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Abstract. The properties of aerosols are highly uncertain owing to the complex changes in their composition in
different regions. The radiative properties of different aerosol types differ considerably and are vital for studying
aerosol regional and/or global climate effects. Traditional aerosol-type identification algorithms, generally based
on cluster or empirical analysis methods, are often inaccurate and time-consuming. In response, our study aimed
to develop a new aerosol-type classification model using an innovative hybrid algorithm to improve the precision
and efficiency of aerosol-type identification. This novel algorithm incorporates an optical database, constructed
using the Mie scattering model, and employs a random forest algorithm to classify different aerosol types based
on the optical data from the database. The complex refractive index was used as a baseline to assess the perfor-
mance of our hybrid algorithm against the traditional Gaussian kernel density clustering method for aerosol-type
identification. The hybrid algorithm demonstrated impressive consistency rates of 90 %, 85 %, 84 %, 84 %, and
100 % for dust, mixed-coarse (mixed, course-mode aerosol), mixed-fine (mixed, fine-mode aerosol), urban/in-
dustrial, and biomass burning aerosols, respectively. Moreover, it achieved remarkable precision, with evaluation
metric indexes for micro-precision, micro-recall, micro-F1-score, and accuracy of 95 %, 89 %, 91 %, and 89 %,
respectively. Lastly, a global map of aerosol types was generated using the new hybrid algorithm to characterize
aerosol types across the five continents. This study, utilizing a novel approach for the classification of aerosol,
will help improve the accuracy of aerosol inversion and determine the sources of aerosol pollution.

1 Introduction

Atmospheric aerosols are tiny solid or liquid particles sus-
pended in the atmosphere. Aerosols indirectly affect the en-
ergy budget and water cycle of the Earth’s gas system by ab-
sorbing and scattering solar radiation or by changing the op-
tical properties and life cycle of clouds via their role as con-
densation nuclei of cloud droplets (Redemann et al., 2000;
Ramanathan et al., 2001). Additionally, desert dust, biomass
smog, and the anthropogenic emission of air pollutants can

affect visibility, air quality, and human health (Tong et al.,
2017; Siomos et al., 2020). Evaluating the impact of aerosols
on radiative transfer is complex, primarily because of the
uncertainty in the radiative forcing caused by the high spa-
tiotemporal dynamic variation in aerosol optical and physical
characteristics in different regions (Kaskaoutis et al., 2011;
Che et al., 2018; Ghasemifar, 2023). The aerosol type em-
bodies the long-term average physicochemical properties of
aerosols in a certain area (Kiehl and Briegleb, 1993; Lu et al.,
2023). Therefore, accurate identification of aerosol types can
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drive the study of the climatic effects of aerosols, the track-
ing and control of environmental pollution sources, and the
precision of radiation transmission models.

Aerosol types are defined based on the radiative proper-
ties of different aerosol types, considering the large varia-
tion in their optical, physical, and chemical properties. Cur-
rently, aerosol types are classified in two ways using tradi-
tional clustering algorithms (Kumar et al., 2018). First, based
on different sources and properties at different observation
points worldwide, aerosols are classified as follows: dust
aerosols from deserts, biomass combustion aerosols from
forests or grasslands, and urban/industrial (U/I) aerosols
from fuel combustion in densely populated urban areas
(Dubovik et al., 2002; Pawar et al., 2015; Yousefi et al.,
2020). Second, based on the size of the radiation absorp-
tion rate, aerosols are separated into four categories: carbona-
ceous (fine absorption mode), soil dust (coarse absorption
mode), sulfates (non-absorbing, fine-grained mode), and sea
salt aerosols (non-absorbing, coarse-grained mode) (Levy et
al., 2007). The first classification, widely used for aerosol
retrieval and common in research, categorizes aerosol types
based on the optical properties observed at ground stations.
This forms a two-dimensional identification space for clus-
tering. The second approach specifically subcategorizes an-
thropogenic aerosols. Many combinations of optical prop-
erties and parameters are available, such as EAE440–870 nm
(extinction Ångström exponent) vs. SSA440 nm (single-
scattering albedo), AAE440–870 nm (absorption Ångström ex-
ponent) vs. EAE440–870 nm, AAE440–870 nm vs. FMF550 nm
(fine-mode fraction), and SSA440 nm vs. EAE440–870 nm (Lee
et al., 2010; Shin et al., 2019; Choi et al., 2021a). Various
studies have highlighted the importance of selecting the ap-
propriate aerosol properties for accurate aerosol-type identi-
fication (Giles et al., 2012; Che et al., 2018).

Among the aerosol-type classification methodologies de-
veloped, those using threshold and empirical analyses have
the greatest potential for large-area and fixed-period appli-
cations (Eck et al., 1999; Omar et al., 2005; Yang et al.,
2009). Traditionally, the aerosol-type classification algorithm
mainly distinguishes different aerosol types based on their
optical properties and determines the threshold of their opti-
cal properties based on clustering. However, the composition
of aerosols changes rapidly with time and location, owing to
the combined influence of natural conditions and human ac-
tivities (e.g., tornadoes and various anthropogenic activities)
(Sheridan et al., 2001). Unfortunately, determining aerosol
types accurately and rapidly is a challenge when using tradi-
tional methods (Bahadur et al., 2012; Shin et al., 2019; Lin et
al., 2021). Nevertheless, with advancements in data science,
artificial intelligence techniques have aided the accurate and
rapid recognition of different aerosol types.

Artificial intelligence algorithms can receive multiple
aerosol characteristic parameters as input, thus preventing
the sole reliance of aerosol classification on a limited num-
ber of features (Li et al., 2022; Wang et al., 2023). For ex-

ample, Boselli et al. (2012) performed a k-means clustering
analysis of single-scattering albedo (SSA), aerosol optical
depth (AOD), electrical asymmetry effect (EAE), and asym-
metry parameter (g) datasets for the central Mediterranean
Sea for the classification of aerosol into four categories:
dusty, continental, oceanic, and mixed aerosols. Nicolae et
al. (2018) developed a neural network algorithm to estimate
the aerosol type of lidar data, and Hamill et al. (2016) intro-
duced the Mahalanobis distance for aerosol classification to
determine a specific aerosol type for each reference cluster.
Li et al. (2022) generated a spatial contiguous aerosol-type
map for China with an empirical aerosol-type retrieval al-
gorithm. Overall, limited information on the optical proper-
ties of aerosols can reasonably determine the type of aerosol
(Hamill et al., 2016). However, some challenges remain in
identifying aerosol types using machine learning. First, the
number of valid ground aerosol property data that can be
used for training is less due to cloud removal and quality
control. Second, the accuracy of machine learning depends
on the labeled aerosol-type dataset, and finding a suitable
classification method to classify the dataset is challenging.
Third, evaluating the accuracy of the final trained model is
also tedious (Zhang and Li, 2019; Siomos et al., 2020; Choi
et al., 2021a, b).

