, as shown in Fig. S4. This difference likely re-
sults in part from the use of lognormal prior errors in Lu et
al. (2023). Compared with Lu et al. (2022, 2023), Worden et
al. (2022) found smaller 2019 emissions in the US for oil of
2.4± 0.3 Tg a−1 and for gas of 7.9± 0.9 Tg a−1, and Shen et
al. (2022) found oil and gas emissions of 12.6± 2.1 Tg a−1

from an inversion of TROPOMI data over 14 North Ameri-
can basins extrapolated to the national scale for May 2018 to
February 2020. Both of these emission estimates are within
the uncertainty range of our posterior estimate. We also
find consistent basin-level results with Shen et al. (2022),
as shown in Fig. S4. Emissions for all posterior basins but
one are within 0.25 Tg a−1 of Shen et al. (2022) and all but
six are within 0.10 Tg a−1. In particular, we find agreement
within error bars in the Haynesville, Barnett, and Anadarko
shales. Of the basins where posterior emissions exceed the
0.5 Tg a−1 threshold defined by Shen et al. (2022) for suc-
cessful quantification of basin emissions by TROPOMI, we
find significant differences only in the Permian Basin, where
we find smaller emissions of 2.8 (2.8–2.9) Tg a−1. Our Per-
mian estimate is consistent within error bars with Lu et
al. (2023) and with other recent studies when basin extent
differences are accounted for (Zhang et al., 2020; Schneising
et al., 2020; Liu et al., 2021; Varon et al., 2023; McNorton et
al., 2022; Veefkind et al., 2023).
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3.2 Landfill emissions

We consider in more detail the 51 % increase in our pos-
terior landfill emissions relative to the GHGI. GHGI land-
fill estimates scale up the total emissions reported to the
GHGRP to account for non-reporting landfills (EPA, 2023b).
The GHGRP reporting requirements applied to 1297 land-
fills emitting more than 1 Gg a−1 across the US in 2019 (EPA
GHGRP, 2019), over 500 of which had gas recovery sys-
tems (EPA LMOP, 2019). The GHGRP requires that landfills
use two methods to report emissions. Facilities without gas
collection use two approaches that rely on landfill attributes
and a first-order decay model based on landfilled mass so
that emissions peak the year after waste disposal. However, a
survey of 128 California landfills with gas recovery systems
found that methane was produced at relatively constant rates
over time (Spokas et al., 2015). Landfills with gas collection
use one of these methods with recovered methane removed
from the modeled emissions in addition to a back-calculation
approach that estimates emissions as a function of recovered
methane given an estimated collection efficiency based on
cover and operation methods. A default efficiency of 0.75 is
assumed if cover information is unavailable (EPA, 2023b).
Both the model and back-calculation methods have high un-
certainties and have not been field validated (NAS, 2018).

We compare our posterior landfill emissions to individ-
ual GHGRP facilities that reported more than 2.5 Gg a−1

methane in 2019. Of these 531 landfills, we limit our anal-
ysis to the 87 0.25°× 0.3125° grid cells where TROPOMI
provides an averaging kernel sensitivity of at least 0.20 and
where landfills explain at least 50 % of prior emissions so that
we are confident of our ability to separate landfill emissions
from other sources. We exclude 33 facilities in grid cells
containing multiple landfills because we are unable to sep-
arate the individual contributions to total emissions. Figure 5
shows the posterior emissions and corrections to the GHGRP
for the remaining 70 facilities, Table 3 shows GHGRP and
posterior information for the top 10 methane-producing land-
fills as ranked by posterior emissions, and Table S3 shows
GHGRP and posterior information for all 70 facilities.

We validate our posterior landfill results by comparison
to aircraft-derived estimates for nine facilities, as shown in
Fig. 5. Cambaliza et al. (2015), Smith (2021), and Catena et
al. (2022) used mass-balance approaches to estimate emis-
sions using observations from 2011, 2019 to 2021, and
November 2021, respectively. Duren et al. (2019) used the in-
tegrated methane enhancement method with data from 2016
to 2018. We find agreement within error bounds at the Seneca
Meadows Landfill in New York (landfill c in Fig. 5; Catena
et al., 2022) and at the Kiefer (d), Frank R. Bowerman (f),
Altamont (g), Newby Island (h), and Keller Canyon (i) land-
fills in California (Smith, 2021; Duren et al., 2019). We find
much larger emissions than previous studies at the South Side
Landfill (a) in Indiana (Cambaliza et al., 2015) and at the
West Miramar Sanitary (b) and Puente Hills (e) landfills in

California (Smith, 2021; Duren et al., 2019). The discrepancy
at the South Side Landfill could reflect changed emissions
since 2011, including the construction of a large landfill gas
recovery facility beginning in June 2019 (EPA LMOP, 2019).
Methane concentrations of 8662 ppm were recorded at a leak
at the West Miramar Sanitary Landfill in November 2019
(San Diego Air Pollution Control District, 2019), suggesting
that estimates from other years may not be representative of
2019 emissions. The Puente Hills Landfill closed in 2013 but
was previously one of the largest landfills in CONUS (EPA
GHGRP, 2019). Our landfill attribution approach, which re-
lies on a prior estimate from 2012, may therefore misallocate
emissions to the Puente Hills Landfill instead of to co-located
oil and gas operations.

We find mean facility emissions of 13 Gg a−1 compared
with the GHGRP mean of 7.2 Gg a−1 for the 70 landfills
considered here, with a median 77 % increase in reported
emissions. The largest increases occur for facilities that cap-
ture landfill gas, for which we find a median 204 % increase
from the reported values. As reflected in Table 3, we find no
correlation (R2

= 0.00) between GHGRP emissions and our
posterior estimates; this does not improve when we consider
only facilities that do or do not capture landfill gas. This im-
plies that the bottom-up approaches used for emissions esti-
mation have little predictability.

For the 38 facilities that recover gas, we use captured
methane emissions reported to the EPA Landfill Methane
Outreach Program (LMOP) in 2019 as well as posterior and
GHGRP emissions to calculate a posterior and reported re-
covery efficiency, respectively. The average posterior recov-
ery efficiency of 0.50 (0.33–0.54) is much smaller than the
GHGRP mean of 0.61, and both are much smaller than the
0.75 default (EPA, 2023b). Across the six landfill gas facili-
ties at the top 10 methane-producing landfills, we find a mean
posterior recovery efficiency of 0.33, half the GHGRP value
of 0.65. Indeed, four of the six facilities report methane emis-
sion and recovery values consistent with efficiencies larger
than the 0.75 default. We find a similar but still lower ef-
ficiency at the Seminole Road MSW Landfill (landfill 8)
and a marginally higher recovery efficiency only at Samp-
son County Disposal, LLC (11). We find a low correlation
(R2
= 0.17) between the efficiencies that does not depend on

facility size but improves slightly for facilities constructed
within the last decade (R2

= 0.31).
We consider in detail the 33 facilities for which poste-

rior emissions show a significant 50 % difference from the
GHGRP. We find larger emissions for 28 of these facili-
ties, with the largest discrepancies occurring in 9 of the
top 10 methane-producing landfills. Three of these nine fa-
cilities have experienced significant operational changes in
the last decade. The South Shelby (landfill 2 in Fig. 5) and
South Side (3) landfills constructed large landfill gas facil-
ities in 2019 (EPA LMOP, 2019; Russell, 2019), suggest-
ing that emissions from gas infrastructure development may
be large. The City of Dothan Sanitary Landfill (6) has been
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Figure 5. Methane emissions for 2019 from 70 individual landfills that report methane emissions of 2.5 Gg a−1 or more to the EPA’s
Greenhouse Gas Reporting Program (GHGRP) for 2019 and for which our TROPOMI inversion provides site-specific information. The left
panel shows the location of the landfills, with insets for parts of California (left) and Illinois and Indiana (right). Posterior emissions for each
landfill are shown by the size of the marker. The colors show differences (1) between the posterior and GHGRP emissions for 2019, with red
colors indicating posterior emissions larger than the reported value. Facilities that collect landfill gas are shown as circles, whereas others are
shown as diamonds. The numbers (1 to 10) identify the top 10 methane-producing landfills listed in Table 3, and the letters (a to i) identify
the nine validation sites listed in the right panel and outlined in gold. Validation sites are landfills with independent estimates from aircraft
campaigns, as listed in the legend. Cambaliza et al. (2015) based their estimates on data from 2011, Duren et al. (2019) on data from 2016
to 2018, Smith (2021) on data from 2019 to 2021, and Catena et al. (2022) on data from November 2021. The right panel shows GHGRP
(top bars) and posterior (bottom bars) emissions for the validation sites, along with values reported from the aircraft campaigns. The sites are
as follows: (a) South Side Landfill, (b) West Miramar Sanitary Landfill, (c) Seneca Meadows Landfill, (d) Kiefer Landfill, (e) Puente Hills
Landfill, (f) Frank R. Bowerman Landfill, (g) Altamont Landfill, (h) Newby Island Landfill, and (i) Keller Canyon Landfill.

full since 2014, when it stopped accepting most trash (Wise,
2019). Reported emissions peaked at 7.4 Gg a−1 that year
(EPA GHGRP, 2019), a value almost 5 times smaller than
our posterior emissions, suggesting that the first-order decay
model is inadequate to reproduce methane emissions over
time. We also find a record of air quality and landfill stan-
dard violations at these 34 facilities. At the West Miramar
Sanitary Landfill (10, b), a leak emitting 8662 ppm methane
was recorded in November 2019 (San Diego Air Pollution
Control District, 2019). The Sussex County Landfill in Vir-
ginia was fined USD 99 000 in 2016 for failing to address
cracks in the landfill cover (Vera, 2016). Lastly, the Newby
Island Landfill (h), received 30 violation notices from 2014
to 2020, including for gas collection system shutdowns (Bay
Area Air Quality Management District, 2022).

There are five facilities for which our posterior emissions
are significantly smaller by 50 % than the 2019 GHGRP.

Three report large decreases in estimated methane emissions
from 2019 to 2020 that result from changed methodology
(EPA GHGRP, 2019). The updated estimates are consistent
with our posterior emissions within error estimates in two
cases and within 30 % of our posterior emissions in the third
case.

3.3 State emissions

The EPA recently began disaggregating the GHGI by state.
The EPA uses the same methods to calculate state emissions
as in the national inventory so that the total emissions are
the same in both estimates. State estimates are developed
without reference to greenhouse gas inventories prepared by
state governments, which may result in discrepancies in sec-
toral or total values due to different methods or accounting
(EPA, 2023c). In addition to the GHGI state estimates, the
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Table 3. Top 10 methane-producing landfills in CONUS for 2019.

