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Abstract. Positive matrix factorization (PMF) has been widely used to apportion the sources of fine particulate
matter (PM3 5) by utilizing PM chemical speciation data measured at the receptor site(s). Traditional PMF, which
typically relies on long-term observational datasets of daily or lower time resolution to meet the required sample
size, has its reliability undermined by changes in source profiles; thus, it is inherently ill-suited for apportioning
sporadic sources or ephemeral pollution events. In this study, we explored short-term source apportionment of
PM3, 5 using a set of bihourly chemical speciation data over a period of 37 d in the winter of 2019-2020. PMF run
with campaign-wide data as input (PMF.r) was initially conducted to obtain reference profiles for the primary
source factors. Subsequently, short-term PMF analysis was performed using the Source Finder Professional
(SoFi Pro). The analysis sets a window length of 18d and constrained the primary source profiles using the
a-value approach embedded in SoFi Pro software. Rolling PMF was then conducted with a fixed window length
of 18 d and a step of 1 d using the remaining dataset. By applying the a-value constraints to the primary sources,
the rolling PMF effectively reproduced the individual primary sources, as evidenced by the slope values close
to unity (i.e., 0.9-1.0). However, the estimation for the firework emission factor in the rolling PMF was lower
compared with PMF,r (slope: 0.8). These results suggest the unique advantage of short-term PMF analysis
in accurately apportioning sporadic sources. Although the total secondary sources were well modeled (slope:
1.0), larger biases were observed for individual secondary sources. The variation in source profiles indicated
higher variabilities for the secondary sources, with average relative differences ranging from 42 % to 173 %,
while the primary source profiles exhibited much smaller variabilities (relative differences of 8 %—26 %). This
study suggests that short-term PMF analysis with the a-value constraints in SoFi Pro can be utilized to apportion
primary sources accurately, while future efforts are needed to improve the prediction of individual secondary
sources. Additionally, future rapid source apportionment analysis can benefit from utilizing a library of source
profiles derived from existing measurement data, thereby significantly reducing the time lag associated with
receptor modeling source apportionment techniques.
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1 Introduction

Atmospheric particulate matter with aerodynamic diameter
less than 2.5 um (PM3 5) is known to negatively impact hu-
man health and exert a noticeable but highly uncertain effect
on climate change (IPCC, 2014). Epidemiological studies
have consistently demonstrated that exposure to PM» 5 can
result in various cardiovascular and chronic respiratory dis-
eases (Yin et al., 2020). The implementation of stringent con-
trol measures since 2013 has led to declining concentrations
of PM> 5 in many megacities in China, with annual average
decreasing from 72.3 uygm™3 in 2013 to 47.4 ugm > in 2017,
as calculated from monitoring data in 74 cities across China
(Wang et al., 2020; Chow et al., 2022a). However, the annual-
mean PM level in many cities remains above the new WHO
guidelines (5 pugm™3) by a large margin. Importantly, short-
term pollution episodes have continued to occur frequently
in recent years (e.g., Shao et al., 2018; Q. Wang et al., 2022).
Recognizing the need to reduce the severity and frequency of
episodic pollution incidents, it becomes evident that achiev-
ing episode-scale source apportionment is essential.

Receptor models such as positive matrix factorization
(PMF) and chemical mass balance (CMB) have been widely
deployed to apportion the sources of PMjs based on
observation-based composition data (Paatero and Tapper,
1994; Watson et al., 1984). The CMB model can apportion
the source contributions of a single sample in principle, but
the uncertainties can be large due to the high variability in
the source profiles (Lee and Russell, 2007) as the location-
specific profiles are often unavailable in many places. While
the PMF model has the advantage of avoiding the need to in-
put source profiles, it requires a large sample size to do the
source apportionment. PMF assumes constant source profiles
throughout the entire sampling period (Reff et al., 2007). Due
to the limited time resolution from offline filter-based sam-
pling schedule, e.g., sampling duration of 24 h and sampling
frequency of once every 3 or 6 d, PMF is often conducted us-
ing the Environmental Protection Agency (EPA) PMF soft-
ware (Norris et al., 2014) with data spanning 1 year or mul-
tiple years to meet the sample size requirement (e.g., Chow
et al., 2022b; Scotto et al., 2021). As a result, there is a no-
table time lag in obtaining the source apportionment results
and implementing relevant policy controls. There is an ur-
gent need for rapid source apportionment methods that can
provide timely policy implications.