The traditional aerosol-type identification methods are
easily limited by time and space, and most of them only clas-
sify aerosol types using two optical property parameters, re-
stricting the complete characterization of aerosols. Consid-
ering these limitations, we aimed to (1) develop a new algo-
rithm that can accurately and quickly identify aerosol types
to overcome existing problems, such as low accuracy, insuf-
ficient data, and difficulty in setting labels, and (2) investi-
gate the characteristics of the regional spatial distribution of
global aerosol types obtained using the new machine learn-
ing algorithms, considering the large regional differences in
aerosol types. To achieve this, we propose a new aerosol-
type classification algorithm based on a Gaussian cluster and
random forest algorithm to generate an aerosol classification
map over several representative regions of the world.

2 Study area and data

Figure 1 illustrates the research area and the distribution
of the Aerosol Robotic Network (AERONET) sites, strate-
gically encompassing major global regions to validate the
universality of the research algorithm. The study utilized
47 marked aerosol sites across five continents, leveraging
them to train and validate the machine learning approach
based on a comprehensive literature review. The 47 sites rep-
resent different aerosol-type properties of different aerosol
source regions, including dust, mixed (mixed, coarse-mode
and mixed, fine-mode aerosols), U/I, and biomass burn-
ing (BB) aerosols (Table 1, Fig. 1). Marine aerosols were
not considered, as their low optical thickness values (gener-
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Figure 1. Study area and 47 AERONET sites selected by literature review.

Table 1. The 47 AERONET sites selected by literature review.

Aerosol type Sites for training Sites for testing

Dust Agoufou, Capo_Verde, Dakar, Mezaira, Banizoumbou,
Mussafa, Ouagadougou Solar_Village,

Blida

Mixed Anmyon, Beijing, Chen-Kung_Univ, Ilorin, Kanpur, Osaka, XiangHe,
Sede_Boker, Gosan_SUN, Pune, Taipei_CWB Pokhara

Urban/Industry Brookhaven, Billerica, Belsk, GSFC, Ispra, UMBC, Lille, Athens_Noa, Shirahama,
Mexico_City, Moldova, MD_Science_Center, Wallops Leipzig

Biomass burning Abracos_Hill, Alta_Floresta, Cuiaba, Concepcion Bonanza_Creak,
Los_Fieros, Mongu, Senanga, Skukuza, Zambezi Etosha_Pan, Lake_Argyle

ally < 0.4) can result in a less valid data scale that would not
meet the study requirements. Here, the aerosol source region
refers to the area affected by one dominant emission source,
where the aerosol types are fixed and not easily confused
(Giles et al., 2012; Hamill et al., 2016). Table 2 presents
the optical properties and microphysical characteristic pa-
rameters of aerosols at the four AERONET bands (440, 675,
870, and 1020 nm). These parameters were used to construct
a database of SSA, AOD, and asymmetry parameters. Fur-
ther, typical sites dominated by different aerosol types world-
wide were selected for compositional analysis using the new
model. The selected sites are distributed across different re-
gions of the world and represent a specific dominant aerosol
type and aerosol source region.

For dust aerosols, five AERONET sites, namely Bani-
zoumbou, Capo_Verde, Dakar, and Ouagadougou in Africa
and Solar_Village in West Asia, influenced by the Sahara
Desert, were considered. The Dakar and Capo_Verde sites
are located at the tip of the Capo Verde Peninsula – the west-
ernmost part of Africa, bordering the Atlantic Ocean. Despite
being oceanic, these two sites are dominated by dust aerosols
that are influenced by aerosol plumes from the Sahara Desert.
Meanwhile, the Banizoumbou and Ouagadougou sites are
centrally located in Africa. Here, northeasterly winds in win-
ter and northwesterly winds in summer transport Saharan
Desert dust aerosols. For mixed aerosols, the Ilorin, Kan-
pur, Sede_Boker, and XiangHe AERONET sites were se-
lected. For U/I aerosols, the GSFC, Ispra, Mexico_City, and
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Table 2. The optical and microphysical properties for aerosol-type identification.

Parameters Variables (band waves)

Optical Ångström exponent (AE) EAE (440–870)1

properties Aerosol optical depth (AOD) AOD (440, 675, 870, 1020)1

Single-scattering albedo (SSA) SSA (440, 675, 870, 1020)1

Asymmetry parameter g (440, 675, 870, 1020)1

Imaginary part of the complex refractive index REFI (440, 675, 870, 1020)1

Real part of the complex refractive index REFR (440, 675, 870, 1020)1

Microphysical Effective radius EffRad-F2, EffRad-C2

properties Standard deviation of effective radius SD-F2, StaDev-C2

Size distribution Vol-Con (0.05–15 µm)

1 The parenthetical information refers to the wavelength (in nm). 2 Different modes are presented. The abbreviations used in the
table are as follows: EAE is the extinction Ångström exponent, REFI is the imaginary part of the complex refractive index, REFR
is the real part of the complex refractive index, F refers to fine mode, C refers to coarse mode; EffRad is effective radius, SD is
standard deviation, and Vol-Con is volume concentration.

Moldova AERONET sites were selected. Four AERONET
sites, namely, Alta_Floresta, Abracos_Hill, Lake_Argyle,
and Mongu, were selected as BB-aerosol-dominated sites.