Facility1 Location Emissions (Gg a−1) Gas capture efficiency

GHGRP2 Posterior3 GHGRP4 Posterior5

1. National Serv-All Landfill Fort Wayne, Indiana 3.4 44 (34–59) 0.86 0.32 (0.26–0.37)
2. South Shelby Landfill Memphis, Tennessee 4.1 41 (30–56) 0.86 0.39 (0.31–0.46)
3. South Side Landfill Inc. Indianapolis, Indiana 4.7 39 (32–52) NA NA
4. Rumpke Sanitary Landfill Cincinnati, Ohio 10.1 39 (33–43) 0.84 0.58 (0.55–0.61)
5. Quad Cities Landfill Phase IV Milan, Illinois 3.7 35 (28–47) NA NA
6. City of Dothan Sanitary Landfill Dothan, Alabama 5.8 35 (28–43) NA NA
7. Rochelle Municipal Landfill Rochelle, Illinois 2.7 32 (25–39) 0.76 0.22 (0.18–0.26)
8. Seminole Road MSW Landfill Ellenwood, Georgia 12.3 30 (25–36) 0.18 0.08 (0.07–0.1)
9. Sampson County Disposal, LLC Roseboro, North Carolina 29.2 25 (23–29) 0.37 0.41 (0.38–0.44)
10. West Miramar Sanitary Landfill San Diego, California 6.2 24 (22–25) 0.78 0.47 (0.46–0.49)

1 The top 10 landfills with the largest posterior methane emissions from the TROPOMI inversion for 2019. Numbers correspond to the labels in Fig. 5.
2 Emissions reported by individual landfills to the EPA GHGRP for 2019 in gigagrams per year.
3 Posterior emissions from the inversion of TROPOMI observations in gigagrams per year. Posterior emissions are allocated to individual facilities as described in
Sects. 2.8 and 3.2. Values in parentheses represent the range from the eight-member inversion ensemble.
4 For facilities that capture landfill gas, the recovery efficiency is calculated from emissions and recovered methane reported by individual landfills to the EPA LMOP.
Facilities that do not capture landfill gas are listed as NA.
5 The posterior recovery efficiency is calculated from posterior emissions and the recovered methane reported by individual landfills to the EPA LMOP. Facilities that
do not capture landfill gas are listed as NA.

EPA provides references to the independent inventories of
24 states and Washington, DC (EPA, 2023a). Of these, we
find that eight produce a methane emission estimate sepa-
rate from their inventory of total CO2-equivalent greenhouse
gases.

We partition our anthropogenic gridded posterior emission
estimates, excluding offshore emissions, to each of the 48
states in CONUS (Sect. 2.8) and compare the results to the
GHGI state estimates and to inventories prepared by state
governments. Figure 6 shows the results for the 29 states re-
sponsible for 90 % of posterior CONUS anthropogenic emis-
sions excluding offshore emissions and ordered by poste-
rior emissions, and Table S1 shows the full results for all
48 CONUS states. TROPOMI provides a strong constraint
at this resolution, with most state averaging kernel sensitiv-
ities larger than 0.5. Our state emissions are on average 7 %
larger than the GHGI estimates and 27 % larger in the top
10 methane-emitting states, which produce 55 % of CONUS
posterior emissions. Oil and gas emissions on average gener-
ate 37 % of posterior emissions and 48 % of the observed in-
crease relative to the GHGI in these 10 states. In Texas, Okla-
homa, New Mexico, and Louisiana, the oil and gas sector ex-
plains more than 60 % of posterior emissions, with emissions
concentrated in the Permian Basin, the Haynesville Shale,
and the Anadarko Shale. Livestock and landfills also play a
significant role in these states. Emissions in California and
Iowa are dominated by the livestock sector, with much of
the observed increase relative to the GHGI attributed to ma-
nure management emissions (Sect. 3.1). Landfills account for
41 % of posterior emissions in Illinois and 62 % in Florida.
Indeed, three of the 10 largest landfills as reported to the
GHGRP in 2019 are in Florida (EPA GHGRP, 2019). Consis-

tent with our sectoral analysis, the largest posterior emission
decreases relative to the GHGI are found in coal-producing
states, including West Virginia and Pennsylvania. While we
find a large decrease compared with the GHGI in Pennsylva-
nia, we cannot confidently attribute the difference to a spe-
cific sector due to co-location of oil, gas, and coal facilities
at the resolution of our inversion.

We consider in more detail Texas and California, which
are responsible for 21 % and 7 % of posterior CONUS an-
thropogenic emissions, respectively. Our posterior estimate
for Texas is 6.3 (6.1–6.5) Tg a−1, a 58 % increase from the
GHGI estimate of 4.0 Tg a−1. This increase is attributed al-
most entirely to the oil and gas sector, which accounts for
69 % of posterior emissions compared to 57 % in the GHGI.
The Permian Basin alone explains almost 40 % of Texas’
posterior emissions. In California, we find posterior emis-
sions of 2.1 (2.0–2.1) Tg a−1, 53 % of which occur in the San
Joaquin Valley Air Basin. Our posterior emissions increase
27 % from the GHGI estimate of 1.6 Tg a−1 and 34 % from
an independent estimate produced by CARB of 1.5 Tg a−1

(CARB, 2023). Our posterior estimate is smaller than but
consistent within error bars with a value of 2.4± 0.5 Tg a−1

found by an inversion of in situ observations in California
from June 2013 to May 2014 (Jeong et al., 2016). We find
general good agreement with the sectoral partitioning in the
GHGI, the CARB inventory, and Jeong et al. (2016). Live-
stock explain 54 % of emissions in our posterior estimate,
47 % in the GHGI, 55 % in the CARB inventory, and 54 %
in Jeong et al. (2016), while landfills explain 25 %, 22 %,
21 %, and 19 % of emissions, respectively. We find slightly
smaller relative contributions from the oil and gas sector,
which accounts for 11 % of emissions in our posterior es-
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Figure 6. Anthropogenic methane emissions in 2019 for the 29 states responsible for 90 % of US anthropogenic posterior emissions. The
bottom panel shows 2023 EPA GHGI state estimates for 2019 (left bar) and our posterior estimates from the inversion of TROPOMI data
(right bar) divided by sector. States are listed from largest to smallest posterior emissions. The information content from the TROPOMI data,
as defined by the reduced-form averaging kernel sensitivities (the diagonal elements of the reduced-form averaging kernel matrix; Sect. 2.8),
is shown in the top panel. Values of 1 indicate full sensitivity to TROPOMI, whereas values of 0 indicate no sensitivity. The error bars give
the spread from the eight-member inversion ensemble. Also shown are emissions estimates from independent state inventories referenced by
EPA (2023c).

timate compared with 14 %, 17 %, and 18 % in the GHGI,
the CARB inventory, and Jeong et al. (2016), respectively.
This partitioning differs from that found in an inversion of
the 2010 CalNex aircraft campaign observations, where 30 %
of emissions were attributed to livestock, 38 % to landfills,
and 22 % to oil and gas based on the sectoral distribution
of the EDGAR v4.2 methane emission inventory (Wecht et
al., 2014b).

We also compare our posterior emissions to indepen-
dent state greenhouse gas inventories from Pennsylvania,
Louisiana, Iowa, and Colorado referenced by EPA (2023a),
where we have a strong constraint from the inversion (state
averaging kernel sensitivity greater than 0.5). Our posterior
agrees with the Pennsylvania estimate (Pennsylvania DEP,
2022), but we find a source shift from fossil fuels (from 76 %
in the inventory to 63 % in our work) to landfills (from 3 % in
the inventory to 16 % in our work). We find that Louisiana’s
state inventory (Dismukes, 2021) is too low due to underesti-
mated oil and gas emissions, while Iowa’s (Iowa DNR, 2020)
is too low due to underestimated livestock emissions, partic-
ularly from manure management (Sect. 3.1). Colorado’s state
inventory (Taylor, 2021) is 65 % larger than our posterior es-
timate due to oil and gas emissions that are more than twice
as large.

3.4 Urban area emissions

Urban areas are home to 81 % of the US population (U.S.
Census Bureau, 2010) and are major sources of green-
house gas emissions, including methane (Gurney et al., 2015;
Hopkins et al., 2016). As urban populations grow (Seto et
al., 2012), these emissions are likely to increase. Cities are
well positioned to address methane emissions through waste-
reduction initiatives, leak-detection programs, and strategic
contracts with landfill operators and gas utilities. Regulation
by air pollution control districts can also aid urban emission
reduction efforts (Hopkins et al., 2016). C40, a performance-
based coalition of over 100 mayors dedicated to climate
change mitigation, recommends that cities target a 50 % re-
duction in methane emissions by 2030 (C40, 2022b). Nu-
merous cities, including New York City, Los Angeles, and
Philadelphia, are working toward these reductions through
zero-waste programs (C40, 2022a). The US Methane Emis-
sions Reduction Action Plan intends to work with local gov-
ernments to set up methane monitoring systems to identify
and publicize information about municipal gas distribution
leaks. The plan also challenges members of the US Climate
Mayors to prioritize pipeline abandonment or replacement
(The White House, 2021).
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We calculate posterior emissions for 95 urban areas across
CONUS with 2010 populations over 1 million and averag-
ing kernel sensitivities from our inversion greater than 0.2,
providing the first comprehensive national analysis of urban
methane emissions. Quantification of urban emissions de-
pends significantly on the definition of city extent due to the
presence of large emitters such as landfills on the urban pe-
riphery (e.g., Balashov et al., 2020; Plant et al., 2022). We
follow Plant et al. (2022) and others in using the US Census
Topographically Integrated Geographic Encoding and Ref-
erencing system (TIGER)/Line urban areas to standardize
the definition across CONUS (U.S. Census Bureau, 2017).
These urban areas are responsible for almost a quarter of the
GHGI emissions spatially allocated using the gridded inven-
tory from Maasakkers et al. (2016). The gridded inventory
does not include post-meter emissions introduced in later
versions of the GHGI, which we distribute by population for
this analysis. In an average city, the gridded GHGI emissions
originate from landfills (40 %), gas distribution (9 %, includ-
ing 4 % from post-meter emissions), wastewater (6 %), and
other sources that are not specific to urban areas such as live-
stock and oil and gas production and transmission (45 %).

Anthropogenic posterior emissions in these 95 urban ar-
eas total 6.0 (5.4–6.7) Tg a−1, 38 (24–54) % larger than the
gridded GHGI value of 4.3 Tg a−1. Individual urban area
emissions, listed in Table S2, increase by an average of 39
(27–52) %. These increases are much larger than the 13 %
increase that we find in total CONUS anthropogenic emis-
sions relative to the GHGI. We are unable to attribute the
increased emissions to individual sectors due to source co-
location within urban areas at the 0.25°× 0.3125° resolution
of our inversion. However, given that landfills account for
40 % of gridded GHGI emissions in an average urban area
and that their emissions increase 51 % relative to the GHGI,
it is likely that they are responsible for a large fraction of
the observed discrepancy. It is also likely that gas emissions,
which represent less than 20 % of gridded GHGI emissions
in an average urban area but explain between 32 % and 100 %
of methane emissions in many cities based on field mea-
surements of methane : ethane ratios (Plant et al., 2019; Flo-
erchinger et al., 2021; Sargent et al., 2021), are significantly
underestimated. Finally, recent studies have shown large un-
derestimates of methane emissions from wastewater treat-
ment in the GHGI (Moore et al., 2023; Song et al., 2023)
and over urban areas (de Foy et al., 2023), but increasing
wastewater emissions accordingly only accounts for 2 % of
our observed discrepancy. City-specific variability prevents
further attribution of urban emissions. Indeed, we find no
correlation between the posterior emission increase and ur-
ban area population, population change from 2000 to 2010,
population density, or surface area.

Figure 7 shows results for the top 10 methane-producing
urban areas as ranked by posterior emissions from landfills,
gas distribution, and wastewater. These 10 regions explain 35
(34–36) % of anthropogenic posterior emissions across the

95 urban areas considered here. We find a mean increase
relative to gridded GHGI emissions of 58 (37–84) %. We
also compare our posterior emissions to municipal invento-
ries from New York City and Philadelphia, the only available
bottom-up urban methane emission estimates. Our emissions
are more than twice as large as these inventories, but this
likely results from our consideration of broader urban areas.

