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Abstract. Nitrogen-containing organic compounds (NOCs) are abundant and important aerosol components
deeply involved in the global nitrogen cycle. However, the sources and formation processes of NOCs remain
largely unknown, particularly in the city (Uriimqi, China) farthest from the ocean worldwide. Here, NOCs in
PM, 5 collected in Uriimqi over a 1-year period were characterized by ultra-high-resolution mass spectrometry.
The abundance of CHON compounds (mainly oxygen-poor unsaturated aliphatic-like species) in the positive ion
mode was higher in the warm period than in the cold period, which was largely attributed to the contribution of
fresh biomass material combustion (e.g., forest fires) associated with amidation of unsaturated fatty acids in the
warm period, rather than the oxidation processes. However, CHON compounds (mainly nitro-aromatic species)
in the negative ion mode increased significantly in the cold period, which was tightly related to aged biomass
combustion (e.g., dry straws) in wintertime Uriimqi. For CHN compounds, alkyl nitriles and aromatic species
showed higher abundance in the warm and cold periods, respectively. Alkyl nitriles can be derived from fresh
biomass material combustion associated with the dehydration of amides (the main CHON compounds in the
warm period). In contrast, aromatic species were tightly related to aged biomass burning. These findings further
suggested different impacts of the combustion of fresh and aged biomass materials on NOC compositions in
different seasons. The overall results shed light on the mechanisms by which fresh and aged biomass materials
release different NOCs during combustion.

ity of OA (Xu et al., 2020; Y. Wang et al., 2017; Laskin et

Fine particulate matter (PM3 5) is a typical atmospheric pol-
lutant that can affect the global climate system, as well as
urban air quality and human health (Seinfeld et al., 2016;
K. Wang et al., 2021). Organic aerosol (OA) contributes sig-
nificantly (20 %-90 %) to PM> 5 mass concentration in most
polluted areas worldwide (Zhang et al., 2007; Han et al.,
2023). Up to 77 % of molecules in OA include nitrogen-
containing functional groups (Ditto et al., 2020; Kenagy et
al., 2021), which have been suggested to play important roles
in the formation, transformation, acidity, and hygroscopic-

al., 2009). Moreover, the further oxidation or nitrification of
some nitrogen-containing organic compounds (NOCs) and
volatile organic compounds (VOCs) by ozone (O3), hydroxyl
radical (+*OH), and nitrogen oxides (NOy) can lead to an
increase in the health hazards of OA (Franze et al., 2005;
Bandowe and Meusel, 2017). Nitrated amino acids and ni-
trated polycyclic aromatic hydrocarbons (PAHs) are two rep-
resentative hazard NOCs (Franze et al., 2005; Bandowe and
Meusel, 2017). Thus, the identification of aerosol NOCs at
the molecular level is important for improving our under-
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standing of the precursors, sources, and formation processes
of nitrogen-containing OA.

Previous observations in urban, rural, marine, and forest
areas have suggested that the molecular composition and rel-
ative abundance of aerosol NOCs were spatially different
(Samy and Hays, 2013; Jiang et al., 2022; Lin et al., 2012;
Xu et al., 2023; Zeng et al., 2020, 2021; Zhang et al., 2022).
These differences can be mainly attributed to the diverse
sources and formation mechanisms of aerosol NOCs. Com-
monly reported primary sources include combustion pro-
cess releases and natural emissions (e.g., soils, plant debris,
pollen, and ocean) (Song et al., 2022; Y. Wang et al., 2017;
Capeetal., 2011; Lin et al., 2023). In addition, aerosol NOCs
can also be tightly associated with secondary formation pro-
cesses involving the reactions of reactive nitrogen with VOCs
or particle-phase CHO compounds (Bandowe and Meusel,
2017; Zarzana et al., 2012; Laskin et al., 2014). For example,
laboratory experiments have found that the oxidation of iso-
prene and «-/B-pinene in the presence of NO, can result in
the formation of organic nitrates (e.g., methacryloyl perox-
ynitrate, dihydroxynitrates, and monohydroxynitrates) (Sur-
ratt et al., 2010; Rollins et al., 2012; Nguyen et al., 2015).
The reduced nitrogen species (e.g., NH3, NHI, and organic
amines) have been demonstrated to contribute to the forma-
tion of NOCs through “carbonyl-to-imine” transformations
in the laboratory experiments (Zarzana et al., 2012; Laskin
et al., 2014). In the field observation studies, NOCs in par-
ticulate matter were analyzed at the molecular level to indi-
cate their sources and formation mechanisms (Jiang et al.,
2022; Lin et al., 2012; Zhong et al., 2023). Xu et al. (2023)
characterized the variations of molecular compositions in ur-
ban road PM; s, suggesting that organic nitrates increased
largely through the interactions of atmospheric oxidants, re-
active gas-phase organics, and aerosol liquid water. Several
field studies conducted in Beijing (China) and Guangzhou
(China) also suggested that the molecular compositions and
formation of NOCs were tightly associated with environmen-
tal conditions (Jiang et al., 2022; Lin et al., 2012; Xie et al.,
2020). Generally, most studies on aerosol NOCs were per-
formed in economically developed regions and in forest and
marine areas (Jiang et al., 2022; X. Wang et al., 2017; Ditto
et al., 2022b; Altieri et al., 2016; Xu et al., 2020; Liu et al.,
2023; Zhang et al., 2022; Zeng et al., 2020). In contrast, few
studies have investigated the sources and atmospheric trans-
formation of NOCs in the urban northwestern border regions
of China (e.g., Uriimqi), which feature fragile ecology and
harsh environmental conditions (e.g., cold winter and dry
summer) that may hinder our comprehensive and in-depth
understanding of the formation process of NOCs in ambient
aerosols.