3 Methods

A new hybrid aerosol-type classification approach that pro-
vides insight into spatiotemporal variations in aerosol pol-
lution and climate impacts on a global scale is proposed in
this study. Using this approach, an aerosol optical properties
database using a Mie scattering model was built to rapidly
calculate unique aerosol-type features. Additionally, the ap-
proach introduced, for the first time, the median value of the
complex refractive index (CRI) as the criterion for identi-
fying the aerosol type. The CRI, a key microphysical char-
acteristic of aerosols, plays a significant role in determining
their intrinsic optical properties, such as their ability to scat-
ter and absorb light (Raut and Chazette, 2008). The CRI is
also vital for determining aerosols’ chemical and physical
compositions (Dubovik and King, 2000), and the CRI value
is known for pure aerosol components (Nandan et al., 2021).
Unlike the mean, the median CRI value is employed in this
research, as it represents the central tendency of data, which
is especially beneficial for skewed distributions or when out-
liers are present. This is particularly advantageous when an
average value of a specific aerosol type might be influenced
by the presence of other aerosol types. Moreover, we selected
the aerosol classification based on the source (as described
in Sect. 1), according to the parameters applied in this study
and the requirements for AOD retrieval. Figure 2 shows the
working flowchart of the new hybrid aerosol-type identifi-
cation approach, including three stages: preliminary aerosol
classification, aerosol optical database generation, and global
aerosol-type identification. The details of these three stages
are given in the following.

3.1 Aerosol-type preliminary classification (stage 1)

Stage 1 aimed to solve the problem of obtaining a feature
parameter dataset for the baseline aerosol type. In previ-
ous studies, the Gaussian kernel density clustering algorithm
showed great potential with respect to distinguishing the op-
tical properties of different aerosol types and determining
their corresponding thresholds rapidly (Kalapureddy et al.,
2009; Pathak et al., 2012). The high concentration value in
each cluster generally represents the dominant pattern of a
specific aerosol type, particularly the data within the win-
dow, taking the cluster centroid as the center and a specific
distance as the radius. Preliminary, aerosol-type datasets can
be generated by digging deep into the distribution informa-
tion of the effective radius, variance, and refractive index of
the data within the window. The spectral absorbability and
particle size of aerosols guide the identification of dust, car-
bonaceous, or hygroscopic aerosols; SSA indicates the ab-
sorption of aerosol particles; and EAE describes the aerosol
particle size (Giles et al., 2012). Consequently, in this study,
the SSA440 nm and EAE440–870 nm of 47 AERONET sites and
the Gaussian kernel density clustering method were used to
estimate the relative densities and determine the primary pat-
terns of the dominant aerosol types; here, the aerosol type
was classified as a dust aerosol. Equations (1) and (2) repre-
sent the respective kernel density and Gaussian kernel den-
sity clustering methods (Rosenblatt, 2011).

fX(v) =
1
L

L∑
i=1

kσ

(
x− xi

σ

)
, (1)

where fX(v) denotes the kernel density and kσ indicates
the kernel function. x1, x2 . . . xL are the sample points of
the independent identical distribution. Mathematically, ker-
nel functions are symmetric, normalized, and sample-centric
when used for density estimation; this is best described by
the Gaussian kernel equation:

Atmos. Chem. Phys., 24, 5025–5045, 2024 https://doi.org/10.5194/acp-24-5025-2024



X. Wei et al.: Global aerosol-type classification using a new hybrid algorithm 5029

Figure 2. Flow chart of the new hybrid algorithm approach for aerosol-type identification.

kσ =
1

√
2πσ

exp
(
−|x− xi |

2

2σ 2

)
, (2)

where σ is the kernel size used as a smoothing factor (Moraes
et al., 2021).

The mixed aerosols comprised fine-mode (mixed-fine)
and coarse-mode (mixed-course) aerosols, indicated by
EAE> 0.8 and EAE≤ 0.8, respectively. Figure 3 shows the
clustering distribution of EAE and SSA using the Gaussian
kernel density clustering method for different aerosol types
at the 47 AERONET sites. For the dust aerosol cluster, the
density core area EAE was 0.1–0.3 and SSA was 0.89–
0.94, implying that it contained many coarse aerosol par-
ticles with moderate absorptivity. Furthermore, the mixed
aerosols had two distinct centers: one for the coarse-mode
aerosols with a median EAE value of 0.4, indicating that
the cluster contained massive high-absorption aerosols, and
the other for fine-mode aerosols with a median EAE value

of 1.3. Low-absorption aerosols were dominant in the clus-
ter, similar to U/I aerosols. Additionally, the density core re-
gion EAE of U/I aerosol was 1.5–1.8 and SSA was 0.94–
0.97, implying the dominance of fine and low-absorption
aerosols. Conversely, BB aerosols had two indistinct cen-
ters. This is because, during biomass combustion, gas and
particulate matter emissions are limited by the combustion
conditions, which are divided into combustion and simmer-
ing. Combustion produces black smoke, whereas simmering
produces white smoke. Combustion, such as burning flames
(grass) with a high black carbon content, has a strong absorp-
tion capacity, resulting in a low SSA. Simmering, such as
burning wood (i.e., trees), tends to smolder, last longer, have
a weaker absorption capacity, and have a higher SSA value.
Therefore, despite possessing different absorption character-
istics, BB aerosols are defined as one aerosol type with an
unseparated center of combustion and simmering.
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Figure 3. The clustering distribution of EAE and SSA using the Gaussian kernel density clustering method for different aerosol types.

3.2 Aerosol optical database generation (stage 2)

In stage 2, the aerosol optical parameter database was
built using the aerosol size distribution parameters, CRI,
and Mie scattering model, featuring four major parame-
ters (normalized-AOD, EAE, SSA, and g) at four wave-
lengths (440, 675, 870, and 1020 nm, respectively). The
main reasons for constructing an aerosol optical parameter
database instead of using the AERONET data directly are
as follows: (1) many data are missed in AERONET, par-
ticularly those for sites dominated by biomass combustion,
which does not meet the requirements for machine learn-
ing methods nor traditional aerosol-type identification al-
gorithms; (2) calculating the optical properties of aerosols
based on a fixed refractive index can accurately determine
aerosol types. Therefore, once the aerosol spectral distribu-
tion parameters, such as effective radius, variance, and re-
fractive index, are determined in stage 1, the aerosol optical
parameter database can be constructed using the Mie scat-
tering model in stage 2, assuming that aerosols are spherical
particles. The Mie scattering model, known for its simplicity
and practicality, provides an analytic solution to Maxwell’s
equations for light scattering by ideal spherical particles. It
efficiently depicts the scattering and absorption properties of
aerosols in the atmosphere, serving as fundamental basis for
radiative transfer, lidar, and optical particle characterization
(Ma, 2007; Bian et al., 2017; Michael et al., 1994).