Figure 7 also compares our results to 12 top-down studies
published since 2015. Most of these focused on New York
City or Los Angeles. Almost all the studies used larger def-
initions of urban area extent, with only Pitt et al. (2022) and
Plant et al. (2022) using the US Census designation. Most
used aircraft or tower observations to infer emissions by in-
verting a CTM (Cui et al., 2015; Jeong et al., 2016; Cus-
worth et al., 2020; Pitt et al., 2022; Yadav et al., 2019, 2023).
Kuwayama et al. (2019) used a mass-balance approach,
while others used observed methane : CO2 or methane : CO
ratios combined with bottom-up inventories of these gases
(Wong et al., 2015; Wunch et al., 2016; Plant et al., 2019).
Plant et al. (2022) used the same approach with methane : CO
ratios from TROPOMI.

We find generally lower but statistically consistent emis-
sions compared with these studies. Our smaller estimates
likely result from our restrictive definition of urban area
extent. The only study that used aircraft data to estimate
methane emissions within a US Census urban area found
314± 96 Gg a−1 in New York City (Pitt et al., 2022), which
is very similar to our estimate of 309 (241–417) Gg a−1.
Plant et al. (2022) used US Census urban areas but relied on
TROPOMI methane : CO ratios. They found slightly larger
emissions in Atlanta and Philadelphia and much larger emis-
sions in New York City, but their error bars spanned ranges
almost twice as large as the derived emissions, limiting the
utility of the comparison. Plant et al. (2019) found larger
emissions in New York City and Philadelphia but used larger
definitions of urban areas and produced similarly wide error
ranges.

We find much lower emissions than these studies only in
Los Angeles, a difference that decreases but remains signif-
icant when we use the same extent as these studies. We at-
tribute much of the discrepancy to decreasing emissions over
time. Methane emissions from the Puente Hills Landfill, pre-
viously one of the largest landfills in CONUS, decreased fol-
lowing its closure in 2013 (Yadav et al., 2019). This change is
not fully reflected in the estimates of Cui et al. (2015), Wong
et al. (2015), or Wunch et al. (2016). Yadav et al. (2023)
found that Los Angeles emissions decreased an additional
7 % from January 2015 to May 2020. However, their poste-
rior estimate of 251± 5 Gg a−1 for 2019 is still larger than
our value of 179 (171–193) Gg a−1.
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Figure 7. Anthropogenic methane emissions for the largest 10 methane-producing urban areas in the contiguous United States (CONUS) for
2019 as identified by the inversion of TROPOMI data. Urban area extents are given by the US Census Bureau TIGER/Line files (U.S. Census
Bureau, 2010). The top bars show prior anthropogenic sectoral emissions from the 2023 EPA GHGI for 2019 spatially allocated following
Maasakkers et al. (2016) with post-meter emissions allocated by population. The bottom bar shows posterior emissions from the TROPOMI
inversion for 2019. We do not resolve posterior sectoral emissions estimates due to source co-location within urban areas at the scale of
the inversion. Total emissions (a), per capita emissions (b), and averaging kernel sensitivities (c) are shown for each urban area. Error bars
represent the spread of the eight-member inversion ensemble. Also shown are independent urban emissions estimates.

4 Conclusions

We used TROPOMI atmospheric methane column ob-
servations for 2019 to optimize methane emissions at
0.25°× 0.3125° resolution over North America with a fo-
cus on the contiguous US (CONUS). The high resolution of
our inversion allowed us to quantify emissions from individ-
ual landfills, states, and urban areas. We compared our re-
sults to the 2023 EPA Greenhouse Gas Emissions Inventory
(GHGI), including state-level estimates, for 2019; to emis-
sions reported by individual landfills to the EPA Greenhouse
Gas Reporting Program (GHGRP); and to other estimates
from states and cities. We find large upward corrections to
the GHGI at all scales, which may present a challenge for
US climate policies and goals, many of which target signifi-
cant reductions in methane emissions.

We optimized methane emissions using an analytical in-
version of TROPOMI methane observations with the GEOS-
Chem chemical transport model run at 0.25°× 0.3125° res-
olution. The inverse solution, or posterior emission estimate,
was obtained through a reduced-rank approximation of the
analytical minimum of a Bayesian cost function regular-
ized by a prior emission estimate from a gridded version

of the GHGI. The analytical solution characterizes the er-
ror and information content of the posterior emissions and
supported the generation of an eight-member inversion en-
semble. We constructed the Jacobian matrix required for the
high-resolution, continent-scale analytical solution by itera-
tive approximation using the emission patterns best informed
by the prior emission estimate and the observations. This ap-
proach decreases the computational cost of our inversion by
an order of magnitude compared with conventional analytical
methods while optimally preserving its information content.

We find posterior anthropogenic methane emissions of
30.9 (30.0–31.8) Tg a−1 in CONUS, where the range is given
by the inversion ensemble. This is a 13 % increase from the
GHGI estimate of 27.3 (25.1–30.6) Tg a−1, where the range
is given by the 95 % confidence interval. Emissions for land-
fills, oil and gas, and livestock explain 89 % of posterior
CONUS emissions, and each of these sectors’ emissions in-
crease by at least 10 % relative to the GHGI. We find a signif-
icant decrease compared with the GHGI only for coal emis-
sions. These increases present a challenge to goals set by the
US government to decrease methane emissions from oil and
gas, livestock, and landfills.
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Most of the total increase from the GHGI to the posterior
emissions is attributed to a 51 % increase in landfill emis-
sions. We compare our optimized emissions for 70 individual
landfills to those reported to the GHGRP and find a median
77 % increase in emissions relative to reported values. We at-
tribute the underestimated GHGI and GHGRP landfill emis-
sions to standard inventory methods that (1) assume overly
high recovery efficiencies at facilities that collect landfill gas
and (2) inadequately account for anomalous operating events
such as gas leaks or the construction of new landfill gas fa-
cilities.

We took advantage of the high resolution of our inversion
to quantify emissions for each of the 48 states in CONUS
and compare them to the newly available state emission in-
ventories published with the GHGI. We find a 7 % average
increase, with a 27 % average increase in the top 10 methane-
emitting states. Much of the discrepancy in these 10 states is
attributed to increased oil and gas emissions, although live-
stock and landfills also play significant roles. Texas and Cal-
ifornia, the two largest methane-producing states, emit 21 %
and 7 % of total CONUS anthropogenic emissions in our pos-
terior estimate, respectively. Emissions in Texas increase by
58 % relative to the GHGI almost entirely due to the oil and
gas sector. Operations in the Permian Basin alone explain
almost 40 % of all posterior emissions in the state. In Cali-
fornia, we find a 27 % increase from the GHGI and a 34 %
increase from an independent inventory prepared by the Cal-
ifornia Air Resources Board (CARB). Our sectoral partition-
ing for California is consistent with both inventories, includ-
ing 54 % of emissions from livestock, 25 % from landfills,
and 11 % from oil and gas.

We also provide a first national analysis of urban methane
emissions by calculating emissions for 95 urban areas across
CONUS. We find total emissions of 6.0 (5.4–6.7) Tg a−1

across these urban areas, representing a fifth of posterior an-
thropogenic emissions in CONUS and a 38 (24–54) % in-
crease from the gridded 2023 GHGI value of 4.3 Tg a−1. Ur-
ban emissions increase on average by 39 (27–52) % com-
pared with the GHGI. We attribute the observed discrep-
ancy to underestimated landfill and gas emissions. Our ur-
ban emission estimates are in general consistent with pre-
vious top-down studies except for Los Angeles, which may
be attributable in part to decreasing emissions between study
periods.
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https://doi.org/10.5281/zenodo.3676008 (Developers of GEOS-
Chem, 2020). The code to solve and analyze the inversion is
available at https://doi.org/10.5281/zenodo.10946769 (Nesser,
2024).

Data availability. The TROPOMI v14 data are available from
SRON at https://doi.org/10.5281/zenodo.4447228 (Lorente et

al., 2021b). The GLOBALVIEWplus CH4 ObsPack v3.0 database
is available from NOAA’s Global Monitoring Laboratory at
https://doi.org/10.25925/20210401 (Schuldt et al., 2021). The
prior and observational inputs for the inversion, the poste-
rior emissions and averaging kernel sensitivities, and summary
datasets for sectors, states, cities, and landfills are available
at https://doi.org/10.5281/zenodo.10946769 (Nesser, 2024). Addi-
tional data related to this paper may be requested from the authors.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/acp-24-5069-2024-supplement.

Author contributions. HN and DJJ designed the study. HN con-
ducted the inversion with contributions from ZC, ZQ, MPS, and
MW. SM and AAB provided the high-performance ensemble of
WetCHARTs v1.3.1 and supported wetland analysis. JDM and AL
provided guidance on the TROPOMI data. JDM, AL, XL, LS, JW,
RNS, and CAR discussed the results. HN and DJJ wrote the paper
with input from all authors.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. This work was supported by the NASA
Carbon Monitoring System (CMS), ExxonMobil Technology and
Engineering Company, and the Harvard Climate Change Solutions
Fund. Part of this work was carried out at the Jet Propulsion Labo-
ratory, California Institute of Technology, under a contract with the
National Aeronautics and Space Administration (NASA). We thank
Bryan Mignone, Felipe J. Cardoso-Saldaña, Robert Stowe, Lauren
Aepli, and Melissa Weitz for helpful discussions.

Financial support. This research has been supported by the
National Aeronautics and Space Administration (grant no.
80NSSC21K1057) and the ExxonMobil Research and Engineering
Company.

Review statement. This paper was edited by Christoph Gerbig
and reviewed by two anonymous referees.

https://doi.org/10.5194/acp-24-5069-2024 Atmos. Chem. Phys., 24, 5069–5091, 2024

https://doi.org/10.5281/zenodo.3676008
https://doi.org/10.5281/zenodo.10946769
https://doi.org/10.5281/zenodo.4447228
https://doi.org/10.25925/20210401
https://doi.org/10.5281/zenodo.10946769
https://doi.org/10.5194/acp-24-5069-2024-supplement


5086 H. Nesser et al.: High-resolution methane emissions inferred from 2019 TROPOMI satellite data

References

About the Global Methane Pledge: https://www.
globalmethanepledge.org/, last access: 12 April 2023.

Balashov, N. V., Davis, K. J., Miles, N. L., Lauvaux, T., Richard-
son, S. J., Barkley, Z. R., and Bonin, T. A.: Background hetero-
geneity and other uncertainties in estimating urban methane flux:
results from the Indianapolis Flux Experiment (INFLUX), At-
mos. Chem. Phys., 20, 4545–4559, https://doi.org/10.5194/acp-
20-4545-2020, 2020.

Balasus, N., Jacob, D. J., Lorente, A., Maasakkers, J. D., Parker,
R. J., Boesch, H., Chen, Z., Kelp, M. M., Nesser, H., and
Varon, D. J.: A blended TROPOMI+GOSAT satellite data
product for atmospheric methane using machine learning to
correct retrieval biases, Atmos. Meas. Tech., 16, 3787–3807,
https://doi.org/10.5194/amt-16-3787-2023, 2023.

Barré, J., Aben, I., Agustí-Panareda, A., Balsamo, G., Bousserez,
N., Dueben, P., Engelen, R., Inness, A., Lorente, A., McNorton,
J., Peuch, V.-H., Radnoti, G., and Ribas, R.: Systematic detection
of local CH4 anomalies by combining satellite measurements
with high-resolution forecasts, Atmos. Chem. Phys., 21, 5117–
5136, https://doi.org/10.5194/acp-21-5117-2021, 2021.

