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Abstract. We have used the variational inversion drivers of the recent Community Inversion Framework (CIF),
coupled to a European configuration of the CHIMERE regional chemistry transport model and its adjoint to
derive carbon monoxide (CO) emissions from Measurement of Pollution in the Troposphere (MOPITT) TIR-
NIR (thermal-infrared near-infrared) observations, for a period of over 10 years from 2011 to 2021. The analysis
of the inversion results reveals the challenges associated with the inversion of CO emissions at the regional scale
over Europe. Annual budgets of national emissions have decreased by about 1 %–11 % over the decade and across
Europe. These decreases are mainly due to negative corrections during autumn and winter. The posterior CO
emissions follow a decreasing trend over the European Union and United Kingdom area of about −2.2 % yr−1,
slightly lower than in the prior emissions. The assimilation of the MOPITT observation in the inversions indeed
attenuates the decreasing trend of the CO emissions in the TNO inventory over areas benefiting from the highest
number of MOPITT super-observations (particularly over Italy and over the Balkans), and particularly in autumn
and winter. The small corrections of the CO emissions at national scales by the inversion can be attributed, first,
to the general consistency between the TNO-GHGco-v3 inventory and the satellite data. Analysis of specific
patterns such as the impact of the Covid-19 crisis reveals that it can also be seen as a lack of observation
constraints to adjust the prior estimate of the emissions. The large errors associated with the observations in our
inversion framework and the lack of data over large parts of Europe are sources of limitation on the observational
constraint. Emission hotspots generate a relatively strong local signal, which is much better caught and exploited
by the inversions than the larger-scale signals, despite the moderate spatial resolution of the MOPITT data. This
is why the corrections of these hotspot emissions are stronger and more convincing than the corrections of the
national- and continental-scale emissions. Accurate monitoring of the CO national anthropogenic emissions may
thus require modelling and inversion systems at spatial resolutions finer than those used here as well as satellite
images at high spatial resolution. The CO data of the TROPOMI instrument on board the Sentinel-5P mission
should be well suited for such a perspective.
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1 Introduction

Carbon monoxide (CO) is an air pollutant and a greenhouse
gas, mainly emitted by anthropogenic activities and impact-
ing both air quality and climate change. It plays a major role
in atmospheric chemistry as a key component of the methane
(CH4) oxidation chain with formaldehyde (HCHO), ozone
(O3), and carbon dioxide (CO2). Through chemical inter-
actions with hydroxyl radical (OH), CO (i) influences con-
centrations of CH4 and non-methane volatile organic com-
pounds (NMVOCs), (ii) affects the self-cleaning or oxida-
tion capacity of the atmosphere (Lelieveld et al., 2016), and
(iii) leads to the chemical production of air pollutants and/or
greenhouse gases such as tropospheric O3 and CO2. In this
context, there is a need for accurate mapping or monitoring
of the CO surface emissions.

CO emissions estimated by bottom-up (BU) invento-
ries, based on statistical and economic data and relying
on emission factors per activity type, suffer from relatively
large uncertainties. For example, at the national and annual
scales, these uncertainties range from 20 %–60 % to 50 %–
200 %, depending on the sectors in the European Monitor-
ing and Evaluation Programme (EMEP) inventory (Kuenen
and Dore, 2019). Complementary to BU inventories, atmo-
spheric CO concentration data, such as those observed from
satellite observations, can be used to derive estimates of the
CO fluxes based on atmospheric transport inverse modelling
techniques (Rayner et al., 2019). Over the last 2 decades, the
space-borne Measurement of Pollution in the Troposphere
(MOPITT; Drummond et al., 1996; Deeter et al., 2003),
the Atmospheric Infrared Sounder (AIRS; Aumann et al.,
2003; McMillan et al., 2005), the Tropospheric Emissions
Spectrometer (TES; Beer, 2006), and the Interféromètre At-
mosphérique de Sondage dans l’Infrarouge (IASI; Clerbaux
et al., 2009) have revolutionized our ability to map CO con-
centrations and to understand the trends and spatiotempo-
ral variability of its concentrations and emissions (Arellano
et al., 2006; Chevallier et al., 2009; Jones et al., 2009; Kopacz
et al., 2010; Jiang et al., 2011; Fortems-Cheiney et al., 2011;
Hooghiemstra et al., 2012; Miyazaki et al., 2015; George
et al., 2015; Yin et al., 2015; Jiang et al., 2017; Zheng et al.,
2018; Buchholz et al., 2021; Gaubert et al., 2023). However,
the potential of satellite data to inform about CO emissions
has mainly been explored at the global scale, with emission
estimates corresponding to large regions. Today, scientific
and societal issues require an up-to-date quantification of
pollutant emissions at a higher spatial resolution targeting na-
tional estimates. This currently requires the use of regional-
scale inversion systems (Fortems-Cheiney et al., 2021).