Table 3. Size distribution parameters of five aerosol types in coarse
and fine modes (unit: µm).

Aerosol type REFF-fine REFF-coarse SD-fine SD-coarse

Dust 0.05–0.42 1.3–2.65 0.5–0.8 0.4–0.7
Mixed-coarse 0.05–0.25 1.25–3.5 0.4–0.8 0.4–0.7
Mixed-fine 0.05–0.27 1.2–4.5 0.3–0.6 0.5–0.8
U/I 0.05–0.26 1.45–3.5 0.3–0.6 0.5–0.8
BB 0.05–0.17 1.35–4.5 0.3–0.5 0.5–0.8

Table 3 presents the aerosol size distribution parameters,
including the effective radius and standard deviation range
for the five aerosol types in the coarse and fine modes, which
were derived from the data window set by the Gaussian ker-
nel density clustering algorithm. These aerosol size distribu-
tion parameters and the median CRI value were utilized to
construct the optical database for the Mie scattering model.
Many studies have proven that it is a reliable model with the
advantages of a lower computing load and a high calculation
accuracy (Zhao et al., 2020; Fu et al., 2009; Quirantes et al.,
2019; Nandan et al., 2021).

The Mie scattering model has various size distribution
functions, including lognormal, power-law, and bimodal log-
normal distributions, which describe the aerosol type. Ac-
cording to the particle radii provided by AERONET, the
size distributions of different aerosol types can be divided
into coarse and fine modes. The bimodal lognormal function
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Figure 4. Volume distribution of five aerosol types.

(Eq. 3) is reportedly the most suitable size distribution func-
tion for modeling the aerosol particle size distribution (Re-
mer et al., 2009):

n(r)= constant× r−4

{
exp

(
−

(
lnr − lnrg1

)2
2ln2σg1

)

+γ exp

(
−

(
lnr − lnrg2

)2
2ln2σg2

)}
, (3)

where n(r) represents the particle count at various radii;
“constant” is obtained by fitting; rg1 and rg2 denote the radii
and σg1 and σg2 are the variances for the coarse and fine
aerosol modes, respectively; and γ , defined by volume distri-
bution, represents the ratio of the coarse to fine mode in the
bimodal normal distribution model, fitted using AERONET’s
volume distribution data, which averages standard aerosols
post-clustering at training sites.

Figure 4 presents the volume distributions of five aerosol
types, showing dust aerosols with a peak γ of 8.1 and radii
concentrated around 1.5–2.0 µm. Additionally, the mixed-
coarse aerosol with a radius in the range of 0.04–0.2 µm
and 4.9 as the maximum value of γ are shown. The mixed-
fine aerosol had two obvious peaks: one with a large radius,
namely the coarse mode, of 2.2–3 µm and 2.1 as the peak
point of γ and a second with a small radius of 0.1–0.22 µm
and 0.14 as the peak point of γ . Moreover, the volume distri-
butions of the U/I and BB aerosols were similar. Both had
a relatively low range of γ values at large radii and rela-
tively high values at small radii, with peak values of 0.81
and 0.7 for U/I and BB aerosols, respectively.

The CRI is an inherent optical property of aerosols.
Aerosols in the real atmosphere are usually mixed with dif-
ferent types of particles, which a single refractive index can-
not identify; however, the CRI represents the entire aerosol
model in the atmosphere (Redemann et al., 2000). Ideally,

the CRI and aerosol components can be mutually deter-
mined (Wu et al., 2021). The CRI can effectively character-
ize the main properties of the aerosols and accurately quan-
tify the difference between aerosol-type identification algo-
rithms. Table 4 depicts the standard CRI values for the five
aerosol types obtained by calculating the median value of
the CRI of the dominant aerosol type after Gaussian ker-
nel density clustering. These values were used as a base-
line for identifying the aerosol types in subsequent stud-
ies. As presented in Table 4, the minimum imaginary in-
dex part is represented by the dust aerosol with CRI val-
ues of 0.003396, 0.000731, 0.000639, and 0.000597 at 440,
675, 870, and 1020 nm, respectively, owing to the weakest
absorption of dust aerosols. Moreover, the imaginary index
part of the mixed-fine aerosols (0.01) was close to that of the
BB aerosols (0.02) because of their similar absorption prop-
erties.

Lastly, by fixing the CRI, changing the size distribution,
and using the Mie scattering model, we generated an aerosol
optical property database for five aerosols, including the data
for normalized-AOD, EAE, SSA, and g. In the aerosol op-
tical property database, normalized AOD is the value ob-
tained after eliminating the influence of the aerosol concen-
tration. The AOD was obtained from the extinction cross
section (Cext) calculated using the Mie scattering model in
Eqs. (3) and (4), where βext is the extinction coefficient,
n(r) is the aerosol spectral distribution, andN (z) is the varia-
tion in aerosol concentration with height. Notably, the effect
of the aerosol concentration needs to be removed from the
AOD when referring to aerosol optical properties. The AOD
was normalized by dividing the aerosol optical thickness at
the four wavelengths by the optical thickness at 440 nm. The
other parameters (EAE, SSA, and g) were calculated using
Eqs. (6)–(8).

βe/s =

γmax∫
γmin

Cext/scan(r)dr (4)

τe/s =

Ztop∫
0

βext/scaN (z)dz (5)

EAE440–870 nm =−
ln (τ440 nm)− ln (τ870 nm)

ln(440)− ln(870)
(6)

SSA=
τs

τe
(7)

g = 〈cos2〉 =
1
2

1∫
−1

p(cos2)cos2dcos2 (8)

Here, τ440 and τ870 are the extinction optical depths of the
aerosol at 440 and 870 nm, respectively; EAE440–870 nm is the
extinction Ångström index from the 440 to 870 nm band; and
2 denotes the scattering angle.
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Table 4. Real and imaginary index of the CRI for five aerosol types (bands: 440/675/870/1020 nm).