Bay Area Air Quality Management District: Air Dis-
trict settles violations at Newby Island Landfill,
https://www.baaqmd.gov/news-and-events/page-resources/2022
-news/090122-settle-newby (last access: 9 April 2024), 2022.

Bloom, A. A., Bowman, K. W., Lee, M., Turner, A. J., Schroeder,
R., Worden, J. R., Weidner, R., McDonald, K. C., and Ja-
cob, D. J.: A global wetland methane emissions and un-
certainty dataset for atmospheric chemical transport models
(WetCHARTs version 1.0), Geosci. Model Dev., 10, 2141–2156,
https://doi.org/10.5194/gmd-10-2141-2017, 2017.

Bousserez, N. and Henze, D. K.: Optimal and scalable meth-
ods to approximate the solutions of large-scale Bayesian prob-
lems: theory and application to atmospheric inversion and
data assimilation, Q. J. Roy. Meteor. Soc., 144, 365–390,
https://doi.org/10.1002/qj.3209, 2018.

Brasseur, G. P. and Jacob, D. J.: Inverse Modeling for At-
mospheric Chemistry, in: Modeling of Atmospheric Chem-
istry, Cambridge University Press, Cambridge, 487–537,
https://doi.org/10.1017/9781316544754.012, 2017.

C40: C40 Advancing towards zero waste declaration: How
cities are creating cleaner, healthier communities and circular
economies, C40, https://www.c40.org/wp-content/uploads/
2022/02/C40-Advancing-Towards-Zero-Waste-Declaration_
Public-progress-report_Feb-2022.pdf (last access: 9 April
2024), 2022a.

C40: Methane: Why cities must act now, C40 Knowledge, July,
https://www.c40knowledgehub.org/s/article/Methane-Why-ci
ties-must-act-now?language=en_US (last access: 9 April 2024),
2022b.

Calisesi, Y., Soebijanta, V. T., and van Oss, R.: Regridding
of remote soundings: Formulation and application to ozone
profile comparison, J. Geophys. Res.-Atmos., 110, D23306,
https://doi.org/10.1029/2005JD006122, 2005.

Cambaliza, M. O. L., Shepson, P. B., Bogner, J., Caulton, D. R.,
Stirm, B., Sweeney, C., Montzka, S. A., Gurney, K. R., Spokas,
K., Salmon, O. E., Lavoie, T. N., Hendricks, A., Mays, K.,
Turnbull, J., Miller, B. R., Lauvaux, T., Davis, K., Karion, A.,

Moser, B., Miller, C., Obermeyer, C., Whetstone, J., Prasad, K.,
Miles, N., and Richardson, S.: Quantification and source ap-
portionment of the methane emission flux from the city of In-
dianapolis, Elementa: Science of the Anthropocene, 3, 000037,
https://doi.org/10.12952/journal.elementa.000037, 2015.

CARB: Current California GHG Emission Inventory Data, https:
//ww2.arb.ca.gov/ghg-inventory-data (last access: 9 April 2024),
2023.

Catena, A. M., Zhang, J., Commane, R., Murray, L. T., Schwab,
M. J., Leibensperger, E. M., Marto, J., Smith, M. L., and
Schwab, J. J.: Hydrogen Sulfide Emission Properties from Two
Large Landfills in New York State, Atmosphere, 13, 1251,
https://doi.org/10.3390/atmos13081251, 2022.

Chen, Y., Sherwin, E. D., Berman, E. S. F., Jones, B. B., Gordon, M.
P., Wetherley, E. B., Kort, E. A., and Brandt, A. R.: Quantifying
Regional Methane Emissions in the New Mexico Permian Basin
with a Comprehensive Aerial Survey, Environ. Sci. Technol., 56,
4317–4323, https://doi.org/10.1021/acs.est.1c06458, 2022.

Chen, Z., Griffis, T. J., Baker, J. M., Millet, D. B., Wood, J. D.,
Dlugokencky, E. J., Andrews, A. E., Sweeney, C., Hu, C., and
Kolka, R. K.: Source Partitioning of Methane Emissions and its
Seasonality in the U.S. Midwest, J. Geophys. Res.-Biogeo., 123,
646–659, https://doi.org/10.1002/2017JG004356, 2018.

Chevallier, F.: Impact of correlated observation errors on inverted
CO2 surface fluxes from OCO measurements, Geophys. Res.
Lett., 34, L24804, https://doi.org/10.1029/2007GL030463, 2007.

Cui, Y. Y., Brioude, J., McKeen, S. A., Angevine, W. M., Kim, S.-
W., Frost, G. J., Ahmadov, R., Peischl, J., Bousserez, N., Liu,
Z., Ryerson, T. B., Wofsy, S. C., Santoni, G. W., Kort, E. A.,
Fischer, M. L., and Trainer, M.: Top-down estimate of methane
emissions in California using a mesoscale inverse modeling tech-
nique: The South Coast Air Basin, J. Geophys. Res.-Atmos., 120,
6698–6711, https://doi.org/10.1002/2014JD023002, 2015.

Cusworth, D. H., Duren, R. M., Yadav, V., Thorpe, A. K., Verhulst,
K., Sander, S., Hopkins, F., Rafiq, T., and Miller, C. E.: Synthesis
of Methane Observations Across Scales: Strategies for Deploy-
ing a Multitiered Observing Network, Geophys. Res. Lett., 47,
e2020GL087869, https://doi.org/10.1029/2020GL087869, 2020.

Cusworth, D. H., Bloom, A. A., Ma, S., Miller, C. E., Bowman,
K., Yin, Y., Maasakkers, J. D., Zhang, Y., Scarpelli, T. R., Qu,
Z., Jacob, D. J., Worden, J. R.: A Bayesian framework for deriv-
ing sector-based methane emissions from top-down fluxes, Com-
mun. Earth Environ., 2, 242, https://doi.org/10.1038/s43247-
021-00312-6, 2021.

Dask Development Team: Dask: Library for dynamic task schedul-
ing, Version 2021.10.0, GitHub [code], https://github.com/dask/
dask?tab=readme-ov-file (last access: 9 April 2024), 2016.

de Foy, B., Schauer, J. J., Lorente, A., and Borsdorff, T.: In-
vestigating high methane emissions from urban areas detected
by TROPOMI and their association with untreated wastewater,
Environ. Res. Lett., 18, 044004, https://doi.org/10.1088/1748-
9326/acc118, 2023.

de Gouw, J. A., Veefkind, J. P., Roosenbrand, E., Dix, B., Lin, J.
C., Landgraf, J., and Levelt, P. F.: Daily Satellite Observations
of Methane from Oil and Gas Production Regions in the United
States, Sci. Rep.-UK, 10, 1379, https://doi.org/10.1038/s41598-
020-57678-4, 2020.

Deng, Z., Ciais, P., Tzompa-Sosa, Z. A., Saunois, M., Qiu, C., Tan,
C., Sun, T., Ke, P., Cui, Y., Tanaka, K., Lin, X., Thompson, R.

Atmos. Chem. Phys., 24, 5069–5091, 2024 https://doi.org/10.5194/acp-24-5069-2024

https://www.globalmethanepledge.org/
https://www.globalmethanepledge.org/
https://doi.org/10.5194/acp-20-4545-2020
https://doi.org/10.5194/acp-20-4545-2020
https://doi.org/10.5194/amt-16-3787-2023
https://doi.org/10.5194/acp-21-5117-2021
https://www.baaqmd.gov/news-and-events/page-resources/2022-news/090122-settle-newby
https://www.baaqmd.gov/news-and-events/page-resources/2022-news/090122-settle-newby
https://doi.org/10.5194/gmd-10-2141-2017
https://doi.org/10.1002/qj.3209
https://doi.org/10.1017/9781316544754.012
https://www.c40.org/wp-content/uploads/2022/02/C40-Advancing-Towards-Zero-Waste-Declaration_Public-progress-report_Feb-2022.pdf
https://www.c40.org/wp-content/uploads/2022/02/C40-Advancing-Towards-Zero-Waste-Declaration_Public-progress-report_Feb-2022.pdf
https://www.c40.org/wp-content/uploads/2022/02/C40-Advancing-Towards-Zero-Waste-Declaration_Public-progress-report_Feb-2022.pdf
https://www.c40knowledgehub.org/s/article/Methane-Why-cities-must-act-now?language=en_US
https://www.c40knowledgehub.org/s/article/Methane-Why-cities-must-act-now?language=en_US
https://doi.org/10.1029/2005JD006122
https://doi.org/10.12952/journal.elementa.000037
https://ww2.arb.ca.gov/ghg-inventory-data
https://ww2.arb.ca.gov/ghg-inventory-data
https://doi.org/10.3390/atmos13081251
https://doi.org/10.1021/acs.est.1c06458
https://doi.org/10.1002/2017JG004356
https://doi.org/10.1029/2007GL030463
https://doi.org/10.1002/2014JD023002
https://doi.org/10.1029/2020GL087869
https://doi.org/10.1038/s43247-021-00312-6
https://doi.org/10.1038/s43247-021-00312-6
https://github.com/dask/dask?tab=readme-ov-file
https://github.com/dask/dask?tab=readme-ov-file
https://doi.org/10.1088/1748-9326/acc118
https://doi.org/10.1088/1748-9326/acc118
https://doi.org/10.1038/s41598-020-57678-4
https://doi.org/10.1038/s41598-020-57678-4


H. Nesser et al.: High-resolution methane emissions inferred from 2019 TROPOMI satellite data 5087

L., Tian, H., Yao, Y., Huang, Y., Lauerwald, R., Jain, A. K., Xu,
X., Bastos, A., Sitch, S., Palmer, P. I., Lauvaux, T., d’Aspremont,
A., Giron, C., Benoit, A., Poulter, B., Chang, J., Petrescu, A. M.
R., Davis, S. J., Liu, Z., Grassi, G., Albergel, C., Tubiello, F. N.,
Perugini, L., Peters, W., and Chevallier, F.: Comparing national
greenhouse gas budgets reported in UNFCCC inventories against
atmospheric inversions, Earth Syst. Sci. Data, 14, 1639–1675,
https://doi.org/10.5194/essd-14-1639-2022, 2022.

Developers of GEOS-Chem: geoschem/geos-chem:
GEOS-Chem 12.7.1, Version 12.7.1, Zenodo [code],
https://doi.org/10.5281/zenodo.3676008, 2020.

Dismukes, D. E.: Louisiana 2021 Greenhouse Gas Inven-
tory, Louisiana Governor’s Office of Coastal Activities,
https://www.lsu.edu/ces/publications/2021/louisiana-2021-gree
house-gas-inventory-df-rev_reduced.pdf (last access: 9 April
2024), 2021.

Duren, R. M., Thorpe, A. K., Foster, K. T., Rafiq, T., Hopkins, F. M.,
Yadav, V., Bue, B. D., Thompson, D. R., Conley, S., Colombi, N.
K., Frankenberg, C., McCubbin, I. B., Eastwood, M. L., Falk,
M., Herner, J. D., Croes, B. E., Green, R. O., and Miller, C.
E.: California’s methane super-emitters, Nature, 575, 180–184,
https://doi.org/10.1038/s41586-019-1720-3, 2019.

EIA: Annual Coal Report 2020, U.S. Energy Information Adminis-
tration, 2021.