Biomass burning emissions were widely reported in the
source identification of aerosol NOCs in northern and south-
western China because of heating and cooking needs (Zhong
et al., 2023; Wang et al., 2021b; Chen et al., 2017). A re-
cent observation study in urban Tianjin suggested that most
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CHON compounds in wintertime PM s originated from
biomass burning (Zhong et al., 2023). The CHN;, compounds
have been identified in biomass burning OA (BBOA) (Laskin
et al., 2009; Y. Wang et al., 2017). Moreover, the high tem-
perature generated by biomass burning can facilitate the re-
lease of ammonia, a process that caused the reaction of car-
boxylic acids (e.g., oleic acid) with ammonia to form amides
and alkyl nitriles (Radzi Bin Abas et al., 2004; Simoneit et
al., 2003). Interestingly, we found that biomass burning in
rural China typically includes fresh biomass materials (e.g.,
forest fires) and aged biomass materials (e.g., straw after au-
tumn harvest, fallen leaves, and deadwood). Fresh biomass is
rich in oils and proteins, whereas aged biomass materials are
usually oligotrophic due to the transfer of nutrients to tender
tissues or fruits (Jian et al., 2016; Xu and Xiao, 2017). Thus,
NOC:s released from different types of biomass combustion
may vary in molecular composition. However, there are large
gaps in our current knowledge about the impacts of fresh and
aged biomass burning on NOCs in ambient aerosols.

Uriimgi (northwestern China) is the largest inland city (a
total area of 14216 kmz) farthest from the ocean in the world,
which is becoming increasingly prominent due to the na-
tional strategy of the “One Belt, One Road”. The city and
neighboring countries have a dry summer that can easily trig-
ger forest fires (Bétori et al., 2018; Xu et al., 2021), while
the winter is freezing with intensive aged biomass and fuel
combustion for heating (Ren et al., 2017). In this study, we
present 1-year ambient measurements of the chemical com-
positions in PM; 5 collected from Uriimgi. The specific aims
of this study are (1) to investigate the molecular-level specia-
tion of functionalized organic nitrogen compounds via high-
resolution mass spectrometry with positive (ESI+) and neg-
ative (ESI—) ionizations and (2) to investigate the potential
sources and formation processes for NOCs with a special fo-
cus on the relative influences of fresh and aged biomass burn-
ing in different seasons.

2 Materials and methods

2.1 Study site description and sample collection

The study was conducted in Uriimgqi city, which has an av-
erage altitude of 800 m. The region has an arid temper-
ate continental climate with an annual mean temperature of
7.4413.9°C and an annual mean rainfall of 27.8 mm. The
sampling site is located in the suburban area (Boda campus of
Xinjiang University) of the city (43.86° N, 87.75°E) (Fig. S1
in the Supplement), which is characterized by low popula-
tion and traffic density. This is because Uriimgqi is relatively
vast and sparsely populated compared to developed coastal
cities in China (Qizhi et al., 2016). Additionally, the area is
surrounded by mountains on three sides, resulting in the diffi-
culty in diffusing air pollutants. The dominant forest trees in
this area are Picea schrenkiana, Betula tianschanica Rupr.,
Populus talassica Kom., and Ulmus pumila L. The dry cli-
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mate and strong sunlight in the warm period (18.81£6.4 °C,
Table S1 in the Supplement) would be the main culprits of
forest fires in the local and nearby areas. In the cold period
(—1.96 £11.26 °C) (Table S1), the centralized heating and
aged biomass burning may be the main contributors to local
air pollution. Thus, it provides an unexpected opportunity to
investigate the potentially differential impacts of fresh and
aged biomass burning on aerosol NOC:s.