Source profile changes are often expected over an ex-
tended period of observation for certain sources. For in-
stance, biomass burning exhibits variations in dominant
biomass materials during different seasons; the implemen-
tation of catalytic converter replacement program alters the
source profiles of vehicular emissions (Lee et al., 2017).
Sporadic sources, such as firework emission during holi-
days or wildfires during dry seasons, can significantly con-
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tribute to PM pollution episodes that persist for hours to
days, often overshadowing the effects of reductions in an-
thropogenic emissions (Song et al., 2021; Kong et al., 2015).
The PMF analysis using long-term datasets could not prop-
erly reflect source profile changes experienced during the
long time span. In other words, long-term PMF is inherently
unsuitable for apportioning sporadic sources or ephemeral
pollution events. This limitation explains the common ob-
servation that PMF with robust mode tends to underesti-
mate high-concentration data while overestimating the low-
concentration data (Henry and Christensen, 2010). Conse-
quently, contribution estimates of these sources would be bi-
ased when apportioned alongside other regular sources using
long-term observational data.

By implementing online measurement techniques, re-
searchers are able to conduct source apportionments studies
based on hourly PM chemical speciation data covering sev-
eral weeks to months. Such studies can circumvent the issue
of source profile changes arising from the long-term sam-
pling (Wang et al., 2018). Recently, Canonaco et al. (2021)
introduced a new method called “rolling PMF” to conduct the
source apportionment with time-dependent source profiles
using the Source Finder Professional (SoFi Pro) software. In
this method, PMF is performed over a small, moving time
frame (e.g., a window length of 2 weeks with step of 1d), al-
lowing the factor profiles to evolve with time. To decrease the
rotational ambiguity, short-term rolling PMF is conducted
with the source profile constraints using the a-value approach
embedded in the SoFi Pro program (Canonaco et al., 2013).
This method has been demonstrated using the 1-year and
multi-year non-refractory sub-micrometer aerosol chemical
speciation monitor (ACSM) dataset (Canonaco et al., 2021;
Chen et al., 2021, 2022) for the source apportionment of or-
ganic aerosols (OAs). The source profiles of primary factors
obtained from the traditional PMF runs conducted in each
season are selected as the reference profiles. With the source
profile constraints, the rolling PMF can effectively capture
the individual primary organic aerosol (POA) source and to-
tal oxygenated organic aerosol (OOA) sources when com-
pared with the traditional PMF. However, noticeable differ-
ences in individual OOA sources were observed. The rolling
PMF (or moving window PMF) method has also been ap-
plied to the hourly PM; 5 chemical speciation data measured
in Tianjin during a 2-month field campaign, including ions,
organic carbon (OC), elemental carbon (EC), and elements
(Song et al., 2021), where PMF runs were performed without
the source profile constraints using EPA PMF software. The
apportioned results, without the source-specific organic trac-
ers, showed clear mixing of several source factors in Song
et al. (2021). The application of the rolling PMF method with
time-dependent source profile constraints holds potential for
rapid source apportionment when source profiles are avail-
able from existing chemical speciation measurement data.
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A comprehensive online measurement campaign was con-
ducted at a suburban site in Shanghai during a period of 37d
in the winter of 2019-2020 (specifically from 29 Decem-
ber 2019 to 9 February 2020), encompassing both the pre-
lockdown and lockdown phases of the Covid-19 pandemic.
This data collection effort involved hourly measurements of
major ions, OC, EC, and elements, as well as bihourly mea-
surements of source-specific organic tracers in PMj 5. No-
tably, this time frame captured the dynamic changes in pollu-
tion sources and included a sporadic source event — firework
emissions during the Chinese New Year (CNY) and Lantern
Festival. Thus, it presented a unique opportunity to evalu-
ate a shot-term PMF strategy. A thorough traditional source
apportionment analysis conducted using the EPA PMF soft-
ware is documented in our previous study (S. Wang et al.,
2022). In this study, we specifically investigated the appli-
cability of a short-term source apportionment strategy using
the bihourly PM» 5 chemical speciation data with the SoFi
Pro software and compared with those obtained through the
traditional PMF. The findings of this study offer valuable in-
sights into the future development of rapid source apportion-
ment methods for PMj 5, particularly for short-term periods
and episodic events. These insights have the potential to en-
hance air quality management practices.