However, although these systems are suited to reactive
species, they have hardly been used to quantify emissions of
pollutants such as CO. In the past decade, CO regional-scale
inversions based on the MOPITT data covered the CO emis-
sions in North America (Jiang et al., 2015) and East Asia
(Qu et al., 2022). To our knowledge, there have only been

a few studies covering the European CO emissions based
on satellite observations (Konovalov et al., 2016; Fortems-
Cheiney et al., 2021), this continent being more challeng-
ing for regional-scale inversions of the CO anthropogenic
emissions owing to a weaker CO signal (Konovalov et al.,
2016). Konovalov et al. (2016) estimated CO European emis-
sions from the IASI thermal-infrared (TIR) satellite mea-
surements over Europe but pointed out the low sensitivity
of the corresponding CO total columns to anthropogenic CO
emissions. Deeter et al. (2013) showed that the sensitivity
of the total columns to CO emissions in the lower tropo-
sphere – where the regional signal from CO regional anthro-
pogenic emissions above the large-scale and highly mixed
CO background is largest – should be significantly greater
for retrievals exploiting simultaneous TIR and near-infrared
(NIR) measurements than for retrievals based on either spec-
tral region alone. Fortems-Cheiney et al. (2021) performed
regional inversions using MOPITT TIR-NIR satellite obser-
vations over Europe to illustrate the behaviour of the varia-
tional atmospheric inversion system PYVAR-CHIMERE, but
only over a short temporal window of 7 d. The ability of re-
gional inverse systems to quantify CO budgets at the national
and monthly to annual scales in Europe from the MOPITT
TIR-NIR satellite observations has not been assessed yet.

The objective of this work is therefore to carry out a long-
term regional inversion for Europe using these observations.
We estimate CO emissions from the MOPITT TIR-NIR ob-
servations for more than 10 years from January 2011 to
November 2021. The analysis over the period 2011–2021
makes it possible to evaluate the strong trends indicated by
the BU inventories over the decade and major inter-annual
anomalies, in particular the expected reduction of emissions
in 2020 due to the measures taken in response to the Covid-
19 pandemic. For this objective, we have used the varia-
tional inversion drivers of the recent Community Inversion
Framework (CIF; Berchet et al., 2021), which inherits the
developments made for the regional assimilation of satellite
data on gaseous species by Fortems-Cheiney et al. (2021).
We also use a European configuration of the CHIMERE re-
gional chemistry transport model (CTM) (Menut et al., 2013;
Mailler et al., 2017) and of its adjoint (Fortems-Cheiney
et al., 2021) driven by the CIF. The data and methods used in
this study are described in Sect. 2. The results are described
in Sect. 3.

2 Data and methods

2.1 Configuration of the CHIMERE CTM for the
simulation of CO concentrations in Europe

The configuration of the atmospheric CHIMERE CTM for
Europe is described in Table 1. CHIMERE is run over
a 0.5°× 0.5° regular horizontal grid and 17 vertical lay-
ers, from the surface to 200 hPa, with 8 layers within the
first 2 km. The domain covers Europe (15.25° W–35.75° E,
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31.75–74.25° N) and includes 101 (longitude)× 85 (latitude)
grid cells. The ERA-Interim reanalyses – the only ones avail-
able at the beginning of this study – remain at the rather
low horizontal resolution of 79 km compared to the fore-
cast fields. Consequently, as a trade-off between the accuracy
of large-scale meteorological fields and resolutions at finer
resolution, CHIMERE is driven here by the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) opera-
tional meteorological forecast (Owens and Hewson, 2018),
with a spatial resolution of 0.25°. The chemical scheme used
in CHIMERE is MELCHIOR-2, with more than 100 reac-
tions (CHIMERE, 2017), including the secondary production
of CO through the oxidation and photolysis of hydrocarbons
and its sink with OH.

Initial and boundary conditions for several key gaseous
species responsible for the oxidation capacity of the lower
atmosphere (e.g. CO, NO, NO2, O3,H2O2, or HCHO) were
specified using monthly climatological data from the LMDz-
INCA global model (Szopa et al., 2008).