A high-volume air sampler (Series 2031, Laoying, China)
was set up on the rooftop of a building (School of Geol-
ogy and Mining Engineering, Xinjiang University). PM; 5
samples (n = 73) were collected every 5d with a duration
of ~24 h onto prebaked (450 °C for ~ 10 h) quartz fiber fil-
ters (Pallflex, Pall Corporation, USA) from 1 March 2018
to 26 February 2019. One blank filter was collected every
month (n = 12). All filter samples were stored at —30°C
until further analysis. During the sampling campaigns, the
meteorological data (e.g., temperature and relative humid-
ity) and the concentrations of O3 and NO, were recorded
hourly from the adjacent environmental monitoring station.
These hourly data were then averaged to obtain daily values
to match the sampling time of PM> 5. In addition, the tra-
jectories (72 h) of air masses arriving at the sampling site at
each sampling event were calculated to investigate the poten-
tial influence of pollutant transport on aerosol NOCs.

2.2 Chemical analysis

A portion of each filter sample was extracted twice using
3mL methanol (LC-MS grade, CNW Technologies Ltd.)
under sonication in a chilled ice slurry (~4°C). The ex-
tracted solutions were filtered through a polytetrafluoroethy-
lene syringe filter (0.22 um, CNW Technologies GmbH).
Subsequently, the extracts were concentrated to 300 uL
with a gentle stream of gaseous nitrogen (Shanghai Likang
Gas Co., Ltd). The final extracts were analyzed using an
ultra-performance liquid chromatography quadrupole time-
of-flight mass spectrometry equipped with an electrospray
ionization (ESI) source (UPLC-ESI-QToFMS, Waters Ac-
quity Xevo G2-XS) in both ESI4+ and ESI— modes (Wang
et al., 2021a). It should be pointed out that UPLC-ESI-
MS (i.e., TOF-only) was used to identify molecular formu-
las of organic matter, while the functional groups of the
target molecule formulas were deciphered by UPLC-ESI-
MS/MS (i.e., tandem mass spectrometry). lons obtained from
m/z 50-700 were assigned molecule formulas by assuming
hydrogen or sodium adducts in ESI4- mode and deprotona-
tion in ESI— mode. Detailed chromatographic conditions,
parameter selection, and quality control were displayed in
the Supplement (Sect. S1). Notably, there may be differences
in ionization efficiencies between compound types. How-
ever, the exact impacts of ionization efficiency on multifunc-
tional compounds in a complex mixture are uncertain and
difficult to evaluate (Ditto et al., 2022b; Yang et al., 2023).
Thus, the intercomparison across compound relative abun-
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dance without considering potentially differentiated ioniza-
tion efficiency was conducted in this study, which was sim-
ilar to many previous studies (Xu et al., 2023; Jiang et al.,
2022).

For the measurement of inorganic ions, a portion of each
filter sample was ultrasonically extracted with Milli-Q wa-
ter (18 MQ2cm) (3mL) in an ice-water bath (~ 4 °C). The
extract solutions were then filtered via a polytetrafluoroethy-
lene syringe filter (0.22 um, Millipore, Billerica, MA). The
concentrations of water-soluble inorganic ions, including
NOj, SO3™, CI~, Ca?*, Mg?*, Na™, and NHJ in the sam-
ples were determined using an ion chromatograph system
(Dionex Aquion, Thermo Scientific, USA) (Xu et al., 2022a;
Lin et al., 2023).