2 Methods

2.1 Sampling and chemical analysis

The field campaign was conducted during 29 December 2019
to 9 February 2020 at the Dianshan Lake (DSL) supersite
(31.09° N, 120.98° E) in Shanghai, China. The sampling site
was located in a suburban area, about 50km away from
downtown Shanghai and with relatively low influences of lo-
cal anthropogenic sources. PM speciation measurements in-
cluded hourly major ions (sulfate, nitrate, and ammonium)
by a Monitoring AeRosols and GAses in ambient air system
(MARGA), OC and EC by a Sunset semi-continuous carbon
analyzer, elements (i.e., K, Ca, Cr, Mn, Fe, Cu, Zn, As, Se,
Ba, and Pb) by an energy dispersive X-ray fluorescence spec-
trometer (XRF), and bihourly organic tracers (hopanes, ster-
anes, levoglucosan, mannosan, phthalic acid, 2,3-dihydroxy-
4-oxopentanoic acid (DHOPA), B-caryophyllinic acid (8-
caryT), and «-pinene secondary organic aerosol tracers (o-
pinT)) by thermal desorption aerosol gas chromatography—
mass spectrometry (TAG). TAG data during 16-21 January
2020 were not available due to instrument maintenance. For
detailed information about the sampling site and chemical
analysis procedures, refer to our previous paper (S. Wang
et al., 2022).
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2.2 Source apportionment

In this work, PMF with the multilinear engine version 2 (ME-
2) (Paatero, 1999) in the interface of SoFi Pro (version 8)
(Canonaco et al., 2013) was adopted to apportion the sources
contributing to PM> 5 mass. The PMF model in matrix nota-
tion is defined as Eqs. (1) and (2):

Xij = Z,[:Zlgikfkj +eij, (D
2
o n m e,-j
Q= Zi:le:l [E} ’ )

where x;; is the measured concentration, n is the number of
samples, m is the number of species, p is the number of fac-
tors, g;x is the source contribution of the kth factor to the
ith sample, f; is the factor profile of jth species in the kth
factor, e;; is the residual of jth species in the ith sample, and
u;; is the user-defined uncertainty. Q is the objective function
representing the uncertainty weighted difference between ob-
served and modeled species concentrations. PMF finds the
final solution by minimizing the Q value.

Factor analysis methods like PMF are known to en-
counter rotational ambiguity, whereby different combina-
tions of source contribution G and source profile F' matrix
can yield the same Q value. This issue often results in mixed
factors or environmentally unrealistic factors. Previous stud-
ies have demonstrated the effectiveness of constraining ex-
pected source profiles using the a-value approach embedded
in SoFi Pro software (Canonaco et al., 2013). The a-value ap-
proach allows for the imposition of constraints on the source
profiles/contributions from the given reference profiles/con-
tributions, with a certain degree of variation from the anchor-
ing profiles (Egs. 3 and 4).

fij = fij +ax fi (3)
Six = &ik+a X gik “4)

Here, the index j, which varies between 0 and the number
of species m, represents the species of the kth factor. The in-
dex i, which varies between 0 and the number of samples 7,
is the sample of the kth factor. fi; and g;; are the anchoring
profiles and anchoring contributions, respectively, while f; i
and g/, are the output source profiles and source contribu-
tions, respectively. The scalar a ranges from O to 1, which de-
termines the extent to which the output f; l./glf . is allowed to
vary from the input reference fi;/g;. For example, a a value
of 0.3 corresponds to 30 % variation, while a a value of 1 is
equivalent to a completely unconstrained (or free) PMF situ-
ation.

Figure 1 illustrates the flowchart outlining the source ap-
portionment methodology employed in this study. Initially,
a PMF run was conducted by EPA PMF software using
campaign-wide bihourly data as input (referred to as PMFi.r)
to derive the reference profiles for primary sources. Subse-
quently, the first sampling period data of 18 d was utilized to
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1. PMF, run with campaign-wide data as input to obtain the reference profiles

\ 4

2. Short-term PMF (18 d) with a-value constraint

3. Rolling PMF run #01

Remaining data for the rolling PMF runs

‘1d‘1d‘1d‘1d‘ ‘1d‘1d‘1d

Rolling PMF run #02

Rolling PMF run #19

Figure 1. Flow diagram of the short-term PMF strategy used in this study.