CO emissions from fires, which account for about 2 %
of the total European CO emissions (San-Miguel-Ayanz and
Steinbrecher, 2019), are not taken into account in this study.
CO biogenic emissions are assumed to be negligible and
are not taken into account. In contrast to Fortems-Cheiney
et al. (2021) using TNO-GHGco-v1, the prior estimate of CO
anthropogenic emissions is derived from the recent TNO-
GHGco-v3 gridded inventory for the period 2011–2018. The
TNO-GHGco version is an update of the TNO inventory (Su-
per et al., 2020; Denier van der Gon et al., 2021; Kuenen
et al., 2022) based on EMEP/CEIP official country reporting
for air pollutants. This inventory has been delivered with an
extrapolation of the emissions for the year 2019 based on an
in-sample approach (Super et al., 2020). We use this combi-
nation of products for the years 2011–2019. Our prior esti-
mates of the emissions for 2020 and 2021 are set at the val-
ues for 2019. The horizontal resolution of the TNO-GHGco-
v3 inventory is 6× 6 km2. The TNO-GHGco inventory com-
bines emissions from area sources, set at the surface, and
from point sources. Emissions from point sources, mainly
from the energy production and industrial sectors, are dis-
tributed on the vertical model layers typically depending on
the injection height provided in the TNO inventory, based on
Bieser et al. (2011). The annual and national budgets from
EMEP/CEIP are disaggregated in space based on proxies of
the different sectors of activity (Kuenen et al., 2022). The
temporal disaggregation is based on temporal profiles pro-
vided per Gridded Nomenclature for Reporting (GNFR) sec-
tor code with typical month-to-month, weekday-to-weekend,
and diurnal (at a 1 h scale) variations. The TNO-GHGco-
v3 inventory is aggregated at the 0.5°× 0.5° horizontal res-
olution of the CHIMERE grid. The resulting prior anthro-
pogenic CO emissions from 2011 to 2021 for the European
Union + United Kingdom (EU-27+UK) area are illustrated
in Fig. 1, and the resulting map of prior anthropogenic CO
emissions is shown in Fig. 2a for January 2015. CO emis-

sions are high over large cities and over industrial areas (e.g.
over the Benelux, the Po Valley in Italy, north-western Ger-
many, or southern Poland).

In addition to CO, the MELCHIOR-2 chemical scheme
needs emissions from other species, such as NMVOCs or
nitrogen oxides (NOx =NO+NO2). Anthropogenic NOx
emissions are from the TNO-GHGco-v3 inventory, while
NMVOC anthropogenic emissions are from the EMEP in-
ventory (Vestreng et al., 2005). Biogenic NOx and NMVOC
emissions, in particular emissions of isoprene and some other
hydrocarbons from vegetation, are obtained from the Model
of Emissions of Gases and Aerosols from Nature (MEGAN)
(Guenther et al., 2006).

The resulting monthly mean volume mixing ratios be-
tween the surface and 900 hPa are illustrated in Fig. 3a for
January 2015. The sensitivity of CO-simulated concentra-
tions to CO emissions is evaluated by running a sensitivity
test with European CO anthropogenic emissions set to zero:
the simulated concentrations are illustrated in Fig. 4.

2.2 MOPITT satellite observations

CO inversions assimilate CO observations from the MO-
PITT retrieval product Version 8 (Deeter et al., 2019). MO-
PITT flies on board the NASA EOS-Terra satellite in a low
sun-synchronous orbit that crosses the Equator at 10:30 and
22:30 local solar time (LST). The spatial resolution of its
observations is about 22× 22 km2 at nadir. It has been op-
erated nearly continuously since March 2000. MOPITT CO
products are available in three variants: TIR only, NIR only,
and the multispectral TIR-NIR product, all containing to-
tal columns and retrieved profiles (given on a 10-level grid
from the surface to 100 hPa). Among the different MO-
PITTv8 products, we choose to work with the multispectral
MOPITTv8-NIR-TIR one (also called MOPITT-v8J), as the
sensitivity to CO in the lower troposphere should be signifi-
cantly greater for retrievals exploiting simultaneous TIR and
NIR measurements than for retrievals based on either spec-
tral region alone (Worden et al., 2010; Deeter et al., 2013;
Buchholz et al., 2017). In addition, it provides the highest
number of data.

We choose to assimilate the MOPITT V8J surface product,
derived as the mean volume mixing ratio between the surface
and 900 hPa, as the surface level multispectral retrievals have
greater sensitivity to CO near the surface and reduced sensi-
tivity in the free troposphere (Jiang et al., 2015; Qu et al.,
2022). Long-term trends of surface CO concentrations for
2001–2015 are very consistent between the “MOPITT lower
profile” and World Data Center for Greenhouse Gases (WD-
CGG) sites (Jiang et al., 2017). The retrieval bias drift is also
low at the surface level for V8 TIR-NIR products as com-
pared to National Oceanic and Atmospheric Administration
(NOAA) flask measurements (Deeter et al., 2019). Finally,
the surface level of the V8 TIR-NIR products gives the low-
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Table 1. Main characteristics of the European CHIMERE configuration used in this work.

Domain Europe (15.25° W–35.75° E, 31.75–74.25° N)
Horizontal resolution 0.5°× 0.5° regular grid
Vertical resolution 17 layers from the surface to 200 hPa
Meteorological fields ECMWF operational meteorological forecast (Owens and Hewson, 2018)
Initial and boundary conditions Climatological values from the LMDZ-INCA global model (Szopa et al., 2008)
Anthropogenic emissions TNO-GHGco-v3 inventory (Super et al., 2020)
Biogenic emissions MEGAN (Guenther et al., 2006)

Figure 1. Estimates of the monthly budgets of CO for EU-27+UK from the TNO-GHGco-v3 inventory (solid light-grey line) and its
extension to 2020–2021 (dashed light-grey line) as well as from the regional inversions (solid orange line) from January 2011 to December
2021.

est bias when compared to in situ data from NOAA aircraft
validation sites (Deeter et al., 2019).