2.3 Compound categorization and predictions of ALW,
pH, and hydroxyl radical

The molecular formulas identified by UPLC-ESI-QToFMS
were classified into several major compound classes based
on their elemental compositions (i.e., C, H, O, and N), pri-
marily including CHO, CHON, and CHN groups in the ESI+
mode and CHO, CHON, CHOS, and CHONS groups in the
ESI— mode (Y. Wang et al., 2017). CHOS and CHONS com-
pounds were also detected in the ESI— mode, with num-
bers of 398 and 112, respectively (Table S2). As this study
focused mainly on NOCs, sulfur-containing species were
not discussed. Unless stated otherwise, all of the detected
molecules were reported as neutral molecules. The double-
bond equivalent (DBE) and carbon oxidation state (OSc)
were calculated to reflect the unsaturation degree of the or-
ganics and the composition evolution of organics that under-
went oxidation processes, respectively (details in Sect. S2)
(Kroll et al., 2011; Xu et al., 2023). The identified com-
pounds can be further classified into four subgroups based
on the number of carbon atoms and OS¢ value (Kroll et al.,
2011; Xu et al., 2023). Briefly, semi-volatile oxidized or-
ganic aerosol (SV-OOA) and low-volatility oxidized organic
aerosol (LV-OOA) were associated with multi-step oxidation
reactions, with OS¢ values between —1 and +1 and molecu-
lar formulas less than 13 carbon atoms. BBOA has OS¢ val-
ues ranging from —0.5 to —1.5 and more than seven carbon
atoms. Compounds with OS¢ values less than —1 and carbon
atoms above 20 may be related to hydrocarbon-like organic
aerosol (HOA). Additionally, the modified aromaticity in-
dex (Alyeq) was also calculated to indicate the aromaticity of
organic compounds (details in Sect. S2) (Koch and Dittmar,
2006). The van Krevelen diagrams and Alyog values have
been proposed to further classify organic matter categories
(Xu et al., 2023; Su et al., 2021), according to which the
identified five subgroups included saturated-like molecules
(Sa, H/C > 2.0), unsaturated aliphatic-like molecules (UA,
1.5 <H/C <2.0), highly unsaturated-like molecules (HU,
Alpog < 0.5 and H/C < 1.5), highly aromatic-like molecules
(HA, 0.5 <Alpog <0.66), and polycyclic aromatic-like
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molecules (PA, Alpoq > 0.66). Furthermore, it has been sug-
gested that the above subgroups can be subdivided into O-
poor and O-rich compounds depending on their O/C ratio
(Table S8) (Merder et al., 2020; Zhong et al., 2023).

A thermodynamic model (ISORROPIA-II) was applied to
predict the mass concentration of aerosol liquid water (ALW)
and the value of pH with particle-phase ion concentrations, as
well as ambient temperature and relative humidity as the in-
puts, as detailed in our previous publications (Xu et al., 2020,
2022b, 2023). The model output results based on our data
set showed that 94 % and 90 % of NO; were in the aerosol
phase in the cold and warm periods, respectively. Hence, the
predictions of pH and ALW were conducted without con-
sidering gaseous nitric acid (Guo et al., 2015; Wang et al.,
2021b). A total of 78 % and 21 % of NHI was in the aerosol
phase in the cold and warm periods, respectively. Moreover,
it is important to note that gaseous NH3 measurements were
not conducted and ammonia partitioning was not considered
in this study. Thus, a bias correction of 1 pH unit was ap-
plied to calculate the aerosol pH values (Guo et al., 2015;
Wang et al., 2021). The concentrations of ambient *OH were
predicted using empirical formula (Ehhalt and Rohrer, 2000;
Wang et al., 2020).