perform the short-term PMF run and evaluate the effective-
ness of the a-value approach using SoFi Pro. The source pro-
files obtained from the PMF,.f run were used as the reference
profiles in the a-value approach to help PMF find the envi-
ronmentally reasonable solution. Following this, the rolling
PMF was conducted using the remaining dataset with the op-
timum a values to validate the short-term PMF results. The
results of the rolling PMF analysis were discussed and com-
pared with the results obtained from the PMF.t run. The 22
input species for both the PMF,f and the short-term rolling
PMF runs include sulfate, nitrate, ammonium, OC, EC, K,
Ca, Mn, Fe, Cu, Zn, As, Ba, Pb, and eight organic species
(hopanes, steranes, levoglucosan, mannosan, phthalic acid,
a-pinT, B-caryT, and DHOPA). The specific input data uti-
lized in individual PMF runs are shown in Table S1 in the
Supplement.

3 Results and discussion

3.1 Overview of the PM pollution at the DSL site

Figure 2a shows the temporal variation of PMj 5 and select
tracers during the campaign period, with the average con-
centrations provided in Table S2 in the Supplement. The
sampling period was divided into two distinct sub-periods:
(1) before CNY (29 December 2019-23 January 2020) and
(2) CNY and post-CNY (24 January—9 February 2020). The
CNY (25 January) and Lantern Festival (8 February) fell
within the second period when the lockdown restriction had
been implemented. A clear reduction of the concentrations
for most tracer species was observed during the CNY and
post-CNY period, except for K and Ba (Sect. S1 in the Sup-
plement and Fig. 2a). It is known that combustion of fire-
works emits particles enriched with elements such as Sr,
K, Ba, Cu, and Bi (Manousakas et al., 2022). Scatter plots
of measured K with the source tracers levoglucosan from
biomass burning and Pb from coal combustion unequivocally
indicated the presence of firework emission source during the
CNY holiday and Lantern Festival (Fig. 2b). The combustion
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of fireworks during these events led to significantly elevated
K concentrations. Conversely, during the remaining time pe-
riod, K primarily originated from biomass burning and coal
combustion, as evidenced by the strong correlation with the
corresponding tracer species.

Source apportionment results over the entire sampling pe-
riod (i.e., PMF¢f) supplies an overview about the emission
sources at this site. A thorough source apportionment result
for this site can be found in our previous paper (S. Wang
et al., 2022), where 14 factors were resolved using a list
of more comprehensive input species over the entire sam-
pling period. Among these factors, the polycyclic-aromatic-
hydrocarbon-rich factor, cooking emission, and one sec-
ondary organic aerosol (SOA) factor are negligible PM> 5
contributors (< 1%). The contribution of the residual oil
combustion factor to PMj s is also minor (< 3 %). Addition-
ally, the detection frequency of V, a tracer for the residual
oil combustion factor, was lower than 50 % for the short-
term input time window. Thus, these four factors were not
incorporated in this study, and we focus on the 10 major
factors resolved in our PMF,.s run. Given the limited data
points available for the short-term PMF runs, this approach
allows us to obtain a more robust solution, aligning with the
study’s objective of testing the short-term PMF strategy. The
robustness of the PMF¢t result was tested by the bootstrap
and displacement error estimation method embedded in EPA
PMF 5.0 software (Norris et al., 2014). All bootstrap factors
mapped to the base factors in > 95 % of the runs. No factor
swaps and no decrease in Q were observed in the displace-
ment analysis. The PMF-modeled reconstructed PM5 5 mass
is close to the measured one, with slope of 1.01 and R, of
0.99. The model performance for individual species was also
good, with slopes ranging from 0.59 to 1.08 and R}, in the
range of 0.82—-1.00.