EPA: https://www.epa.gov/ghgemissions/learn-more-about-official
-state-greenhouse-gas-inventories, last access: 1 January 2023a.

EPA: Inventory of U.S. Greenhouse Gas Emissions and
Sinks: 1990–2021, U.S. Environmental Protection
Agency, 430-R-23-003, https://www.epa.gov/ghgemissions/
inventory-us-greenhouse-gas-emissions-and-sinks-1990-2021
(last access: 27 December 2023), 2023b.

EPA: Methodology Report for Inventory of U.S. Greenhouse Gas
Emissions and Sinks by State: 1990–2021, EPA-430-R-23-
003, https://www.epa.gov/ghgemissions/methodology-report-
inventory-us-greenhouse-gas-emissions-and-sinks-state-1990-
2021 (last access: 27 December 2023), 2023c.

EPA GHGRP: Facility Level Information on GreenHouse Gases
Tool (FLIGHT) [data set], U.S. Environmental Protection
Agency Greenhouse Gas Reporting Program, https://www.epa.
gov/ghgreporting (last access: 2 February 2023), 2019.

EPA LMOP: Landfill Methane Outreach Program (LMOP) Com-
posite and Historical Data Files [data set], U.S. Environmental
Protection Agency Landfill Methane Outreach Program, https:
//www.epa.gov/lmop/lmop-landfill-and-project-database#comp
(last access: 13 March 2023), 2019.

Floerchinger, C., Shepson, P. B., Hajny, K., Daube, B. C., Stirm,
B. H., Sweeney, C., and Wofsy, S. C.: Relative flux measure-
ments of biogenic and natural gas-derived methane for seven
U.S. cities, Elementa: Science of the Anthropocene, 9, 000119,
https://doi.org/10.1525/elementa.2021.000119, 2021.

Gurney, K. R., Romero-Lankao, P., Seto, K. C., Hutyra, L. R.,
Duren, R., Kennedy, C., Grimm, N. B., Ehleringer, J. R., Mar-
cotullio, P., Hughes, S., Pincetl, S., Chester, M. V., Runfola,
D. M., Feddema, J. J., and Sperling, J.: Climate change: Track
urban emissions on a human scale, Nature, 525, 179–181,
https://doi.org/10.1038/525179a, 2015.

Hasekamp, O., Lorente, A., Hu, H., Butz, A., Aan de Brugh, J.,
and Landgraf, J.: Algorithm Theoretical Baseline Document for
Sentinel-5 Precursor Methane Retrieval, SRON (Netherlands In-

stitute for Space Research), SRON-S5P-LEV2-RP-001 CI, CI-
7430-ATBD, 2.2.0draft, 2021.

Heald, C. L., Jacob, D. J., Jones, D. B. A., Palmer, P. I., Logan, J.
A., Streets, D. G., Sachse, G. W., Gille, J. C., Hoffman, R. N.,
and Nehrkorn, T.: Comparative inverse analysis of satellite (MO-
PITT) and aircraft (TRACE-P) observations to estimate Asian
sources of carbon monoxide, J. Geophys. Res.-Atmos., 109, 1–
17, https://doi.org/10.1029/2004JD005185, 2004.

Hopkins, F. M., Ehleringer, J. R., Bush, S. E., Duren, R. M.,
Miller, C. E., Lai, C.-T., Hsu, Y.-K., Carranza, V., and Ran-
derson, J. T.: Mitigation of methane emissions in cities:
How new measurements and partnerships can contribute to
emissions reduction strategies, Earth’s Future, 4, 408–425,
https://doi.org/10.1002/2016EF000381, 2016.

Houweling, S., Krol, M., Bergamaschi, P., Frankenberg, C., Dlu-
gokencky, E. J., Morino, I., Notholt, J., Sherlock, V., Wunch,
D., Beck, V., Gerbig, C., Chen, H., Kort, E. A., Röck-
mann, T., and Aben, I.: A multi-year methane inversion us-
ing SCIAMACHY, accounting for systematic errors using TC-
CON measurements, Atmos. Chem. Phys., 14, 3991–4012,
https://doi.org/10.5194/acp-14-3991-2014, 2014.

Hu, H., Landgraf, J., Detmers, R., Borsdorff, T., Aan de Brugh,
J., Aben, I., Butz, A., and Hasekamp, O.: Toward Global Map-
ping of Methane With TROPOMI: First Results and Intersatel-
lite Comparison to GOSAT, Geophys. Res. Lett., 45, 3682–3689,
https://doi.org/10.1002/2018gl077259, 2018.

Iowa DNR: 2019 Iowa Statewide Greenhouse Gas Emissions
Inventory Report, Iowa Department of Natural Resources,
https://www.iowadnr.gov/Portals/idnr/uploads/air/ghgemissions/
2019_GHG_Report.pdf (last access: 9 April 2024), 2020.

IPCC: Global Warming of 1.5 °C: IPCC Special Report on
Impacts of Global Warming of 1.5 °C above Pre-industrial
Levels in Context of Strengthening Response to Cli-
mate Change, Sustainable Development, and Efforts to
Eradicate Poverty, 1st edn., Cambridge University Press,
https://doi.org/10.1017/9781009157940, 2022.

Jacob, D. J., Varon, D. J., Cusworth, D. H., Dennison, P. E.,
Frankenberg, C., Gautam, R., Guanter, L., Kelley, J., McKeever,
J., Ott, L. E., Poulter, B., Qu, Z., Thorpe, A. K., Worden, J.
R., and Duren, R. M.: Quantifying methane emissions from the
global scale down to point sources using satellite observations
of atmospheric methane, Atmos. Chem. Phys., 22, 9617–9646,
https://doi.org/10.5194/acp-22-9617-2022, 2022.

Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Muntean, M.,
Schaaf, E., Dentener, F., Bergamaschi, P., Pagliari, V., Olivier, J.
G. J., Peters, J. A. H. W., van Aardenne, J. A., Monni, S., Doer-
ing, U., Petrescu, A. M. R., Solazzo, E., and Oreggioni, G. D.:
EDGAR v4.3.2 Global Atlas of the three major greenhouse gas
emissions for the period 1970–2012, Earth Syst. Sci. Data, 11,
959–1002, https://doi.org/10.5194/essd-11-959-2019, 2019.

Jeong, S., Newman, S., Zhang, J., Andrews, A. E., Bianco,
L., Bagley, J., Cui, X., Graven, H., Kim, J., Salameh, P.,
LaFranchi, B. W., Priest, C., Campos-Pineda, M., Novakovskaia,
E., Sloop, C. D., Michelsen, H. A., Bambha, R. P., Weiss,
R. F., Keeling, R., and Fischer, M. L.: Estimating methane
emissions in California’s urban and rural regions using mul-
titower observations, J. Geophys. Res.-Atmos., 121, 13031–
13049, https://doi.org/10.1002/2016JD025404, 2016.

https://doi.org/10.5194/acp-24-5069-2024 Atmos. Chem. Phys., 24, 5069–5091, 2024

https://doi.org/10.5194/essd-14-1639-2022
https://doi.org/10.5281/zenodo.3676008
https://www.lsu.edu/ces/publications/2021/louisiana-2021-greehouse-gas-inventory-df-rev_reduced.pdf
https://www.lsu.edu/ces/publications/2021/louisiana-2021-greehouse-gas-inventory-df-rev_reduced.pdf
https://doi.org/10.1038/s41586-019-1720-3
https://www.epa.gov/ghgemissions/learn-more-about-official-state-greenhouse-gas-inventories
https://www.epa.gov/ghgemissions/learn-more-about-official-state-greenhouse-gas-inventories
https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2021
https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2021
https://www.epa.gov/ghgemissions/methodology-report-inventory-us-greenhouse-gas-emissions-and-sinks-state-1990-2021
https://www.epa.gov/ghgemissions/methodology-report-inventory-us-greenhouse-gas-emissions-and-sinks-state-1990-2021
https://www.epa.gov/ghgemissions/methodology-report-inventory-us-greenhouse-gas-emissions-and-sinks-state-1990-2021
https://www.epa.gov/ghgreporting
https://www.epa.gov/ghgreporting
https://www.epa.gov/lmop/lmop-landfill-and-project-database#comp
https://www.epa.gov/lmop/lmop-landfill-and-project-database#comp
https://doi.org/10.1525/elementa.2021.000119
https://doi.org/10.1038/525179a
https://doi.org/10.1029/2004JD005185
https://doi.org/10.1002/2016EF000381
https://doi.org/10.5194/acp-14-3991-2014
https://doi.org/10.1002/2018gl077259
https://www.iowadnr.gov/Portals/idnr/uploads/air/ghgemissions/2019_GHG_Report.pdf
https://www.iowadnr.gov/Portals/idnr/uploads/air/ghgemissions/2019_GHG_Report.pdf
https://doi.org/10.1017/9781009157940
https://doi.org/10.5194/acp-22-9617-2022
https://doi.org/10.5194/essd-11-959-2019
https://doi.org/10.1002/2016JD025404


5088 H. Nesser et al.: High-resolution methane emissions inferred from 2019 TROPOMI satellite data

Karion, A., Sweeney, C., Kort, E. A., Shepson, P. B., Brewer, A.,
Cambaliza, M., Conley, S. A., Davis, K., Deng, A., Hardesty, M.,
Herndon, S. C., Lauvaux, T., Lavoie, T., Lyon, D., Newberger, T.,
Pétron, G., Rella, C., Smith, M., Wolter, S., Yacovitch, T. I., and
Tans, P.: Aircraft-Based Estimate of Total Methane Emissions
from the Barnett Shale Region, Environ. Sci. Technol., 49, 8124–
8131, https://doi.org/10.1021/acs.est.5b00217, 2015.

Konan, D. E. and Chan, H. L.: Greenhouse gas
emissions in Hawai‘i: Household and visitor ex-
penditure analysis, Energ. Econ., 32, 210–219,
https://doi.org/10.1016/j.eneco.2009.06.015, 2010.

Kuwayama, T., Charrier-Klobas, J. G., Chen, Y., Vizenor, N. M.,
Blake, D. R., Pongetti, T., Conley, S. A., Sander, S. P., Croes, B.,
and Herner, J. D.: Source Apportionment of Ambient Methane
Enhancements in Los Angeles, California, To Evaluate Emis-
sion Inventory Estimates, Environ. Sci. Technol., 53, 2961–2970,
https://doi.org/10.1021/acs.est.8b02307, 2019.

Liu, M., van der A, R., van Weele, M., Eskes, H., Lu, X.,
Veefkind, P., de Laat, J., Kong, H., Wang, J., Sun, J., Ding,
J., Zhao, Y., and Weng, H.: A New Divergence Method to
Quantify Methane Emissions Using Observations of Sentinel-
5P TROPOMI, Geophys. Res. Lett., 48, e2021GL094151,
https://doi.org/10.1029/2021GL094151, 2021.

Lorente, A., Borsdorff, T., Butz, A., Hasekamp, O., aan de Brugh,
J., Schneider, A., Wu, L., Hase, F., Kivi, R., Wunch, D., Pollard,
D. F., Shiomi, K., Deutscher, N. M., Velazco, V. A., Roehl, C.
M., Wennberg, P. O., Warneke, T., and Landgraf, J.: Methane
retrieved from TROPOMI: improvement of the data product
and validation of the first 2 years of measurements, Atmos.
Meas. Tech., 14, 665–684, https://doi.org/10.5194/amt-14-665-
2021, 2021a.