3 Results and discussion

3.1 Overall molecular characterization of organic
aerosols

Figure la and c¢ show the mass spectra of organic com-
pounds detected in ESI+ and ESI—, respectively. More com-
pounds were identified in ESI+ (1885 molecular formulas)
than in ESI— (1091 molecular formulas) (Table S2), which
was similar to previous reports about the molecular char-
acteristic of biomass burning aerosols and urban aerosols
(Jiang et al., 2022; Y. Wang et al., 2017). The molecular
weights of the compounds with relatively high signal in-
tensity mainly ranged from 100 to 500 Da in ESI+, which
was larger than those (100-300 Da) observed in the urban
(Changchun, Guangzhou, and Shanghai) (K. Wang et al.,
2021) and agricultural (Suixi) (Y. Wang et al., 2017) regions
of China. In contrast, the species with the strong signal in-
tensity fell between 100 and 300 Da in ESI—. This mass
range detected in Uriimgi organic aerosols was compara-
ble to previous observations in urban (Xi’an) aerosols (Han
et al., 2023) but significantly lower than that in firework-
related urban (Beijing) aerosols (300—400Da) (Xie et al.,
2020). On average, the molecular number and relative abun-
dance of CHON compounds (150-500 Da) were dominant in
ESI+, accounting for 45.57 % of the total molecular num-
ber and 62.70 4 6.83 % of the total signal intensity (Fig. la
and Table S2). CHO compounds was the second-most abun-
dant category (28.76 =4.75 % of the total signal intensity),
followed by CHN compounds. However, previous observa-
tions conducted in Shanghai, Guangzhou, and Changchun
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suggested that the compounds in ESI+ were dominated by
CHN and CHON species (K. Wang et al., 2021). In ESI—, al-
though the number of CHON compounds was less than CHO,
the relative abundance of CHON compounds (150-250 Da)
was higher (Fig. 1d and Table S2). The finding was consis-
tent with the results obtained in Shanghai and Changchun
but different from the case in Guangzhou (K. Wang et al.,
2021). The average H/C ratios of CHO (1.62-1.66) and
CHON (1.79-1.83) compounds in ESI4+ mode (Table S3)
were higher than those (0.94-1.13 for CHO and 1.27-
1.47 for CHON) in Changchun, Shanghai, and Guangzhou
(K. Wang et al., 2021). However, the average O/C ratios of
CHO (0.25-0.3) and CHON (0.22-0.3) compounds in ESI+
mode (Table S3) were less than those (0.42-0.43 for CHO
and 0.27-0.45 for CHON) in the urban areas (Shanghai and
Guangzhou) (K. Wang et al., 2021). Overall, these dissimilar-
ities in molecular characteristics of organic aerosols between
Uriimgi and other areas may be attributed to their different
sources and formation mechanisms.

Figure 1b and d show the time series of the fractional dis-
tributions of various organic matter categories in different
ion modes. The abundance of CHO compounds in ESI+ ex-
hibited a temporal variation similar to that of CHON com-
pounds (r =0.51, P <0.01), with increased levels in the
warm period. This indicated that CHO compounds may be
important precursors for the formation of NOCs (via reac-
tions in the gas- and/or particle-phases) or that they have sim-
ilar origins. Previous simulation experiments have demon-
strated that higher temperatures increase the concentration of
oxygenated organic molecules, while lower temperatures can
allow less oxidized species to condense (Stolzenburg et al.,
2018; Frege et al., 2018). In addition, solar radiation and at-
mospheric oxidation capacity are also important factors pro-
moting the formation of more oxygenated organic molecules
(Li et al., 2022; Liu et al., 2022). Air temperature, radia-
tion, and atmospheric oxidation capacity were much higher
in the warm period than in the cold period in Uriimqi (Ta-
ble S1) (Wan et al., 2021), which may be partly responsible
for increased abundances of CHO and CHON compounds
in the warm period. However, the abundance of CHN com-
pounds tended to increase from the warm period to the cold
period. Since the ESI4 mode is highly sensitive to proto-
natable species, organic amines were expected to predomi-
nate the CHN compounds (Han et al., 2023; K. Wang et al.,
2021). It is well documented that the formation of amine salt
in the particle phase is tightly associated with aerosol acidity
and water (Liu et al., 2023). Thus, the reduced pH value and
increased ALW level in the cold period (Table S1) provided
greater potential for converting gaseous amines into particles.

In ESI— mode, the abundances of CHON and CHO com-
pounds exhibited a significantly increased level in the cold
period (Fig. 1d), a variation pattern which was completely
opposite to the case in ESI+ mode. The ESI— mode is more
sensitive to deprotonatable compounds like nitrophenols, or-
ganic nitrates, organosulfates, and organic acids (Jiang et al.,
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Figure 1. The reconstructed mass spectrum distribution of the detected species in PMj 5 in (a) ESI4+ and (¢) ESI— modes during the whole
campaign. Temporal variations in the fractional distribution of classified compounds in (b) ESI+ and (d) ESI— modes. The ring diagrams
inside (b) and (d) show the signal intensity fractions of classified compounds, the size of which is proportional to the total signal intensity of

all species detected in PMj 5 in different periods.