Aerosol type Imaginary index Real index

Dust 0.003396/0.000731/0.000639/0.000597 1.4584/1.4681/1.4513/1.4376
Mixed-coarse 0.005766/0.002921/0.002383/0.002043 1.4291/1.4787/1.4745/1.4695
Mixed-fine 0.01075/0.008444/0.009147/0.008955 1.5001/1.5044/1.5056/1.4977
U/I 0.004315/0.004331/0.004419/0.004432 1.4372/1.4280/1.4264/1.4214
BB 0.01828/0.017862/0.018125/0.017858 1.5051/1.5190/1.5228/1.5185

3.3 Global aerosol-type identification and validation
(stage 3)

In stage 3, the random forest model was introduced to
the aerosol-type identification algorithm. The random forest
model is an integrated model based on classification and re-
gression trees, in which multiple trees are aggregated using
majority voting and averaging for classification and regres-
sion (Breiman, 2001). The model has a high prediction ac-
curacy, excellent tolerance for abnormal values and noise,
and a hard overfit. In a comparison by Fernandez-Delgado
et al. (2014), the random forest algorithm ranked as the top
performer among 179 classification algorithms. In addition,
the evaluation matrix was brought into this study, and it fur-
ther quantitatively assesses the performance of the Gaussian
density clustering algorithm and the new hybrid algorithm.
The metric indexes include accuracy, recall, precision, and
F scores (Reddy et al., 2022). Here, the indexes are adjusted
to micro-precision, micro-recall, micro-F1-score, and accu-
racy to solve the multi-classification problem. Micro refers
to the weighted average of the five aerosol types rather than
the arithmetic mean; due to the large difference in sample
size among the five aerosol types, the arithmetic mean is
highly susceptible to the influence of very large or very small
aerosol-type sample sizes.

The input parameters for random forest model train-
ing, including SSA440 nm, SSA675 nm, SSA870 nm, SSA1020 nm,
g440 nm, g675 nm, g870 nm, g1020 nm, normalized AOD675 nm,
AOD870 nm, AOD1020 nm, and EAE440–870 nm, were selected
from the aerosol optical property database, and the expected
output values were the specific aerosol types. The random
forest model was optimized, and the parameters were deter-
mined using the grid-searching method. The parameters, in-
cluding n_estimators (classifier), max_depth, max_features
(maximum feature value), and min_samples_leaf (minimum
number of samples for nodes), were set as 160, 10, 12, and
12, respectively. Based on the trained and optimized model,
the aerosol type of any AERONET site in different regions
of the world can then be identified quickly. Generating an
aerosol-type distribution map on a global scale is vital for re-
gional and global climate studies as well as ground remote
sensing.

Table 5. Matrix evaluation between the new hybrid classification
algorithm and the Gaussian kernel density clustering algorithm.

Micro- Micro- Micro- Accuracy
precision recall F1-score

New hybrid algorithm 0.95 0.89 0.91 0.89

4 Results

4.1 Algorithm comparison

To demonstrate the effectiveness of the new hybrid algo-
rithm, its performance was compared with that of the Gaus-
sian kernel density clustering algorithm. Figure 5 shows
the confusion matrix between the new hybrid and Gaussian
kernel density clustering algorithms with respect to iden-
tifying aerosol types. The results of the new hybrid algo-
rithm showed 90 % consistency with those from the Gaus-
sian kernel density clustering algorithm in delineating dusty
aerosols, indicating its efficiency in identifying dust. For
mixed-coarse aerosols, the consistency reached 85 %, with
14 % identified as mixed-fine aerosols, 1 % identified as
dust by the new hybrid algorithm, and 15 % identified as
mixed-coarse aerosols by the Gaussian kernel density clus-
tering algorithm. Similarly, for mixed-fine aerosols, both al-
gorithms showed 84 % consistency, with 14 % identified as
a mixed-coarse aerosol by the new hybrid algorithm and as
a mixed-fine aerosol by the Gaussian kernel density cluster
algorithm. Furthermore, both algorithms identified 84 % of
U/I aerosols correctly, with the remaining 16 % identified as
mixed aerosols (fine and coarse). Lastly, the classification of
BB aerosols using these two methods was the same. Over-
all, the Gaussian kernel density clustering and new hybrid
algorithms were consistent for dust, mixed-coarse, U/I, and
BB aerosol identification.

Table 5 shows the metric index value of the random forest
algorithm in the new hybrid algorithm. The micro-precision,
micro-recall, micro-F1-score, and accuracy are 0.95, 0.89,
0.91, and 0.89, respectively. These metrics are derived from
the core values of the window, as determined by the Gaus-
sian density clustering algorithm. Consequently, the strong
performance of these indicators further confirms the efficacy
and reliability of the newly developed hybrid algorithm.
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Figure 5. A confusion matrix between Gaussian kernel density
clustering and the new hybrid algorithm.

As described in Sect. 3, a specific aerosol type theoreti-
cally has a fixed CRI owing to its constant composition. The
CRI characterizes the mixture composition of aerosol parti-
cles and is a key parameter controlling the inherent scatter-
ing and absorption characteristics of aerosol particles. To fur-
ther analyze the accuracy of the new algorithm, the aerosol
CRI was applied as a key criterion for aerosol identification.
The CRI has two parts: imaginary and real. The imaginary
part indicates radiation absorption by aerosols, with a small
value signifying a small absorption. Because the radiation of
aerosols is more dependent on the imaginary than the real
part, the imaginary part is essential for inferring the optical
properties and aerosol types. Hence, we compared the real
and imaginary parts of the CRI calculated using the new hy-
brid and Gaussian kernel density clustering algorithms.

Figure 6 shows box plots of the aerosol CRI for dust,
mixed-coarse, mixed-fine, U/I, and BB aerosols using the
new hybrid classification and Gaussian kernel density clus-
tering algorithms. Based on the principle that the CRI of
aerosols is fixed under ideal conditions, the closer the me-
dian value of the CRI of the identified aerosol type is to the
median value of the benchmark CRI, the more accurate the
identification method. As shown in Fig. 6a and f, the median
values of the CRI real part for dust aerosol are in the range
of 1.45–1.53 at four bands, and those of the imaginary part
are 0.003–0.004 at 440 nm; further, the values in other bands
decrease rapidly as wavelength increases. The imaginary part
of the CRI represents the absorption of light by aerosol, with
a small absorption value indicating strong scattering. The re-
sults of the imaginary part are consistent with the spectral de-
pendence properties of dust-based aerosols according to the
wavelength. This is primarily because dust aerosols, com-
posed of clay, quartz, and hematite, exhibit strong absorption
in the blue band (440 nm) and low absorption in the visible
and near-infrared bands. For the dust aerosols, the CRI de-

termined by the two methods did not differ much. However,
the median value of the CRI obtained using the new hybrid
algorithm was slightly closer to the benchmark CRI than that
obtained using the Gaussian kernel density clustering algo-
rithm for dust aerosols. Therefore, the new hybrid algorithm
was concluded to be more accurate with respect to identify-
ing dust aerosol.