To make accurate comparisons between simulations and
satellite observations, the averaging kernels (AKs) and the
MOPITT prior profiles are applied to the simulated field so
that the simulated concentrations exhibit the same degree of
smoothing and a priori dependence as the MOPITT product
(Deeter et al., 2013, 2019). Following the recommendations
of Deeter (2018), the formula for the total columns is

cm = ca+ ak
(
co

m− xa
)
, (1)

where cm is the modelled column, ca is the a priori total col-
umn value corresponding to the a priori profile xa derived
from a model climatology and varying seasonally and geo-
graphically (Deeter et al., 2019), ak contains the averaging
kernels which are an indication of the vertical resolution of
the measurements, and co

m is the vertical distribution of the
original model’s partial columns interpolated to the pressure
grid of the AKs. In practice, we have adapted this formula to
the MOPITT surface level.

In order to associate the super-observations with a real
AK, the super-observations have been taken as the individ-
ual observation corresponding to the value of the median of
the MOPITT concentrations within the 0.5°× 0.5° grid cell
of the CTM and within the CTM’s physical time steps (about
5–10 min). The AKs and the uncertainty associated with this
individual super-observation are then used to define the AK
and the uncertainty for the “super-observation”. In principle,
the observation error associated with such a median value
should be smaller than the error associated with an individ-
ual observation, but here we keep the error for the individual
observation used to define the super-observation as a con-
servative estimate of the super-observation error. The super-
observations therefore do not have a smaller error than the
individual observations.

The resulting monthly means of the MOPITT super-
observations and their simulated equivalents for CO average
surface concentrations in January 2015 are respectively illus-
trated in Fig. 3b and c. The spatial patterns of the CO con-
centrations are very different if the MOPITT AK and prior
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Figure 2. (a) Monthly CO emissions (kt CO) and (b) monthly mean relative increments to the TNO-GHGco-v3 inventory of CO anthro-
pogenic emissions from the inversion in percentage, in January 2015, at the 0.5°× 0.5° model resolution.

Figure 3. Averages of the CO concentrations between the surface and 900 hPa, (a) simulated by CHIMERE using the prior TNO-GHGco-v3
anthropogenic emission estimate without applying the MOPITT AK and prior profiles, (b) corresponding to the MOPITT surface super-
observations in the CHIMERE grid, and (c) simulated by CHIMERE using the prior TNO-GHGco-v3 anthropogenic emission estimate
applying the MOPITT AK and prior profiles (ppbv). (d) Ratios of the posterior and prior biases between monthly mean surface concentrations
from CHIMERE and the MOPITT super-observations, at the 0.5°× 0.5° grid cell resolution, in January 2015. All ratios lower than 1, in blue,
demonstrate that posterior emission estimates improve the simulation compared to the prior ones.

profiles are applied (Fig. 3c) or not (Fig. 3a), particularly in
central, eastern, and northern Europe. It shows that the MO-
PITT AK and prior profiles have a strong impact on the CO
concentrations over these regions.

It is important to note that the potential of MOPITT to pro-
vide information can be strongly hampered by the cloud cov-
erage in autumn and in winter, as illustrated in Fig. 3b with
blanks for a large part of central Europe in January 2015.
Generally, because of the cloud cover, the number of MO-
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Figure 4. (a) Absolute differences (ppbv) and (b) relative differences (%) between the averages of CO concentrations simulated using the
prior TNO-GHGco-v3 anthropogenic emission estimate and simulated with null CO emissions in January 2015.

Figure 5. (a) Number of CO MOPITT super-observations and (b) averages of the errors associated with the CO MOPITT super-observations,
in percentage, in January 2015.

PITT super-observations is higher in the south of Europe than
in central or northern Europe (Fig. 5a). The new MOPITT re-
trieval Version 9 product has a better observation coverage,
with a number of daytime MOPITT retrievals over land in-
creasing by 30 %–40 % relative to the Version 8 product due
to improvements in the cloud detection algorithm (Deeter
et al., 2022).

2.3 Variational inversion of CO anthropogenic emissions

The inversion of CO emissions consists in correcting the
“prior” estimate of these emissions and of the model initial
and/or boundary conditions to improve the fit between the
simulated concentrations and the satellite CO data. The pa-
rameters of the variational inversions here closely follow the
configuration of Fortems-Cheiney et al. (2021), which pro-
vides details on the principle and configuration for such in-
versions. The optimal (“posterior”) estimate of the emissions
in a statistical sense is found by iteratively minimizing the
following cost function J (x):

J (x)=
1
2

(
x− xb

)T
B−1

(
x− xb

)
+

1
2

(H(x)− y)TR−1 (H(x)− y) , (2)

where x, H, y, B, and R are respectively the control vec-
tor, the observation operator, the observations, and the co-
variance matrices as detailed in the following paragraphs.