Briefly, the PMF, run resolved 10 factors comprised
of four secondary sources (i.e., secondary nitrate forma-
tion process, secondary sulfate formation process, and two
SOA factors — SOA_I and SOA_II) and six primary fac-
tors (i.e., vehicle exhaust, industrial emissions, coal com-
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Figure 2. (a) Time series of concentrations of total PM, 5 and selected tracer species from 29 December 2019 to 9 February 2020 at the
DSL site in Shanghai. The campaign period was divided into two phases: before Chinese New Year (CNY) and the CNY and post-CNY
period. The data influenced by firework emissions are highlighted in light orange. (b) Scatter plots illustrating the relationship between K
concentrations and two other tracer species, Pb and levoglucosan, during the firework-influenced period and the remaining period.

bustion, dust, biomass burning, and firework emissions).
The SOA_I factor contained high loadings of a-pinene and
toluene SOA tracers, representing mixture of biogenic and
anthropogenic SOA. The SOA_II factor was primarily con-
tributed by phthalic acid, suggesting an anthropogenic ori-
gin. Among the primary factors, the firework emission fac-
tor was only present during the CNY and post-CNY sam-
pling period (Fig. 2b). Consequently, we imposed constraints
to set the factor contributions of firework emissions to zero
during the period before CNY. The resolved factor profiles
and PM s contributions from PMF;.t are shown in Figs. S2
and S3 in the Supplement. Briefly, the PMF.¢ results showed
that secondary nitrate and secondary sulfate factors consti-
tuted the most important sources contributing to the PMj 5
levels at this site, accounting for 58 % and 11 % of the PM> 5
mass during the period before CNY and 40 % and 23 % dur-
ing the CNY and post-CNY period, respectively. SOA_I and
SOA_II contributed to 3 % and 7 %-8 % of the PM; 5 mass,
respectively. Among the primary sources, industrial emis-
sions, biomass burning, and dust showed comparable contri-
butions to the PM» 5 mass (ranging from 2 % to 8 %), while
vehicle exhaust was a minor source, contributing less than
1 % to PM> 5 at this suburban site. Firework emissions, how-
ever, constituted a non-negligible source during the CNY and
post-CNY period, contributing to 12 % of the total PMj 5
mass.
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3.2 Short-term PMF run combined with a-value
approach

The short-term source apportionment analysis was conducted
using data from the first sampling period, spanning 18 d from
29 December 2019 to 15 January 2020. The selection of the
window length may vary depending on the specific datasets
under study. The determination of the window length for our
observational dataset is shown in Sect. S2 in the Supplement,
where 4, 7, 10, 14, and 18 d were initially evaluated. A win-
dow length of 18 d was chosen as it produced the most stable
base run result with minimum factor profile mixing. Previous
studies that employed higher-time-resolution measurements
(e.g., hourly or 30 min intervals) suggested a window length
of 14d (Chen et al., 2022; Canonaco et al., 2021; Song et al.,
2021). However, our bihourly time-resolution data indicated
a slightly longer window length, which provided a more ro-
bust solution.

The short-term PMF run resolved nine factors, with the
firework emission factor not resolved during the sampling
period before CNY. The a-value approach was tested in the
short-term PMF run, utilizing the source profiles of primary
factors obtained from the PMF,r results as reference pro-
files. A range of a value, from O to 1 with a step size of
0.1, was tested. Compared with primary sources, the sec-
ondary sources often do not represent specific emissions. In-
stead, they typically result from a complex interplay of mul-
tiple aging processes that occur over the observational period