Figure 6b and g show that the median values of the CRI
real part for mixed-coarse aerosol are between 1.47 and 1.55
at four bands using the new hybrid algorithm, whereas these
values are between 1.44 and 1.50 at four bands determined by
the Gaussian kernel density clustering algorithm; the imagi-
nary part is between 0.006 and 0.009 at 440 nm. The median
value of the hybrid algorithm was closer to the baseline me-
dian value than that of the Gaussian kernel density clustering
algorithm for both the real and imaginary parts.

Figure 6c and h show the median value of the CRI real
part for mixed-fine aerosols determined using the new hybrid
and Gaussian kernel density clustering algorithms, which
was 1.42–1.51 at four bands. This result is close to the
range (1.44–1.52) reported by Wu et al. (2021) in Beijing
using a random forest algorithm. The median CRI values of
the real part at four bands and the imaginary part at the 675,
870, and 1020 nm bands were close to the baseline median
value for the new algorithm. Additionally, the median value
of the imaginary part was lower than that of the new hy-
brid algorithm and further from the baseline data for the
identification of aerosol-type results mixed with 14 % coarse
aerosols. Mixed-coarse aerosols result in weaker absorption.
Hence, the new hybrid algorithm performed better with re-
spect to identifying mixed-fine aerosols than the Gaussian
kernel density clustering algorithm.

Similarly, as seen in Fig. 6d and i, the median value of the
CRI real part for U/I aerosol identified using the new hybrid
algorithm was 1.39–1.47. This median value was lower than
that of the mixed-fine aerosols. This is because the real part
indicates the absorption ability of aerosols, and the absorp-
tion ability of U/I aerosols was less than that of mixed-fine
aerosols. For the imaginary part, the new hybrid algorithm
also performed slightly better than the Gaussian kernel den-
sity clustering algorithm at the four bands.

For BB aerosols, the median value of the real part gen-
erated using the new hybrid algorithm differed slightly from
that generated by the Gaussian kernel density clustering algo-
rithm. Additionally, the median obtained using the Gaussian
kernel density clustering algorithm was closer to the base-
line. Furthermore, when analyzing the imaginary part, the
new hybrid algorithm performed much better than the Gaus-
sian kernel density clustering algorithm. Even with a 100 %
concordance rate between the new hybrid and Gaussian ker-
nel density clustering algorithms with respect to identify-
ing BB aerosols, the refractive index still differed. This re-
sult indicates that 1 % of mixed-fine aerosols classified using
the Gaussian kernel density clustering algorithm were cor-
rectly identified as BB aerosols by the new algorithm. Over-
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Figure 6. Box plots of the real (a, c, e, g, i) and the imaginary (b, d, f, h, j) index of the CRI for (a, b) dust, (c, d) mixed-coarse aerosol,
(e, f) mixed-fine aerosol, (g, h) U/I aerosol, and (i, j) BB aerosol identified by the Gaussian kernel density clustering algorithm and the new
hybrid algorithm, respectively.
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all, these results demonstrate that the new algorithm is reli-
able.

Additionally, in this study, the 326 400 data points from
the optical parameters database and the 98 000 observed data
for calculation span from 1 January 1993 to 31 Decem-
ber 2021; the data pass through the Gaussian kernel density
clustering algorithm and the new hybrid algorithm Python
progresses and are archived on a personal Windows system
computer (Intel® CoreTM i7-10710U,16G DDR4 2666 MHz,
512G PCIe SSD). The computational time for the two al-
gorithms indicates that the new hybrid algorithm runs faster
than the Gaussian kernel density clustering algorithm with
huge quantities of data and advanced training; the new hybrid
algorithm can obtain aerosol type in 20 s, whereas it would
take 30 to 40 s to obtain aerosol type for one site using the
Gaussian algorithm.

4.2 Aerosol-type determination for typical sites

4.2.1 Dust aerosol

Figure 7 shows the aerosol types obtained using the new
hybrid algorithm for the five sites selected for dust aerosol
identification. According to the prediction by the new hy-
brid algorithm, the aerosols at these five sites mainly con-
tained dust aerosols; a small amount of U/I, mixed-fine, and
BB aerosols; and a large amount of mixed-coarse aerosols.
This shows that other types of aerosols, besides dust aerosol,
invaded these areas. BB aerosols may have been trans-
ferred from the southern African savannah. Additionally,
U/I aerosols could be from industrial cities, such as Dakar,
Abidjan, and Lagos, which are dominated by anthropogenic
aerosols and are close to the AERONET sites.

4.2.2 Mixed aerosol

Besides Ilorin in Africa, the mixed-aerosol AERONET sites,
including Kanpur, Sede_Boker, and XiangHe, are in Asia.
The aerosol types at these four sites were determined us-
ing the new hybrid algorithm (Fig. 8). Mixed-coarse aerosols
dominated the Kanpur, Ilorin, and Sede_Boker sites, whereas
mixed-fine aerosols dominated XiangHe. Part of the dust in
XiangHe could be due to the Taklamakan Desert in spring
and the westerly winds prevailing in western China, which
transport dust aerosols over long distances. Additionally, the
U/I aerosol in XiangHe could be a result of human activi-
ties, construction emissions, and fuel burning in winter. The
BB aerosol was traced to the burning of a small amount of
biomass in XiangHe, located in a suburban area.

Furthermore, excluding dust aerosols, we observed
BB and U/I aerosols at the Kanpur site in the Ganges Basin
of India. Certain amounts of U/I and dust aerosols were also
observed in Sede_Boker, located in the industrial center of
Israel, possibly from the Arabian Desert. Lastly, Ilorin had
the most dust and least BB aerosols, as it is located in central

Africa and often affected by the Sahara Desert and African
savannah.