As a trade-off between computational resources and the
relevance of our inversions with a moderate impact of the
initial conditions on our 1-month CO simulation, series of
independent 1-month inversion windows are run. We there-
fore do not account for the potential update of the concen-
trations during a previous 1-month window due to the inver-
sions. Due to the relatively long lifetime of CO – i.e. a few
weeks to 2 months (Prather, 1996) – compared to the size of
the studied domain, we account for the CO lateral boundary
conditions at the borders of the domain and for their uncer-
tainties.

Therefore, the control vector x contains the following.
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– CO anthropogenic emissions at a 1 d temporal resolu-
tion, at a 0.5°× 0.5° resolution and over the 17 vertical
levels of CHIMERE, i.e. for a 1-month inversion, for
each of the corresponding (28 to 31 d)× 101× 85× 17
grid cells

– CO lateral boundary conditions at a 1 d temporal resolu-
tion, at a 0.5°× 0.5° resolution, and over the 17 vertical
levels of CHIMERE, i.e. for each of the corresponding
(28 to 31 d)× 372× 17 grid cells

– CO 3D initial conditions at 00:00 UTC on the first day
of the month, at a 0.5°× 0.5° resolution and over the 17
vertical levels of CHIMERE, i.e. for each of the corre-
sponding 101× 85× 17 grid cells.

It should be noted that the VOC emissions are fixed and not
controlled here by the inversion. Nevertheless, the chemical
production of CO by VOCs could be changed due to the cor-
rection of CO boundary conditions and fluxes through chem-
istry.
H is the observation operator, which links the control vari-

ables to the observed concentrations; it includes the CTM,
space and time sampling, and other operations (e.g. aver-
aging) required to compute the simulated equivalent of the
assimilated data. The uncertainties in the observations y to-
gether with those in the observation operator H and the un-
certainties in the prior estimate of the control vector xb are
assumed to have a Gaussian distribution and are thus char-
acterized by their covariance matrices R and B respectively.
The assumptions and practical way to define these matrices
have been detailed by Fortems-Cheiney et al. (2021). The
ratios between the prior error standard deviations in B and
the prior estimates are set to 100 % for the CO emissions.
This value of 100 % has already been chosen in the liter-
ature (Pétron et al., 2002; Kopacz et al., 2010; Yumimoto
and Uno, 2006; Fortems-Cheiney et al., 2011, 2012, 2021).
Even though annual CO emissions in western Europe may
be well known, with uncertainties of 6 % according to Su-
per et al. (2020), larger uncertainties could affect eastern
Europe. Moreover, large uncertainties still affect bottom-up
emission inventories at the 0.5° resolution: spatial disaggre-
gation of the national-scale estimates to provide gridded esti-
mates causes a significant increase in the uncertainty for CO
(Super et al., 2020).

In contrast with Fortems-Cheiney et al. (2021), where they
are set to 15 %, the ratios between the prior error standard
deviations in B and the prior estimates are set to 50 % for
the CO lateral conditions. Spatial correlations are built with
exponentially decaying functions with an e-folding length of
50 km on land and on sea. Here, the covariance matrix R only
takes into account the estimates of measurement errors re-
ported in the MOPITT data sets. Indeed, the errors associated
with the observation operators (in particular those associated
with the chemistry-transport modelling with the CHIMERE
configuration for Europe) are ignored since they are assumed

to be much smaller than those associated with the MOPITT
data. The minimum of the cost function J is searched for
with the iterative limited-memory quasi-Newton minimiza-
tion algorithm M1QN3 (Gilbert and Lemaréchal, 1989). At
each iteration, the computation of the gradient of J relies on
the adjoint of the observation operator, and in particular on
the adjoint of CHIMERE. In the results presented in Sect. 3,
the norm of the gradient of the cost function J is reduced
by more than 90 %, which indicates robust mathematical be-
haviour of the system.

The calculation of the uncertainty in the estimate of emis-
sions from the inversion, known as “posterior uncertainty”, is
challenging when using a variational inverse system (Rayner
et al., 2019): it is not done here.

3 Results

3.1 Comparison between simulated and assimilated CO
concentrations

The MOPITT data and their prior simulated equivalents
present similar spatial patterns for CO concentrations, with
the lowest values over Spain (i.e. about 125 ppbv) and values
higher than 200 ppbv over central Europe (over the Benelux,
the Po Valley in Italy, north-western Germany, and south-
ern Poland, Fig. 3). However, the prior simulation overesti-
mates CO concentrations compared to the MOPITT super-
observations, in particular over urban and industrial areas in
central Europe, where the anthropogenic emissions are large
(Fig. 2a).