Atmos. Chem. Phys., 24, 475-486, 2024
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and are susceptible to environmental conditions such as rel-
ative humidity and photoactivity. Thus, the four secondary
factors were not constrained in the short-term PMF run us-
ing the a-value approach, consistent with the common strat-
egy in previous studies (Chen et al., 2022; Canonaco et al.,
2021). A total of 100 PMF calls were performed and the vari-
ability of Q/Qexp was examined. The ratio Q/Qexp, Where
Qexp & n xm — p x (n+m), indicates the overall fitting of
all input species and is reciprocally associated with the fitting
(Norris et al., 2014). Among the 100 runs, the variation of
O/ Qexp is consistently minimum, with a coefficient of vari-
ation of <1 %. The one with the lowest Q/Qexp Was cho-
sen for further analysis. For comparison, the unconstrained
PMF run was also conducted in a similar manner. In general,
the a-value constrained PMF runs showed better agreement
with the PMF,f run compared to the unconstrained PMF run
(Fig. S5a in the Supplement). The change in Q/Qexp values
was evaluated to determine the optimum a values (Fig. S5b).
Larger Q/Qexp values were observed in the a-value con-
strained runs, compared with the unconstrained PMF run. As
the a values decreased from 1 to 0, the Q/ Oexp increased, re-
flecting a decrease in the freedom of the source profiles. The
change in Q/Qexp exhibited a “U” shape, with higher values
observed for small (0-0.2) and large a values (0.9-1), indi-
cating larger changes in the PMF results with varying a val-
ues. A threshold a value of 0.3 was initially selected, after
which the change in Q/Qexp became considerably smaller.
Figure 3 presents a comparison of the relative difference
in PM3 5 source contributions for individual primary source
factors obtained from the a-value constrained runs and the
unconstrained PMF run, in relation to the PMF,.s results.
Different factors showed different response to the change
in the a values. For vehicle exhaust, industrial emissions,
and coal combustion, much smaller differences (0 %—15 %)
were observed with small a values (< 0.5). However, as the
a values increased, the differences became more substantial
(10 %—60 %), highlighting the importance of constraining the
source profiles for these factors. In the case of dust and
biomass burning, larger differences were observed (22 %—
44 % and 10 %-21 %, respectively) when the a values ex-
ceeded 0.1. Therefore, smaller a values were suggested for
the two sources, which was in accordance with the fact that
their source profiles were less affected by lockdown restric-
tions compared to other primary sources. After initial test,
an a value of 0.1 was selected for biomass burning and dust,
while an a value of 0.3 remained for other primary factors.
These chosen a values (0.1 and 0.3) align with previous stud-
ies that utilized ACSM datasets, where a values between 0—
0.4 were adopted (Canonaco et al., 2021). With this set of op-
timized a values, the relative differences in the apportioned
PM3 5 source contributions compared to those apportioned
by PMF,.t were as follows for the five primary factors: vehi-
cle exhaust (—1 %), industrial emission (—11 %), coal com-
bustion (5 %), dust (—14 %), and biomass burning (—5 %).
In comparison, the unconstrained PMF run produced notably
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Figure 3. Relative differences in PM; 5 contribution between dif-
ferent a-value constrained runs and the unconstrained PMF run,
compared to the reference result, for (a) vehicle exhaust, coal com-
bustion, and industrial emission, and (b) biomass burning and dust.
The “adjusted a” indicates the final a values adopted, i.e., a = 0.3
for vehicle exhaust, coal combustion, and industrial emissions and
a = 0.1 for biomass burning and dust.

poorer results for vehicle exhaust (35 %) and biomass burn-
ing (—17 %).

We additionally conducted a sensitivity test on the refer-
ence profiles by manually generating a set of new reference
profiles that deviated from the original profiles by a rela-
tive standard deviation ranging from 10 % to 70 %. The de-
tails are shown in Sect. S3 in the Supplement. As the de-
viation increased, the apportioned source contributions ex-
hibited greater relative differences compared to the PMF ¢
results for the primary factors (Fig. S6 in the Supplement).
These findings indicate that utilizing source profiles derived
from the PMF,.f run is an effective approach for establishing
appropriate constraints, resulting in a closer approximation
to the true source profiles at the site.

3.3 Short-term rolling PMF runs combined with the
a-value approach

We next tested whether the short-term PMF strategy works
on more datasets with potential change in pollution. The
rolling PMF runs (denoted as PMF,,)) were conducted us-
ing the remaining dataset, maintaining a fixed window length
of 18 d. The window increment was set at 1 d, following the
practice in previous studies (Canonaco et al., 2021; Chen
et al., 2021, 2022; Song et al., 2021). A total of 19 PMF,q
runs were performed (Table S1). The first two PMF,) runs
utilized input data collected before the CNY (30 December
2019-23 January 2020) and resolved nine factors. Subse-
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quently, the 3rd to 19th PMF,,; runs employed input data
spanning the CNY (1 January—9 February 2020) and resolved
10 factors, including an additional factor attributed to fire-
work emissions. The 3rd PMF;q run (input data of 1-24 Jan-
uary 2020), a transitional PMF run from 9 to 10 factors, was
excluded due to the limited availability of data points in-
fluenced by firework emissions (Nfirework_data = 2, represent-
ing the number of data points under the influence of fire-
work emissions). Furthermore, the apportioned results from
this run displayed significant discrepancies compared with
the rest of the PMF,,) runs. Consequently, 18 out of the 19
PMF,, runs were selected for further analysis.