4.2.3 Urban/industrial aerosol

All of the selected AERONET sites for the evaluation of
the performance of the new hybrid algorithm in terms of
U/I aerosol identification are in Europe or North America
(Fig. 9). GSFC is located in the densely populated and in-
dustrially developed area of Washington in the United States,
explaining its complex aerosol type, which is dominated
by U/I aerosol, a few mixed and BB aerosols, and a small
amount of dust aerosol.

Ispra is in Turin, one of Italy’s largest industrial cen-
ters. However, dust-type aerosols were identified, possibly
transported from the Libyan Desert when Italian winters
were controlled by southwesterly winds. Moreover, Mex-
ico, where the Mexico_City site is located, is an industri-
alized country with modern industries and agriculture, abun-
dant oil production, and a dense population. Nevertheless,
we identified dust, mixed-coarse, and BB aerosols at this site
using the new hybrid algorithm. These aerosol types could
be from the Chihuahuan Desert, an inland desert covering
12 % of Mexico’s area and a major source of coarse and dust
aerosols. Additionally, the literature shows that Mexico City
is surrounded by forested mountains, which experience many
wildfires during the dry period between November and May;
this accounts for BB aerosols in Mexico City (Yokelson et
al., 2007). Finally, the BB aerosols identified at the Moldova
site could be attributed to its rich vegetation cover.

4.2.4 Biomass burning aerosol

The selected sites were mainly located in the mountains
and highlands. Figure 10 shows the aerosol types iden-
tified using the new hybrid algorithm. Large amounts of
BB aerosols were identified at all sites. Additionally, small
amounts of dust and mixed-coarse aerosols were identified at
the Alta_Floresta site, transported over a long distance from
the Patagonian Desert in Argentina, southern South Amer-
ica. Moreover, the city where the site is located is industri-
ally developed and has a large population; therefore, more
U/I aerosols were identified using the new hybrid algorithm.
The geographically close Abracos_Hill and Alta_Floresta
sites were characterized by the same aerosol type and source.
Furthermore, one data point, Lake_Argyle, was classified as
a dust aerosol. This means that, although the site is located on
the Kimberley Plateau, Australia has a large desert area, and
coarse aerosols still exist. Lastly, a few U/I-type and several
dust-type aerosols were identified at the Mongu site, possi-
bly caused by aerosol emissions from nearby cities and dust
transport from the Sahara Desert.
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Figure 7. Identification of dust aerosol at dominant aerosol sites.

4.3 Aerosol-type distribution on a global scale

Given the advantages and accuracy of the new hybrid algo-
rithm with respect to identifying aerosol types, we used it
to divide the data from AERONET sites in different regions
of the world to obtain global aerosol-type distribution infor-
mation. The aerosol types of each continent are shown in
Figs. 11–15. Additionally, Fig. 16 shows the global aerosol-
type distribution. Notably, a pie chart was placed on each site
in the study; these charts denote a “point source” assessment
of the aerosol type and do not represent the entire region (the
size of the pie charts is independent of the optical properties).
Moreover, the sites were screened, and only those with valid
data of > 100 aerosol types were considered; however, off-
shore sites and sites classified as being dominated by marine
aerosol in other literature have been excluded.

Figure 11 shows pie charts of the aerosol types for each
scanned AERONET site in North America. The U/I aerosols,
particularly in most central eastern regions, contained mixed
and small amounts of biomass aerosols. Additionally, the
AERONET sites in large cities, such as Chicago, New York,
Toronto, Ottawa, and Boston, had U/I aerosols. Many stud-
ies have shown that dust aerosols from the Sahara Desert can
cross the Atlantic Ocean to North America in summer. More-

over, there is an inland desert in western North America, the
Chihuahua Desert, responsible for a small amount of dust
and mixed aerosols at the AERONET sites in this region.
Additionally, wildfires in western North America and house-
hold wood burning contribute to most BB aerosols yearly.
The central region site is affected by the environment, with
an increased proportion of BB aerosols, and U/I aerosols are
still prevalent because the site is located in a large city and is
densely populated.

Figure 12 shows the aerosol types in Africa. Northern
Africa has the largest desert in the world, the Sahara Desert;
therefore, dust aerosols dominate north of the Equator in
Africa. However, some AERONET sites in the Sudanese
steppe were primarily BB, with some U/I aerosols at nearby
urban sites. The Ilorin site is a typical mixed-aerosol site
close to the Equator with a small amount of BB aerosols.
Most sites close to the Atlantic coast were affected by dust
aerosols, even those on the islands of Capo Verde. The relia-
bility of the new model with respect to distinguishing U/I and
BB aerosols has been demonstrated. Sites in southern Africa,
such as Namibia, Botswana, and Zambia, are dominated by
BB aerosols. Nevertheless, studies have shown the presence
of U/I aerosols at sites in the urban areas of South Africa.
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Figure 8. Same as Fig. 7 but for mixed aerosol.

Although U/I and BB aerosols are difficult to distinguish, the
two can be identified in the context of a large urban pop-
ulation and less biomass combustion, thus establishing the
model’s accuracy.

The aerosol types in South America are shown in Fig. 13.
Here, only eight sites met the requirement for valid data
for> 100 aerosol types. South America is mainly dominated
by mountainous plateaus, is under the influence of the Brazil-
ian warm current, and many tropical rainforests are dis-
tributed in the south; therefore, the background aerosols are
mainly BB aerosols. As shown in Fig. 13, large cities, such
as Rio Branco, Campo Grande, Manaus, Santa Cruz, and
São Paulo, showed an increased proportion of anthropogenic
and mixed aerosols because of their large population and de-
veloped industries. Due to the tropical rainforest climate in
southern South America, the proportion of BB aerosols in-
creased, such as at the Cuiaba site near the Amazon River.
Additionally, the Manaus site contained a small amount of
dust aerosols that was presumably transported across the At-
lantic Ocean from African dust at the same latitude.