Lorente, A., Borsdorff, T., aan de Brugh, J., Landgraf, J.,
and Hasekamp, O.: SRON S5P + RemoTeC scientific
TROPOMI XCH4 dataset, Version v1, Zenodo [data set],
https://doi.org/10.5281/zenodo.4447228, 2021b.

Lu, X., Jacob, D. J., Zhang, Y., Maasakkers, J. D., Sulprizio, M. P.,
Shen, L., Qu, Z., Scarpelli, T. R., Nesser, H., Yantosca, R. M.,
Sheng, J., Andrews, A., Parker, R. J., Boesch, H., Bloom, A. A.,
and Ma, S.: Global methane budget and trend, 2010–2017: com-
plementarity of inverse analyses using in situ (GLOBALVIEW-
plus CH4 ObsPack) and satellite (GOSAT) observations, At-
mos. Chem. Phys., 21, 4637–4657, https://doi.org/10.5194/acp-
21-4637-2021, 2021.

Lu, X., Jacob, D. J., Wang, H., Maasakkers, J. D., Zhang, Y.,
Scarpelli, T. R., Shen, L., Qu, Z., Sulprizio, M. P., Nesser,
H., Bloom, A. A., Ma, S., Worden, J. R., Fan, S., Parker, R.
J., Boesch, H., Gautam, R., Gordon, D., Moran, M. D., Reu-
land, F., Villasana, C. A. O., and Andrews, A.: Methane emis-
sions in the United States, Canada, and Mexico: evaluation of
national methane emission inventories and 2010–2017 sectoral
trends by inverse analysis of in situ (GLOBALVIEWplus CH4
ObsPack) and satellite (GOSAT) atmospheric observations, At-
mos. Chem. Phys., 22, 395–418, https://doi.org/10.5194/acp-22-
395-2022, 2022.

Lu, X., Jacob, D. J., Zhang, Y., Shen, L., Sulprizio, M. P.,
Maasakkers, J. D., Varon, D. J., Qu, Z., Chen, Z., Hmiel,
B., Parker, R. J., Boesch, H., Wang, H., He, C., and Fan,
S.: Observation-derived 2010–2019 trends in methane emis-
sions and intensities from US oil and gas fields tied to ac-

tivity metrics, P. Natl. Acad. Sci. USA, 120, e2217900120,
https://doi.org/10.1073/pnas.2217900120, 2023.

Lucchesi, R.: File Specification for GEOS-5 FP, GMAO Office Note
No. 4, Version 1.1, 61 pp., https://gmao.gsfc.nasa.gov/pubs/docs/
Lucchesi1202.pdf (last access: 9 April 2024), 2017.

Ma, S., Worden, J. R., Bloom, A. A., Zhang, Y., Poulter,
B., Cusworth, D. H., Yin, Y., Pandey, S., Maasakkers, J.
D., Lu, X., Shen, L., Sheng, J., Frankenberg, C., Miller,
C. E., and Jacob, D. J.: Satellite Constraints on the Lat-
itudinal Distribution and Temperature Sensitivity of Wet-
land Methane Emissions, AGU Advances, 2, e2021AV000408,
https://doi.org/10.1029/2021AV000408, 2021.

Maasakkers, J. D., Jacob, D. J., Sulprizio, M. P., Turner, A. J., Weitz,
M., Wirth, T., Hight, C., DeFigueiredo, M., Desai, M., Schmeltz,
R., Hockstad, L., Bloom, A. A., Bowman, K. W., Jeong, S.,
and Fischer, M. L.: Gridded National Inventory of U.S. Methane
Emissions, Environmental Science and Technology, 50, 13123–
13133, https://doi.org/10.1021/acs.est.6b02878, 2016.

Maasakkers, J. D., Jacob, D. J., Sulprizio, M. P., Scarpelli, T. R.,
Nesser, H., Sheng, J.-X., Zhang, Y., Hersher, M., Bloom, A.
A., Bowman, K. W., Worden, J. R., Janssens-Maenhout, G., and
Parker, R. J.: Global distribution of methane emissions, emis-
sion trends, and OH concentrations and trends inferred from
an inversion of GOSAT satellite data for 2010–2015, Atmos.
Chem. Phys., 19, 7859–7881, https://doi.org/10.5194/acp-19-
7859-2019, 2019.

Maasakkers, J. D., Jacob, D. J., Sulprizio, M. P., Scarpelli, T.
R., Nesser, H., Sheng, J., Zhang, Y., Lu, X., Bloom, A. A.,
Bowman, K. W., Worden, J. R., and Parker, R. J.: 2010–2015
North American methane emissions, sectoral contributions, and
trends: a high-resolution inversion of GOSAT observations of
atmospheric methane, Atmos. Chem. Phys., 21, 4339–4356,
https://doi.org/10.5194/acp-21-4339-2021, 2021.

McNorton, J., Bousserez, N., Agustí-Panareda, A., Balsamo, G.,
Cantarello, L., Engelen, R., Huijnen, V., Inness, A., Kipling,
Z., Parrington, M., and Ribas, R.: Quantification of methane
emissions from hotspots and during COVID-19 using a global
atmospheric inversion, Atmos. Chem. Phys., 22, 5961–5981,
https://doi.org/10.5194/acp-22-5961-2022, 2022.

Miller, S. M., Wofsy, S. C., Michalak, A. M., Kort, E.
A., Andrews, A. E., Biraud, S. C., Dlugokencky, E. J.,
Eluskiewicz, J., Fischer, M. L., Janssens-Maenhout, G., Miller,
B. R., Miller, J. B., Montzka, S. A., Nehrkorn, T., and
Sweeney, C.: Anthropogenic emissions of methane in the
United States, P. Natl. Acad. Sci. USA, 110, 20018–20022,
https://doi.org/10.1073/pnas.1314392110, 2013.

Miller, S. M., Miller, C. E., Commane, R., Chang, R. Y.-W., Di-
nardo, S. J., Henderson, J. M., Karion, A., Lindaas, J., Melton,
J. R., Miller, J. B., Sweeney, C., Wofsy, S. C., and Michalak,
A. M.: A multiyear estimate of methane fluxes in Alaska from
CARVE atmospheric observations, Global Biogeochem. Cy., 30,
1441–1453, https://doi.org/10.1002/2016GB005419, 2016.

Moore, D. P., Li, N. P., Wendt, L. P., Castañeda, S. R., Falinski, M.
M., Zhu, J.-J., Song, C., Ren, Z. J., and Zondlo, M. A.: Underes-
timation of Sector-Wide Methane Emissions from United States
Wastewater Treatment, Environ. Sci. Technol., 57, 4082–4090,
https://doi.org/10.1021/acs.est.2c05373, 2023.

Atmos. Chem. Phys., 24, 5069–5091, 2024 https://doi.org/10.5194/acp-24-5069-2024

https://doi.org/10.1021/acs.est.5b00217
https://doi.org/10.1016/j.eneco.2009.06.015
https://doi.org/10.1021/acs.est.8b02307
https://doi.org/10.1029/2021GL094151
https://doi.org/10.5194/amt-14-665-2021
https://doi.org/10.5194/amt-14-665-2021
https://doi.org/10.5281/zenodo.4447228
https://doi.org/10.5194/acp-21-4637-2021
https://doi.org/10.5194/acp-21-4637-2021
https://doi.org/10.5194/acp-22-395-2022
https://doi.org/10.5194/acp-22-395-2022
https://doi.org/10.1073/pnas.2217900120
https://gmao.gsfc.nasa.gov/pubs/docs/Lucchesi1202.pdf
https://gmao.gsfc.nasa.gov/pubs/docs/Lucchesi1202.pdf
https://doi.org/10.1029/2021AV000408
https://doi.org/10.1021/acs.est.6b02878
https://doi.org/10.5194/acp-19-7859-2019
https://doi.org/10.5194/acp-19-7859-2019
https://doi.org/10.5194/acp-21-4339-2021
https://doi.org/10.5194/acp-22-5961-2022
https://doi.org/10.1073/pnas.1314392110
https://doi.org/10.1002/2016GB005419
https://doi.org/10.1021/acs.est.2c05373


H. Nesser et al.: High-resolution methane emissions inferred from 2019 TROPOMI satellite data 5089

NAS: Improving Characterization of Anthropogenic Methane
Emissions in the United States, The National Academies Press,
Washington, D.C., https://doi.org/10.17226/24987, 2018.

Nesser, H.: hannahnesser/TROPOMI_inversion:
ACP_10.5194_2024, Version v1.0, Zenodo [data set/code],
https://doi.org/10.5281/zenodo.10946769, 2024.

Nesser, H., Jacob, D. J., Maasakkers, J. D., Scarpelli, T. R., Sul-
prizio, M. P., Zhang, Y., and Rycroft, C. H.: Reduced-cost
construction of Jacobian matrices for high-resolution inver-
sions of satellite observations of atmospheric composition, At-
mos. Meas. Tech., 14, 5521–5534, https://doi.org/10.5194/amt-
14-5521-2021, 2021.

Pennsylvania DEP: 2022 Pennsylvania Greenhouse Gas Inventory
Report, Pennsylvania Department of Environmental Protection,
https://files.dep.state.pa.us/Energy/Office%20of%20Energy%
20and%20Technology/OETDPortalFiles/ClimateChange/
PennsylvaniaGreenhouseGasInventory2022.pdf (last access:
9 April 2024), 2022.

Pitt, J. R., Lopez-Coto, I., Hajny, K. D., Tomlin, J., Kaeser, R.,
Jayarathne, T., Stirm, B. H., Floerchinger, C. R., Loughner,
C. P., Gately, C. K., Hutyra, L. R., Gurney, K. R., Roest,
G. S., Liang, J., Gourdji, S., Karion, A., Whetstone, J. R.,
and Shepson, P. B.: New York City greenhouse gas emis-
sions estimated with inverse modeling of aircraft measure-
ments, Elementa: Science of the Anthropocene, 10, 00082,
https://doi.org/10.1525/elementa.2021.00082, 2022.

Plant, G., Kort, E. A., Floerchinger, C., Gvakharia, A., Vimont, I.,
and Sweeney, C.: Large Fugitive Methane Emissions From Ur-
ban Centers Along the U.S. East Coast, Geophys. Res. Lett., 46,
8500–8507, https://doi.org/10.1029/2019GL082635, 2019.

Plant, G., Kort, E. A., Murray, L. T., Maasakkers, J. D.,
and Aben, I.: Evaluating urban methane emissions from
space using TROPOMI methane and carbon monox-
ide observations, Remote Sens. Environ., 268, 112756,
https://doi.org/10.1016/j.rse.2021.112756, 2022.

Qu, Z., Jacob, D. J., Shen, L., Lu, X., Zhang, Y., Scarpelli, T.
R., Nesser, H., Sulprizio, M. P., Maasakkers, J. D., Bloom,
A. A., Worden, J. R., Parker, R. J., and Delgado, A. L.:
Global distribution of methane emissions: a comparative in-
verse analysis of observations from the TROPOMI and GOSAT
satellite instruments, Atmos. Chem. Phys., 21, 14159–14175,
https://doi.org/10.5194/acp-21-14159-2021, 2021.

Rodgers, C. D.: Inverse Methods for Atmospheric Sounding: The-
ory and Practice, World Scientific Publishing Co. Pte. Ltd.,
ISBN: 981-02-2740-X, 2000.

Russell, J.: South Side Landfill planning $25 million
methane-conversion project, Indianapolis Business Jour-
nal, https://www.ibj.com/articles/72976-south-side-landfill-
planning-25-million-methane-conversion-project (last access:
9 April 2024), 19 March 2019.