Figure 4 shows the time series of the PM» 5 source con-
tributions from individual PMF;, runs and the average
contributions. Comparable results were observed across the
PMF,,) runs for all primary source factors, indicating the
effectiveness of the a-value approach to reproduce the pri-
mary source contributions during the short-term PMF runs.
To illustrate this point, we also performed unconstrained
rolling PMF runs (i.e., without the a-value approach), which
showed much larger run-to-run variability for the primary
source factors, especially vehicle exhaust and coal combus-
tion (Sect. S4 and Fig. S7 in the Supplement). These findings

https://doi.org/10.5194/acp-24-475-2024

underscore the advantage of employing source profile con-
straints to achieve reproducible source apportionment results
when performing the PMF analysis over a short-term mea-
surement period. The four secondary source factors were not
subject to constraints and displayed varying levels of run-to-
run variability. Secondary nitrate exhibited minimal variabil-
ity among the runs, while secondary sulfate showed larger
variations. Both SOA factors demonstrated even greater vari-
ations, particularly the SOA_I factor. However, the SOA_II
factor exhibited relatively smaller variations in the later sam-
pling period data.

The final solution was obtained by averaging the PM, s
source contributions from all PMF, runs, which were then
compared with the reference result obtained from the PMF;.¢
run (Fig. 5). The primary source factors (i.e., vehicle ex-
haust, industrial emission, coal combustion, and dust) exhib-
ited a strong agreement between the PMF,q); and PMF,¢ re-
sults (slope > 0.93). A slight underestimation was observed
for biomass burning, with a slope of 0.90. In contrast, the
sporadic source of firework emissions showed consistently
lower estimations by PMF, (slope 0.81), which may reflect
higher source contributions by PMF¢. This result highlights
the unique advantage of the short-term source apportionment

Atmos. Chem. Phys., 24, 475-486, 2024
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Figure 5. Comparison of the PM» 5 source contributions obtained from average PMF,,; runs with the reference result in PMF,.¢ for

individual source factors and the sum of the four secondary sources.

in accurately apportioning the sporadic sources (Song et al.,
2021). Among the four secondary sources, secondary nitrate
showed good agreement with the reference result (slope of
1.0 and Pearson correlation coefficient R, of 1.0). Secondary
sulfate exhibited a good correlation with the PMF run
(slope=1.2 and R, =0.92), although the PMF) runs ap-
portioned higher contributions, especially for the later sam-
pling period during the lockdown. SOA_I showed a weaker
correlation with the reference result (R, =0.77), and the
slope varied with time (Fig. 5). On the other hand, SOA_II
displayed good agreement between PMF;,; and PMF., but
larger uncertainties were associated with the apportioned re-
sults due to large run-to-run variabilities observed in the
source contributions, especially during the middle sampling
period (Fig. 4). Notably, the sum of the four secondary
sources showed good agreement with the PMF,s run, both
with (slope=1.0 and R, =1.0) and without a-value con-
straints (slope =0.95 and R, =0.99). This observation may
be attributed to the intrinsic temporal variations differing be-
tween primary and secondary sources.

3.4 Source profile variability

The temporal variation of source profiles is the fundamen-
tal reason why short-term source apportionment is necessary

Atmos. Chem. Phys., 24, 475-486, 2024

to achieve accurate source apportionment during episodic
events. Figure 6 presents the average factor profiles of the 10
resolved source factors throughout the entire field campaign,
alongside the reference profiles from the PMF,¢f run. The er-
ror bars represent 1 standard deviation of profile variability
across the PMF;,) runs throughout the entire measurement
period. This variability encompasses both time-dependent
variations in the factor profiles and uncertainties associated
with the PMF analysis. All primary factors showed compa-
rable source profiles between PMF,,; and PMF..¢. However,
the four secondary source factors derived from the PMF,q
runs showed higher variabilities in their profiles and larger
differences compared to the PMF,¢ run. In particular, the
secondary nitrate and sulfate factors from PMF,,; showed
higher loadings of organic tracers and elemental species in
their profiles compared to PMF,.r. The SOA_I factor showed
a higher proportion of inorganic ions, whereas the SOA_II
factor showed lower loadings of the inorganic ions.