It is interesting to note that global models have struggled,
with a low bias in CO in the Northern Hemisphere, par-
ticularly in winter, compared to the MOPITT observations
(Fortems-Cheiney et al., 2011; Stein et al., 2014). However,
compared to these previous studies, we have used more re-
cent MOPITT observations, and validation results for the
Version 8 MOPITT CO products indicate reduced long-term
bias drift, weaker-bias geographical variability, and smaller
biases overall compared to Version 7 (Deeter et al., 2019).
We have also used a more recent prior estimation of the
CO emissions from the TNO-GHGco-v3 inventory, as it is
based on recent EMEP/CEIP official country reporting for
air pollutants. As model errors in long-range transport, dif-
fusion, and chemistry linked to the hydroxyl radical OH
and to NMVOCs (Strode et al., 2015; Gaubert et al., 2020)
and coarse resolution (Valin et al., 2011) can all impact the
inverse modelling of CO (Arellano et al., 2006; Fortems-
Cheiney et al., 2011; Jiang et al., 2017; Zheng et al., 2019),
we also used a chemical scheme describing the CO chem-
istry (including its secondary production through the oxida-
tion and photolysis of hydrocarbons and its sink with OH,
Sect. 2.1), and we have increased the spatial resolution of the
transport model with a regional CTM. These different aspects
can explain how our regional inversion does not highlight a
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low bias in the inventories, unlike past global inversion stud-
ies.

By design, the inversions bring the simulated CO concen-
trations closer to the MOPITT “surface” super-observations
(Fig. 3d). The mean bias over the entire domain between
the simulation and the MOPITT super-observations is re-
duced by about 2 %. Nevertheless, the corrections made to
the prior TNO-GHGco-v3 inventory are particularly large in
areas where both CO emissions and the sensitivity of CO
concentrations to the emissions are high (Figs. 2a, 4). For
example, the posterior emissions reduce the mean bias be-
tween the simulated concentrations and MOPITT data by
about 26 % over the Po Valley in Italy and over Benelux in
January 2015 (Fig. 3d).

Nevertheless, it is worth stressing that the posterior simu-
lation still presents positive biases compared to the observa-
tions (Fig. 3d). This can be explained by (i) large errors in the
MOPITT super-observations that could reach 40 % (Fig. 5b)
and (ii) the relatively weak sensitivity of the simulated con-
centrations to the local or regional emissions, as illustrated in
Fig. 4.

3.2 Posterior CO emissions

This section focuses on the emissions from the 11-year CO
inversion for the period 2011 to 2021. As the prior simulation
overestimates CO concentrations compared to the MOPITT
super-observations, the inversion applies negative increments
to the prior emission estimates (Fig. 2b). These negative in-
crements mainly occur in autumn and winter, even though
there is a lower number of observations during these seasons
compared to spring and summer. The highest increments are
found over large cities and over industrial areas (Fig. 2b),
where CO emissions are high (Fig. 2a). This shows the po-
tential of MOPITT data to provide some information over
areas with strong anthropogenic CO emissions.

The differences between the prior and posterior CO an-
nual budgets for 30 European countries are shown in Table 2
for the year 2015. Annual budgets of the national emissions
have decreased by about 1 %–11 % (Table 2). Similarly, the
national and annual increments from 2011 to 2021 range be-
tween −1 % and 11 %. Overall, the posterior emission esti-
mates are about 6.3 % lower than the prior emissions for the
EU-27+UK area in 2015. This indicates that the European
CO emissions could be slightly overestimated in the TNO-
GHGco-v3 inventory.

The 2011–2021 inversion makes it possible to evaluate the
trends and compare them to the ones indicated by the inven-
tories over the decade. As our prior estimates of the emis-
sions for 2020 and 2021 are set at the values for 2019 (see
Sect. 2), trends of CO emissions are only computed from
2011 to 2019. This restriction avoids including the Covid-19
pandemic years.

The TNO-GHGco-v3 CO emissions show a decreasing
trend over the EU-27+UK area from 2011 to 2019 (Fig. 1)

Table 2. Difference between the CO annual emissions from the
TNO-GHGco-v3 inventory used as a prior in this study and from
the inversions, by country (%), in 2015.

Country Difference between CO anthro-
code pogenic emission estimates

from the inversions and
TNO-GHGco-v3 (%)

ALB −5.9
AUT −8.0
BEL −6.2
BLR −0.6
CHE −8.4
DEU −7.6
DNK −1.2
ESP −4.1
FIN −0.5
FRA −5.3
GBR −3.3
IRL −0.8
ITA −11.4
LUX −6.3
NLD −6.8
NOR −1.0
PRT −3.0
SWE −0.4
BGR −4.0
CZE −10.6
EST −0.3
HRV 8.94
HUN −7.1
LTU −0.7
LVA −0.4
POL −6.7
ROU −5.6
SVN −9.1
SVK −7.8
UKR −3.4
EU-27+UK −6.3

of about −2.5 % yr−1 (p= 9.5× 10−4). These decreasing
trends are mainly driven by the transport sector (Zheng et al.,
2019) with progressive pollution control on vehicles that has
cut down European CO emissions (Crippa et al., 2016). Inter-
estingly, the trends from 2011 to 2019 in the TNO inventory,
based on the EMEP official reporting, exhibit some dispar-
ities depending on the country, with for example a stronger
decreasing trend over France than over Germany.