San Diego Air Pollution Control District: San Diego Air Pollution
Control District Inspector’s Narrative, ACPD2019-NOV-001057,
Site Record ID ACPD1989-SITE-07515, Sector value M/04,
2019.

Sargent, M. R., Floerchinger, C., McKain, K., Budney, J., Got-
tlieb, E. W., Hutyra, L. R., Rudek, J., and Wofsy, S. C.:
Majority of US urban natural gas emissions unaccounted for
in inventories, P. Natl. Acad. Sci. USA, 118, e2105804118,
https://doi.org/10.1073/pnas.2105804118, 2021.

Scarpelli, T. R., Jacob, D. J., Octaviano Villasana, C. A.,
Ramírez Hernández, I. F., Cárdenas Moreno, P. R., Cortés
Alfaro, E. A., García García, M. Á., and Zavala-Araiza,
D.: A gridded inventory of anthropogenic methane emissions
from Mexico based on Mexico’s national inventory of green-
house gases and compounds, Environ. Res. Lett., 15, 105015,
https://doi.org/10.1088/1748-9326/abb42b, 2020.

Scarpelli, T. R., Jacob, D. J., Moran, M., Reuland, F.,
and Gordon, D.: A gridded inventory of Canada’s anthro-
pogenic methane emissions, Environ. Res. Lett., 17, 014007,
https://doi.org/10.1088/1748-9326/ac40b1, 2021.

Schneising, O., Buchwitz, M., Reuter, M., Vanselow, S., Bovens-
mann, H., and Burrows, J. P.: Remote sensing of methane leak-
age from natural gas and petroleum systems revisited, Atmos.
Chem. Phys., 20, 9169–9182, https://doi.org/10.5194/acp-20-
9169-2020, 2020.

Schuldt, K. N., Aalto, T., Andrews, A., Aoki, S., Arduini, J., Baier,
B., Bergamaschi, P., Biermann, T., Biraud, S. C., Boenisch, H.,
Chen, H., Colomb, A., Conil, S., Cristofanelli, P., Daube, B.,
Davis, K., De Mazière, M., Delmotte, M., Desai, A., DiGangi,
J. P., Dlugokencky, E., Elkins, J. W., Emmenegger, L., Fis-
cher, M. L., Gatti, L. V., Gehrlein, T., Gerbig, C., Gloor, E.,
Goto, D., Haszpra, L., Hatakka, J., Heliasz, M., Hermanssen,
O., Hintsa, E.,Holst, J., Jaffe, D., Karion, A., Kazan, V., Kero-
nen, P., Kominkova, K., Kort, E., Krummel, P., Kubistin, D.,
Langenfelds, R., Laurent, O., Laurila, T., Lauvaux, T., Lee, J.,
Lehner, I., Leuenberger, M., Lindauer, M., Loh, Z. M., Lopez,
M., Machida, T., Mammarella, I., Manca, G., Marek, M. V., Mar-
tin, M. Y., Matsueda, H., McKain, K., Miles, N., Miller, C. E.,
Miller, J. B., Moore, F., Morimoto, S., Myhre, C. L., Mölder,
M., Müller-Williams, J., Niwa, Y., O’Doherty, S., Obersteiner,
F., Pichon, J. M., Pittman, J., Plass-Duelmer, C., Ramonet, M.,
Richardson, S., Saito, K., Santoni, G., Sawa, Y., Scheeren, B.,
Schuck, T., Schumacher, M., Sha, M. K., Shepson, P., Sloop, C.
D., Smith, P., Steinbacher, M., Stephens, B., Sweeney, C., Torn,
M., Trisolino, P., Turnbull, J., Tørseth, K., Viner, B., Vitkova,
G., Wofsy, S., Worthy, D., and Zahn, A.: Multi-laboratory com-
pilation of atmospheric methane data for the period 1983-2020;
obspack_ch4_1_GLOBALVIEWplus_v3.0_2021-05-07, NOAA
Earth System Research Laboratory, Global Monitoring Labora-
tory [data set], https://doi.org/10.25925/20210401, 2021.

Seto, K. C., Güneralp, B., and Hutyra, L. R.: Global forecasts
of urban expansion to 2030 and direct impacts on biodiversity
and carbon pools, P. Natl. Acad. Sci. USA, 109, 16083–16088,
https://doi.org/10.1073/pnas.1211658109, 2012.

Shen, L., Gautam, R., Omara, M., Zavala-Araiza, D., Maasakkers,
J. D., Scarpelli, T. R., Lorente, A., Lyon, D., Sheng, J., Varon,
D. J., Nesser, H., Qu, Z., Lu, X., Sulprizio, M. P., Hamburg, S.
P., and Jacob, D. J.: Satellite quantification of oil and natural gas
methane emissions in the US and Canada including contributions
from individual basins, Atmos. Chem. Phys., 22, 11203–11215,
https://doi.org/10.5194/acp-22-11203-2022, 2022.

Smith, M.: Airborne methane emissions measurement survey:
Final summary report, California Air Resources Board,
https://ww2.arb.ca.gov/sites/default/files/2021-05/CARB%
20Final%20Final%20Summary%20Report_2021_ADA.pdf
(last access: 5 May 2023), 2021.

Song, C., Zhu, J.-J., Willis, J. L., Moore, D. P., Zondlo, M. A.,
and Ren, Z. J.: Methane Emissions from Municipal Wastewater

https://doi.org/10.5194/acp-24-5069-2024 Atmos. Chem. Phys., 24, 5069–5091, 2024

https://doi.org/10.17226/24987
https://doi.org/10.5281/zenodo.10946769
https://doi.org/10.5194/amt-14-5521-2021
https://doi.org/10.5194/amt-14-5521-2021
https://files.dep.state.pa.us/Energy/Office%20of%20Energy%20and%20Technology/OETDPortalFiles/ClimateChange/PennsylvaniaGreenhouseGasInventory2022.pdf
https://files.dep.state.pa.us/Energy/Office%20of%20Energy%20and%20Technology/OETDPortalFiles/ClimateChange/PennsylvaniaGreenhouseGasInventory2022.pdf
https://files.dep.state.pa.us/Energy/Office%20of%20Energy%20and%20Technology/OETDPortalFiles/ClimateChange/PennsylvaniaGreenhouseGasInventory2022.pdf
https://doi.org/10.1525/elementa.2021.00082
https://doi.org/10.1029/2019GL082635
https://doi.org/10.1016/j.rse.2021.112756
https://doi.org/10.5194/acp-21-14159-2021
https://www.ibj.com/articles/72976-south-side-landfill-planning-25-million-methane-conversion-project
https://www.ibj.com/articles/72976-south-side-landfill-planning-25-million-methane-conversion-project
https://doi.org/10.1073/pnas.2105804118
https://doi.org/10.1088/1748-9326/abb42b
https://doi.org/10.1088/1748-9326/ac40b1
https://doi.org/10.5194/acp-20-9169-2020
https://doi.org/10.5194/acp-20-9169-2020
https://doi.org/10.25925/20210401
https://doi.org/10.1073/pnas.1211658109
https://doi.org/10.5194/acp-22-11203-2022
https://ww2.arb.ca.gov/sites/default/files/2021-05/CARB%20Final%20Final%20Summary%20Report_2021_ADA.pdf
https://ww2.arb.ca.gov/sites/default/files/2021-05/CARB%20Final%20Final%20Summary%20Report_2021_ADA.pdf


5090 H. Nesser et al.: High-resolution methane emissions inferred from 2019 TROPOMI satellite data

Collection and Treatment Systems, Environ. Sci. Technol., 57,
2248–2261, https://doi.org/10.1021/acs.est.2c04388, 2023.

Spokas, K., Bogner, J., Corcoran, M., and Walker, S.: From Califor-
nia dreaming to California data: Challenging historic models for
landfill CH4 emissions, Elementa: Science of the Anthropocene,
3, 000051, https://doi.org/10.12952/journal.elementa.000051,
2015.

Streets, D. G., Canty, T., Carmichael, G. R., De Foy, B., Dickerson,
R. R., Duncan, B. N., Edwards, D. P., Haynes, J. A., Henze, D.
K., Houyoux, M. R., Jacob, D. J., Krotkov, N. A., Lamsal, L. N.,
Liu, Y., Lu, Z., Martin, R. V., Pfister, G. G., Pinder, R. W., Salaw-
itch, R. J., and Wecht, K. J.: Emissions estimation from satel-
lite retrievals: A review of current capability, Atmos. Environ.,
77, 1011–1042, https://doi.org/10.1016/j.atmosenv.2013.05.051,
2013.

Taylor, T.: Colorado 2021 Greenhouse Gas Inventory Update: With
Historical Emissions from 2005 to 2019 and Projections to
2050, Colorado Air Pollution Control Division, Department of
Public Health & Environment, https://drive.google.com/file/d/
1SFtUongwCdZvZEEKC_VEorHky267x_np/view (last access:
9 April 2024), 2021.

The White House: U.S. Methane Emissions Reduction Action Plan:
Critical and commonsense steps to cut pollution and consumer
costs, while boosting good-paying jobs and American compet-
itiveness, The White House Office of Domestic Climate Pol-
icy, https://www.whitehouse.gov/wp-content/uploads/2021/11/
US-Methane-Emissions-Reduction-Action-Plan-1.pdf (last ac-
cess: 9 April 2024), 2021.

Turner, A. J., Jacob, D. J., Wecht, K. J., Maasakkers, J. D., Lund-
gren, E., Andrews, A. E., Biraud, S. C., Boesch, H., Bowman, K.
W., Deutscher, N. M., Dubey, M. K., Griffith, D. W. T., Hase,
F., Kuze, A., Notholt, J., Ohyama, H., Parker, R., Payne, V.
H., Sussmann, R., Sweeney, C., Velazco, V. A., Warneke, T.,
Wennberg, P. O., and Wunch, D.: Estimating global and North
American methane emissions with high spatial resolution us-
ing GOSAT satellite data, Atmos. Chem. Phys., 15, 7049–7069,
https://doi.org/10.5194/acp-15-7049-2015, 2015.

U.S. Census Bureau: 2010 Census Urban and Rural Classi-
fication and Urban Area Criteria, https://www.census.gov/
programs-surveys/geography/guidance/geo-areas/urban-rural/
2010-urban-rural.html (last access: 9 April 2024), 2010.

U.S. Census Bureau: TIGER/Line Shapefile, 2017, 2010
nation, U.S., 2010 Census Urban Area National, U.S.
Census Bureau [data set], https://catalog.data.gov/dataset/
tiger-line-shapefile-2017-2010-nation-u-s-2010-census-urban-
area-national (last access: 1 August 2019), 2017.

USDA: 2017 Census of Agriculture, U.S. Department of Agri-
culture, report no. AC-17-A-51, Vol. 1, Geographic Area Se-
ries, Part 51, https://www.nass.usda.gov/Publications/AgCensus/
2017/Full_Report/Volume_1,_Chapter_1_US/usv1.pdf (last ac-
cess: 9 April 2024), 2019.

Varon, D. J., Jacob, D. J., Hmiel, B., Gautam, R., Lyon, D. R.,
Omara, M., Sulprizio, M., Shen, L., Pendergrass, D., Nesser,
H., Qu, Z., Barkley, Z. R., Miles, N. L., Richardson, S. J.,
Davis, K. J., Pandey, S., Lu, X., Lorente, A., Borsdorff, T.,
Maasakkers, J. D., and Aben, I.: Continuous weekly monitor-
ing of methane emissions from the Permian Basin by inversion
of TROPOMI satellite observations, Atmos. Chem. Phys., 23,
7503–7520, https://doi.org/10.5194/acp-23-7503-2023, 2023.