We calculated the relative difference between the source
profiles obtained from PMF,,); with PMF, to evaluate their
disparities (Fig. 7). The relative difference for each PMF,q
run was calculated as the average value of the relative dif-
ference for all input species. The results indicated that the
primary sources showed relatively small differences among
individual PMF;q); runs. For example, the relative difference
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rived from the short-term rolling PMF runs (PMF,q1) and the refer-
ence profiles from PMF,.s. Error bars represent 1 standard deviation
of profile variability across the PMF,q runs.

for vehicle exhaust varied from 17 % to 33 %. Across the five
primary factors, the average relative difference ranged from
8 % for dust and biomass burning to 26 % for vehicle exhaust.
In contrast, the secondary sources inherently displayed more
variability than the primary sources, leading to challenges
and larger uncertainties in apportioning individual secondary
sources. Significant variabilities were observed in the source
profiles of the secondary sources. Among them, secondary
sulfate showed a slightly smaller relative difference, with an
average value of 42 % (range 26 %—60 %). Secondary nitrate,
SOA_I, and SOA_II showed large variations, with an aver-
age relative difference of 173 %, 162 %, and 75 %, respec-
tively. In the case of the secondary nitrate factor, although
the apportioned PM> 5 contributions from individual source
factors were comparable to the reference result, the resolved
source profiles exhibited high time-dependent variabilities.
We hypothesize this may be attributed to the sensitivity of
nitrate formation to the reduction of NO, and volatile or-
ganic compound (VOC) precursors during the lockdown re-
striction (Yang et al., 2022). Previous laboratory studies in-
dicated that reducing anthropogenic pollutants such as SO,
and NO, can also reduce the biogenic SOA formation via
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Figure 7. The relative difference in the resolved source profiles
among the individual rolling PMF runs. The relative difference for
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average value of the relative difference for all input species. Solid
squares represent the average value from all rolling PMF runs.

anthropogenic—biogenic interactions (Zhang et al., 2019; Xu
et al., 2015). This, to some extent, explains the high variabil-
ities in source profiles of the two SOA factors. Additionally,
the high variabilities may also arise from the uncertainties
in the PMF analysis due to the limited data points available
from the short-term time span (Wang et al., 2018). There-
fore, in future studies, alternative approaches are needed to
independently assess the contribution of secondary sources.
Also, we recommend deploying higher-time-resolution mea-
surement of the organic tracers. This will help ensure accu-
rate source apportionment results for individual secondary
sources, especially within the confines of a short-term time
span.

4 Conclusions

In this study, we presented a short-term PMF strategy uti-
lizing bihourly PM chemical speciation data including the
molecular and elemental tracers. Initially, the PMF.f runs
using the campaign-wide measurement data were performed
by EPA PMF software to get an overview of the emis-
sion sources and obtain the reference profiles of the primary
sources. Then, the short-term PMF analysis was performed
using an 18 d window length combined with the a-value ap-
proach in SoFi Pro software. The reference profiles derived
from the campaign-wide data were employed as constraints
to reduce the rotational ambiguity in the short-term PMF re-
sults. The training data with the ag-value constraints for an
18 d window indicated a smaller a value for biomass burn-
ing and dust sources. This suggests that the profiles of these
sources remain relatively constant and exhibit less variability
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throughout the campaign period. The constrained PMF re-
sults exhibited improved agreement with the reference results
compared to the base run without any constraints. The rolling
PMF analysis with optimized a-value constraints demon-
strated good agreement between the regular primary sources
and the reference result, underscoring the efficacy of source
profile constraints in short-term PMF runs. However, the spo-
radic source of firework emissions exhibited overestimation
in the long-term source apportionment results. Furthermore,
noticeable differences were observed between the rolling
PMF and PMF, for individual secondary sources, partic-
ularly the SOA factors. Nevertheless, the overall contribu-
tion of the total secondary sources showed good agreement.
Future endeavors should aim to improve the modeling of
individual secondary factors by either using alternative ap-
proaches or deploying higher-time-resolution measurement
of organic tracers.

The findings of this study highlight the applicability of the
short-term PMF analysis with source profile constraints for
source apportionment of PM» 5. This suggests the potential
for future work to achieve rapid source apportionment by
utilizing a library of source profiles derived from existing
measurement data. By advancing the window frame to in-
corporate new measurement data (e.g., 1 d data), short-term
PMF analysis can provide source contributions for the most
recent observations. This approach significantly reduces the
time lag associated with receptor modeling source apportion-
ment techniques. Such advancements hold important policy
implications, as they enable prompt response during pollu-
tion episodes, eliminating the need to wait for the accumula-
tion of sufficient data for conducting PMF analysis.
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