The posterior CO emissions display a very similar de-
creasing trend to the prior emissions over the EU-27+UK
area (Fig. 1) of about −2.2 % yr−1 (p= 2.2× 10−3). The
main differences between the prior and posterior trends are
found for the autumn and winter months, with a posterior
trend of about −1.9 % yr−1 compared to the prior trend of
about −2.4 % yr−1. Spatially, the differences are larger in
Italy, in the Czech Republic, and in the Balkans than in
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Figure 6. Trends of CO emissions from 2011 to 2019 (a) in the TNO-GHGco-v3 inventory and (b) in the posterior emissions (% yr−1).
Crosses show pixels with an insignificant trend (p value higher than 0.05).

the rest of Europe (Fig. 6). While the TNO-GHGco-v3 in-
ventory shows significant decreasing trends in these regions,
the posterior emissions appear to be stagnating, even with a
non-significant increasing trend over parts of Italy. These ar-
eas benefit from the best MOPITT coverage, with the high-
est number of MOPITT super-observations (Fig. 5a). Con-
sequently, the assimilation of MOPITT observations into the
inversions attenuates the strong decreasing trend of the CO
emissions in the TNO-GHGco-v3 inventory, particularly dur-
ing autumn and winter.

Finally, there is no significant inter-annual variability from
2011 to 2019, neither in the prior CO emissions nor in
the posterior CO emissions. Particular attention has conse-
quently been paid to the possible detection of an inter-annual
anomaly linked to the policies implemented in response to
the Covid-19 pandemic in 2020.

3.3 Impact of Covid-19

Following the usual diagnostic in the literature to assess the
change in air pollutant concentrations due to the Covid-19
policies, we characterize the impact of the Covid-19 policies
in terms of a change in emissions budgets from April 2019
to April 2020. Most of the European countries implemented
lockdown policies in April after a progressive implementa-
tion of the national lockdowns from 9 March 2020 (Italy)
to 23 March 2020 (United Kingdom, UK). The change from
April 2019 to April 2020 potentially includes variations as-
sociated with drivers of the usual emission processes (e.g.
changes in temperature from 2019 to 2020), but, as indicated
above, the typical inter-annual variations in both the prior and
posterior estimates are relatively small. Since the prior esti-
mates for 2020 and 2019 are identical (see Sect. 2), we actu-
ally analyse the impact of the Covid-19 policies in terms of
differences of increments provided by the inversions to these

Table 3. Difference between the CO posterior emissions in April
2020 and in April 2019, by country (%).

Country Difference between CO
code posterior emissions

estimates in April 2020
and in April 2019 (%)

BEL −5.6
CHE −3.5
DEU −7.3
FRA −1.2
GBR −0.4
ITA −3.5
LUX −5.4
NLD −7.7
EU-27+UK −1.3

prior estimates between April 2019 and April 2020. Overall,
a much smaller lockdown-driven impact is expected for CO
than for NO2, particularly because of smaller contributions
from lockdown-affected sources (Clark et al., 2021).

At the European scale, the CO posterior emission esti-
mates derived from the MOPITT data decrease by about
−1.3 % in April 2020 compared to April 2019 (Table 3).
This decrease is lower than the estimates of about −4.7 %,
−6.4 %, −7.6 %, and −8.2 % of respectively Guevara et al.
(2023), Doumbia et al. (2021), Forster et al. (2021), and
the officially reported emissions from EMEP/CEIP (CEIP,
2022).

Nevertheless, as shown in Fig. 7, the inversions lead to a
higher decrease in CO emissions over the areas where the
anthropogenic emissions are usually large, and particularly
over industrial basins such as over the Benelux and Rhine–
Ruhr Valley, where the decrease reaches −8 %, and over the
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Figure 7. (a) Emissions estimated by the TNO inventory in April 2019 (kt CO per month). Increment provided by the inversions in (b) April
2019 and (c) April 2020 (%).

Po Valley, where it reaches −10 % in April 2020 compared
to April 2019 (Fig. 7c).

4 Discussion and conclusion

The CIF, coupled to the regional chemistry-transport model
CHIMERE and its adjoint, together with the satellite CO
MOPITT data have been used to estimate 11 years from 2011
to 2021 of European CO emissions. The analysis of the in-
version results reveals the challenges associated with the in-
version of CO emissions at the regional scale over Europe.
Annual budgets of the national emissions have decreased by
about 1 %–11 % over the decade and over Europe. These de-
creases are mainly due to negative corrections during autumn
and winter.