The aerosol types in Asia are shown in Fig. 14. In west-
ern Asia, influenced by the Thar Desert, sites on the In-
dian Peninsula were dominated by coarse-mode aerosols, in-

cluding dust and mixed-coarse aerosols. Kanpur and Pune
are densely populated cities in India with more mixed-
fine aerosols produced by human activities. Additionally, in
Southeast Asia, all sites contained BB aerosols, consistent
with Hamill et al. (2016). This is because of the abundance
of tropical rainforests in Southeast Asia. Moreover, some ur-
ban sites, such as Singapore and Penang, had large num-
bers of U/I and mixed-fine aerosols. The coastal areas of
East Asia, which are densely populated and industrially de-
veloped, were mainly dominated by U/I aerosols. Moreover,
dust aerosols appeared at these sites due to dust transported
from the Taklamakan Desert in East Asia.

The inland areas of East Asia have a smaller popula-
tion than the coastal areas; therefore, the proportion of U/I
aerosols was small and that of mixed aerosols was high. Gen-
erally, mixed aerosols are more easily overestimated than
U/I aerosols; however, the new hybrid algorithm identified
a larger proportion of U/I aerosols than mixed aerosols at
Asian sites. Therefore, the new hybrid algorithm can be con-
sidered for improving the classification of mixed aerosols vs.
U/I aerosols.

Similarly, southern Europe, which is close to the Sahara
and Arabian deserts, was dominated by dust aerosols, with
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Figure 9. Same as Fig. 8 but for urban/industrial aerosol.

small amounts of mixed and U/I aerosols. Northern Euro-
pean sites have many cities and a large population; there-
fore, the aerosol type was mainly U/I aerosols, identified us-
ing the new hybrid algorithm (Fig. 15). Additionally, small
amounts of BB aerosols were identified at most sites in Eu-
rope because of olive groves in agricultural lands in the Eu-
ropean Union, which produce 91 % of the world’s olive oil
(Lopez-Pineiro et al., 2011). Papadakis et al. (2015) sug-
gested that the biomass produced from olive oil is used for
heating and industry, and its combustion produces carbona-
ceous aerosols, considered to be the major source of fine-
mode aerosols in Europe during winter (Puxbaum et al.,
2007).

The global dominant aerosol-type distribution at
AERONET sites is shown in Fig. 16. The map does
not include marine aerosols. There are more aerosol sites on
the global map than those on each continent, as AERONET
sites with> 5 years of data were selected for the global map;
however, sites with> 100 valid data points were required for
each continent. The global distribution map shows that many
BB aerosols were distributed between 20° N and 20° S. This
is because this region has a predominantly tropical rainforest
climate, with many tropical rainforests and more carbon-
containing aerosol emissions. This finding is consistent with

those of previous studies that found that global BB aerosols
mainly originate from Africa (approximately 52 %), fol-
lowed by South America (approximately 15 %), equatorial
Asia (approximately 10 %), boreal forests (approximately
9 %), and Australia (approximately 7 %) (van der Werf et
al., 2010). Furthermore, the global distribution map shows
a clear distribution band of dust aerosols between 5° N and
35° N, originating from the Sahara Desert in Africa and
the Arabian Desert in western Asia, which are transported
across the ocean to other regions.

5 Conclusion

We developed a new hybrid algorithm to support the rapid
classification of aerosol types by building an aerosol optical
database for global AERONET sites. This hybrid algorithm
is a complex aerosol-type processing algorithm that effec-
tively integrates machine learning and density clustering al-
gorithms. Additionally, this algorithm is not limited by the
number of data and improves the accuracy of aerosol-type
classification. On investigating the aerosol types at specific
sites with dominant aerosols, we observed that different sites
contained one or more aerosol types, with the composition
of some specific dominant aerosol sites being more complex
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Figure 10. Same as Fig. 9 but for BB aerosol.

than that of others. The new algorithm showed a higher accu-
racy than that of algorithms used in previous studies with re-
spect to identifying aerosol types at specific sites, particularly
when distinguishing between U/I and mixed-fine aerosols.
Finally, the recognition results of the new hybrid algorithm
were closer to the baseline CRI, confirming that the new hy-
brid algorithm is better than the density clustering algorithm.
On investigating the aerosol types at global sites across the
continents using the new algorithm, we observed the dom-
inance of different types of aerosols at different sites, and
the composition of these could be logically and effectively
attributed to the geographical location, energy consumption
structure, meteorological conditions, and activities happen-
ing at the respective sites.

In this study, the existing aerosol-type identification algo-
rithm was improved using global ground-based AERONET
optical property parameter data, and the spatial distribution
characteristics of global aerosol types were analyzed, which
impacted aerosol radiation research and optical thickness in-
version accuracy. Additionally, the presumption of spheri-
cal dust aerosols in the Mie scattering model diverges from
their actual nonspherical nature in the environment, introduc-
ing potential inaccuracies. The optical database’s precision,

therefore, necessitates further refinement. Future advance-
ments could involve adopting more potent machine learning
techniques, such as advanced algorithms beyond the current
random forest method. Meanwhile, multisource satellite data
and reanalysis products can be incorporated into aerosol-type
identification. Ultimately, this study will provide support for
the identification and control of air pollution sources.

Code availability. The code of the new hybrid algorithm used for
aerosol-type classification is provided; it includes Gaussian kernel
density clustering code, a Mie scattering model, and a random for-
est model. The Gaussian kernel density clustering and random for-
est code can be found at https://doi.org/10.5281/zenodo.10972939
(Zhang et al., 2024b). The Mie scattering model is available at
http://scatterlib.wikidot.com/codes (SCATTERLIB, 2020).

Data availability. AERONET products are available from https:
//aeronet.gsfc.nasa.gov/new_web/draw_map_display_inv_v3.html
(NASA, 2020). The global aerosol-type classification us-
ing the new hybrid algorithm is openly available from
https://doi.org/10.5281/zenodo.10973114 (Zhang et al., 2024a).
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Figure 11. Pie charts of the aerosol types at the major sites in North America.

Figure 12. Same as Fig. 11 but for Africa.

Atmos. Chem. Phys., 24, 5025–5045, 2024 https://doi.org/10.5194/acp-24-5025-2024



X. Wei et al.: Global aerosol-type classification using a new hybrid algorithm 5041

Figure 13. Same as Fig. 11 but for South America.

Figure 14. Same as Fig. 11 but for Asia.
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Figure 15. Same as Fig. 11 but for Europe.

Figure 16. Global dominant aerosol-type distribution based on AERONET sites.
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