Veefkind, J. P., Aben, I., McMullan, K., Förster, H., de Vries,
J., Otter, G., Claas, J., Eskes, H. J., de Haan, J. F., Kleipool,
Q., van Weele, M., Hasekamp, O., Hoogeveen, R., Landgraf,
J., Snel, R., Tol, P., Ingmann, P., Voors, R., Kruizinga, B.,
Vink, R., Visser, H., and Levelt, P. F.: TROPOMI on the ESA
Sentinel-5 Precursor: A GMES mission for global observations
of the atmospheric composition for climate, air quality and
ozone layer applications, Remote Sens. Environ., 120, 70–83,
https://doi.org/10.1016/j.rse.2011.09.027, 2012.

Veefkind, J. P., Serrano-Calvo, R., de Gouw, J., Dix, B., Schneising,
O., Buchwitz, M., Barré, J., van der A, R. J., Liu, M., and Levelt,
P. F.: Widespread frequent methane emissions from the oil and
gas industry in the Permian basin, J. Geophys. Res.-Atmos., 128,
e2022JD037479, https://doi.org/10.1029/2022JD037479, 2023.

Vera, A.: State finds violations at landfill, The Progress Index,
https://www.progress-index.com/story/news/politics/county/
2016/01/03/state-finds-violations-at-landfill/32800977007/ (last
access: 9 April 2024), 3 January 2016.

Wecht, K. J., Jacob, D. J., Frankenberg, C., Jiang, Z., and
Blake, D. R.: Mapping of North American methane emis-
sions with high spatial resolution by inversion of SCIA-
MACHY satellite data, J. Geophys. Res.-Atmos., 119, 7741–
7756, https://doi.org/10.1002/2014JD021551, 2014a.

Wecht, K. J., Jacob, D. J., Sulprizio, M. P., Santoni, G. W., Wofsy,
S. C., Parker, R., Bösch, H., and Worden, J.: Spatially resolv-
ing methane emissions in California: constraints from the Cal-
Nex aircraft campaign and from present (GOSAT, TES) and fu-
ture (TROPOMI, geostationary) satellite observations, Atmos.
Chem. Phys., 14, 8173–8184, https://doi.org/10.5194/acp-14-
8173-2014, 2014b.

Wise, J.: Government Oversight: A review of Dothan’s attempts
to expand its landfill, Dothan Eagle, https://dothaneagle.com/
article_c888c464-20fc-11e9-83f1-371dc49ae65f.html (last ac-
cess: 9 April 2024), 27 January 2019.

Wong, K. W., Fu, D., Pongetti, T. J., Newman, S., Kort, E. A.,
Duren, R., Hsu, Y.-K., Miller, C. E., Yung, Y. L., and Sander,
S. P.: Mapping CH4 :CO2 ratios in Los Angeles with CLARS-
FTS from Mount Wilson, California, Atmos. Chem. Phys., 15,
241–252, https://doi.org/10.5194/acp-15-241-2015, 2015.

Worden, J. R., Cusworth, D. H., Qu, Z., Yin, Y., Zhang, Y., Bloom,
A. A., Ma, S., Byrne, B. K., Scarpelli, T., Maasakkers, J. D.,
Crisp, D., Duren, R., and Jacob, D. J.: The 2019 methane bud-
get and uncertainties at 1° resolution and each country through
Bayesian integration Of GOSAT total column methane data and a
priori inventory estimates, Atmos. Chem. Phys., 22, 6811–6841,
https://doi.org/10.5194/acp-22-6811-2022, 2022.

Wunch, D., Wennberg, P. O., Toon, G. C., Connor, B. J., Fisher,
B., Osterman, G. B., Frankenberg, C., Mandrake, L., O’Dell,
C., Ahonen, P., Biraud, S. C., Castano, R., Cressie, N., Crisp,
D., Deutscher, N. M., Eldering, A., Fisher, M. L., Griffith, D.
W. T., Gunson, M., Heikkinen, P., Keppel-Aleks, G., Kyrö,
E., Lindenmaier, R., Macatangay, R., Mendonca, J., Messer-
schmidt, J., Miller, C. E., Morino, I., Notholt, J., Oyafuso, F.
A., Rettinger, M., Robinson, J., Roehl, C. M., Salawitch, R.
J., Sherlock, V., Strong, K., Sussmann, R., Tanaka, T., Thomp-
son, D. R., Uchino, O., Warneke, T., and Wofsy, S. C.: A
method for evaluating bias in global measurements of CO2 to-
tal columns from space, Atmos. Chem. Phys., 11, 12317–12337,
https://doi.org/10.5194/acp-11-12317-2011, 2011.

Atmos. Chem. Phys., 24, 5069–5091, 2024 https://doi.org/10.5194/acp-24-5069-2024

https://doi.org/10.1021/acs.est.2c04388
https://doi.org/10.12952/journal.elementa.000051
https://doi.org/10.1016/j.atmosenv.2013.05.051
https://drive.google.com/file/d/1SFtUongwCdZvZEEKC_VEorHky267x_np/view
https://drive.google.com/file/d/1SFtUongwCdZvZEEKC_VEorHky267x_np/view
https://www.whitehouse.gov/wp-content/uploads/2021/11/US-Methane-Emissions-Reduction-Action-Plan-1.pdf
https://www.whitehouse.gov/wp-content/uploads/2021/11/US-Methane-Emissions-Reduction-Action-Plan-1.pdf
https://doi.org/10.5194/acp-15-7049-2015
https://www.census.gov/programs-surveys/geography/guidance/geo-areas/urban-rural/2010-urban-rural.html
https://www.census.gov/programs-surveys/geography/guidance/geo-areas/urban-rural/2010-urban-rural.html
https://www.census.gov/programs-surveys/geography/guidance/geo-areas/urban-rural/2010-urban-rural.html
https://catalog.data.gov/dataset/tiger-line-shapefile-2017-2010-nation-u-s-2010-census-urban-area-national
https://catalog.data.gov/dataset/tiger-line-shapefile-2017-2010-nation-u-s-2010-census-urban-area-national
https://catalog.data.gov/dataset/tiger-line-shapefile-2017-2010-nation-u-s-2010-census-urban-area-national
https://www.nass.usda.gov/Publications/AgCensus/2017/Full_Report/Volume_1,_Chapter_1_US/usv1.pdf
https://www.nass.usda.gov/Publications/AgCensus/2017/Full_Report/Volume_1,_Chapter_1_US/usv1.pdf
https://doi.org/10.5194/acp-23-7503-2023
https://doi.org/10.1016/j.rse.2011.09.027
https://doi.org/10.1029/2022JD037479
https://www.progress-index.com/story/news/politics/county/2016/01/03/state-finds-violations-at-landfill/32800977007/
https://www.progress-index.com/story/news/politics/county/2016/01/03/state-finds-violations-at-landfill/32800977007/
https://doi.org/10.1002/2014JD021551
https://doi.org/10.5194/acp-14-8173-2014
https://doi.org/10.5194/acp-14-8173-2014
https://dothaneagle.com/article_c888c464-20fc-11e9-83f1-371dc49ae65f.html
https://dothaneagle.com/article_c888c464-20fc-11e9-83f1-371dc49ae65f.html
https://doi.org/10.5194/acp-15-241-2015
https://doi.org/10.5194/acp-22-6811-2022
https://doi.org/10.5194/acp-11-12317-2011


H. Nesser et al.: High-resolution methane emissions inferred from 2019 TROPOMI satellite data 5091

Wunch, D., Toon, G. C., Hedelius, J. K., Vizenor, N., Roehl, C.
M., Saad, K. M., Blavier, J.-F. L., Blake, D. R., and Wennberg,
P. O.: Quantifying the loss of processed natural gas within Cal-
ifornia’s South Coast Air Basin using long-term measurements
of ethane and methane, Atmos. Chem. Phys., 16, 14091–14105,
https://doi.org/10.5194/acp-16-14091-201, 2016.

Yadav, V., Duren, R., Mueller, K., Verhulst, K. R., Nehrkorn,
T., Kim, J., Weiss, R. F., Keeling, R., Sander, S., Fis-
cher, M. L., Newman, S., Falk, M., Kuwayama, T., Hop-
kins, F., Rafiq, T., Whetstone, J., and Miller, C.: Spatio-
temporally Resolved Methane Fluxes From the Los An-
geles Megacity, J. Geophys. Res.-Atmos., 124, 5131–5148,
https://doi.org/10.1029/2018JD030062, 2019.

Yadav, V., Verhulst, K., Duren, R., Thorpe, A., Kim, J., Keeling, R.,
Weiss, R., Cusworth, D., Mountain, M., Miller, C., and Whet-
stone, J.: A declining trend of methane emissions in the Los An-
geles basin from 2015 to 2020, Environ. Res. Lett., 18, 034004,
https://doi.org/10.1088/1748-9326/acb6a9, 2023.

Yu, X., Millet, D. B., Wells, K. C., Henze, D. K., Cao, H., Griffis,
T. J., Kort, E. A., Plant, G., Deventer, M. J., Kolka, R. K., Ro-
man, D. T., Davis, K. J., Desai, A. R., Baier, B. C., McKain,
K., Czarnetzki, A. C., and Bloom, A. A.: Aircraft-based inver-
sions quantify the importance of wetlands and livestock for Up-
per Midwest methane emissions, Atmos. Chem. Phys., 21, 951–
971, https://doi.org/10.5194/acp-21-951-2021, 2021.

Zhang, Y., Jacob, D. J., Maasakkers, J. D., Sulprizio, M. P., Sheng,
J.-X., Gautam, R., and Worden, J.: Monitoring global tropo-
spheric OH concentrations using satellite observations of at-
mospheric methane, Atmos. Chem. Phys., 18, 15959–15973,
https://doi.org/10.5194/acp-18-15959-2018, 2018.

Zhang, Y., Gautam, R., Pandey, S., Omara, M., Maasakkers, J. D.,
Sadavarte, P., Lyon, D., Nesser, H., Sulprizio, M. P., Varon, D.
J., Zhang, R., Houweling, S., Zavala-Araiza, D., Alvarez, R. A.,
Lorente, A., Hamburg, S. P., Aben, I., and Jacob, D. J.: Quan-
tifying methane emissions from the largest oil-producing basin
in the United States from space, Science Advances, 6, eaaz5120,
https://doi.org/10.1126/sciadv.aaz5120, 2020.

https://doi.org/10.5194/acp-24-5069-2024 Atmos. Chem. Phys., 24, 5069–5091, 2024

https://doi.org/10.5194/acp-16-14091-201
https://doi.org/10.1029/2018JD030062
https://doi.org/10.1088/1748-9326/acb6a9
https://doi.org/10.5194/acp-21-951-2021
https://doi.org/10.5194/acp-18-15959-2018
https://doi.org/10.1126/sciadv.aaz5120

	Abstract
	Introduction
	Data and methods
	Reduced-rank analytical inversion
	Prior estimates and errors
	Forward model
	TROPOMI observations
	Observing system errors
	Jacobian matrix
	Inversion ensemble
	Source attribution

	Results and discussion
	CONUS sectoral emissions
	Landfill emissions
	State emissions
	Urban area emissions

	Conclusions
	Code availability
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