The posterior CO emissions display a very similar decreas-
ing trend to the prior emissions over the EU-27+UK area,
with a trend of about −2.2 % yr−1 showing a general consis-
tency with reported anthropogenic emissions. This trend is
slightly lower than in the prior emissions. The assimilation
of the MOPITT observation in the inversions indeed atten-
uates the decreasing trend of the CO emissions in the TNO
inventory over areas benefiting from the highest number of

MOPITT super-observations (particularly over Italy and over
the Balkans), and particularly in autumn and winter.

The posterior simulation still presents positive biases com-
pared to the observations. The minimization algorithm of the
inversion appears to converge correctly with the constraints
used in practice. Therefore, these residual positive biases can
be mainly explained for a large part by the large errors as-
sociated with the observations in our inversion framework.
As discussed in Sect. 2.2, our derivation of the error asso-
ciated with each super-observation is conservative. Other in-
dices support this assumption. In particular, the χ2 diagnostic
(Ménard and Chang, 2000) is significantly lower than 1. This
indicates that the B and R matrices used here to characterize
the prior and observation errors likely overestimate the am-
plitudes of these errors (Ménard and Chang, 2000). However,
even when assuming that the observation errors would only
consist of random noise uncorrelated in space and setting the
error in the super-observation to that of the average of the
number of observations (nbobs) in the model grid cells, i.e.
of the order of 1

√
(nbobs)

times the observation error for in-
dividual observations, the impact would be moderate since
nbobs is generally equal to 2 to 3. Actually, the set-up of the
B matrix is also rather conservative, and the balance between
the two errors in the set-up of the B and R matrices may be

Atmos. Chem. Phys., 24, 4635–4649, 2024 https://doi.org/10.5194/acp-24-4635-2024



A. Fortems-Cheiney et al.: CO anthropogenic emissions in Europe using MOPITT 4645

relatively good. Therefore, the lack of fit to the observations
in these inversions could be associated with the large retrieval
error corresponding to the MOPITT product. The robustness
of the inversions would still benefit from a refinement of our
configuration of the R matrix, which would lead to a better
fit to the observations. First, we should probably investigate
the components of the retrieval errors which are distributed
along with the MOPITT product. Gaubert et al. (2023) indi-
cate that, when applying the averaging kernel, the smoothing
error can be ignored and the weight of this component is sig-
nificant. The revision of our conservative assignment of the
observation errors to the super-observation would be more
challenging. It would require good knowledge of the respec-
tive weight of the random noise (without spatial correlation)
and the systematic errors (with spatial correlations) in the to-
tal retrieval errors as well as good knowledge of the typical
correlation length scales of the systematic errors, but we lack
insights regarding this. The use of notional assumptions (as
for the characterization of the model error) may still repre-
sent a sensible trade-off and allow for an improved assimi-
lation of the observations. Finally, a refinement of the inver-
sion strategy may also support a better fit to the observations.
In particular, under the assumptions that uncertainties in the
control variables have a Gaussian distribution, the control of
the logarithm of the emissions rather than the scaling factor
for these emissions may better correspond to our CO inver-
sion problem, in which CO emissions are necessarily positive
but in which these emissions would have to be strongly de-
creased. In contrast to the Gaussian characterization and the
spatial correlation of the uncertainties in the emissions, the
Gaussian characterization and the spatial correlation of the
uncertainties in the logarithm of the emissions could increase
the flexibility for large local corrections of the emissions. The
current characterization of the uncertainties in the CO emis-
sions using a Gaussian distribution may actually contribute
to the limitation of the fit to the observations.

The small corrections of the CO emissions at national
scales by the inversion can be attributed, first, to the general
consistency between the TNO-GHGco-v3 inventory and the
satellite data. However, analysis of specific patterns such as
the impact of the Covid-19 crisis reveals that it can also be
seen as a lack of observation constraints to adjust the prior
estimate of the emissions. The large errors associated with
the observations in our inversion framework and the lack of
data over large parts of Europe are definitely some sources of
limitation on the observational constraint.

However, in a more general way, this questions the abil-
ity to exploit large-scale variations in the CO satellite data
to constrain regional-, national-, and continental-scale bud-
gets of the emissions. Emission hotspots generate a rela-
tively strong local signal, which is much better caught and
exploited by the inversions than the larger-scale signals de-
spite the moderate spatial resolution of the MOPITT data.
This is why the corrections of these hotspot emissions are
stronger and more convincing than the corrections of the

national- and continental-scale emissions, as shown by the
analysis of the impact of Covid-19 policies. Accurate moni-
toring of the national anthropogenic CO emissions will likely
rely more on the aggregation of local emission monitoring
data than on the processing of large-scale variations in the
CO fields. The former requires modelling and inversion sys-
tems at spatial resolutions finer than those used here as well
as satellite images at high spatial resolutions. The CO im-
ages of the TROPOMI instrument on board the Sentinel-5P
mission with a 5.5 km× 7 km resolution since August 2019
should be well suited for such a perspective. The large in-
crease in the number of observations with this mission is ex-
pected to increase the capabilities to monitor CO emissions
and to address air-quality-related emissions at the national to
sub-national scales.
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