2022; Lin et al., 2012). The formations of these compounds
were highly impacted by ALW and aerosol acidity (Ma et
al., 2021; Smith et al., 2014; Zhou et al., 2023; Xu et al.,
2023). However, Uriimgi has dry and dusty weather, particu-
larly in warm period, resulting in a quite low ALW concen-
tration (1.86 & 1.90 ugm~3) in the warm period (Table S1).
Moreover, the calculated mean pH value was 6.86 +1.71
(Table S1) during the warm period, which implies that the
fine aerosol particles in the warm period in Uriimgi was neu-
tral or slightly alkaline. Obviously, the aerosol characteristics
of the warm period in Uriimqi may hinder the formation of
these organic compounds measured in ESI— mode. In con-
trast, the increased ALW concentration and decreased pH
value during the cold period can facilitate the formation of
CHO and CHON compounds through the partitioning of gas-
phase species to the particles and subsequent aqueous phase
reactions (Xu et al., 2020, 2023). Furthermore, the total sig-
nal intensity of CHO compounds was significantly correlated
with that of CHON (r = 0.62, P < 0.01), indicating that they
may have similar origins or that CHO compounds may serve
as important precursors for CHON compound formation. In
general, the differentiated seasonal variation patterns for the
different types of NOCs measured here can be attributed to
the unique meteorological conditions in Uriimgi and differ-
ent ionization mechanisms in ESI4 and ESI— modes. The
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sources and formation mechanisms of NOCs will be further
discussed in the following sections.

3.2 Seasonally differential sources and formation
mechanisms of CHON compounds

CHON compounds can be derived from the reactions be-
tween CHO species and reactive nitrogen species (NO,,
NH3, and NHI) (Lee et al., 2016; De Haan et al., 2017),
as also partly implied by significant positive correlations
(r =0.51-0.62, P < 0.01) between total signal intensity of
CHO and CHON compounds in both ESI+ and ESI— modes.
Thus, CHO compounds were further classified based on their
OSc values to preliminarily explore their origins and link-
ages with CHON compound formation (Fig. 2a and b). In
ESI+ mode, the OS¢ values of the detected CHO com-
pounds (—1.75 to 0.5) were higher than those of primary
vehicle exhausts (—2.0 to —1.9) (Aiken et al., 2008), likely
indicating a weak (or indirect) contribution of primary vehi-
cle exhausts to CHO molecules in Uriimqi. The signal in-
tensity of BBOA dominated the total OA signal intensity
and was higher in the warm period than in the cold pe-
riod (Fig. 2e). However, previous studies conducted in China
(e.g., Beijing, Xi’an, Shanghai, and Liaocheng) suggested
that biomass burning was more significant in the cold sea-
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Figure 2. OSc values of CHO molecules detected in (a, b) ESI+ and (¢, d) ESI— modes in PMj 5 collected from different periods (cold
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sons (Li et al., 2023; X. Wang et al., 2017; Chen et al., 2017,
Wang et al., 2009, 2018; Zhang et al., 2022). Furthermore,
we found that the oxygen-poor unsaturated aliphatic com-
pounds showed a high signal intensity in the warm period
and that the signal intensities of all categories of compounds
in the warm period were weakly correlated with atmospheric
oxidants (i.e., O3 and ‘OH) (r < 0.1, P > 0.05). Thus, the
formation or source of CHO compounds in the warm period
may not be mainly controlled by high atmospheric oxida-
tion but rather by biomass burning, which was distinguished
from previous reports (Duan et al., 2020; Kondo et al., 2007,
Zhang et al., 2023). This consideration was also supported
by the fact that there were significantly more fire spots in the
warm period than in the cold period (Fig. 3). It should be
noted that the materials used for biomass burning in the cold
period in rural China are typically aged plant tissues, such as
dead branches of pine trees, dead branches of shrubs, corn
straw, and rice straw (Fig. S3), while biomass burning in the
warm season is mainly attributed to forest fires or wildfires
(relatively fresh biomass). Accordingly, a large number of
fresh biomass material burning occurred from April to Oc-
tober each year in neighboring countries (e.g., Kazakhstan)
(Xu et al., 2021) or the region of Uriimqi (due to drought)

Atmos. Chem. Phys., 24, 4331-4346, 2024

(Fig. 3) may be largely responsible for high CHO compound
abundance in the warm period.

The CHO species in ESI— had higher OS¢ (—1.85 to 0.1)
than those in ESI+ (—1.85 to 0.25) (Fig. 2c and d), which
was consistent with a recent study conducted in Guangzhou,
China (Zou et al., 2023). The predominant subgroups of
CHO in ESI— were BBOA (66.4 % of total signal inten-
sity) and SV-OOA (23.1 % of total signal intensity), which
was different from the observation in Shanghai (dominated
by SV-OOA and LV-OOA) (X. Wang et al., 2017). Addition-
ally, some specific saturated and unsaturated aliphatic CHO
substances (i.e., C12-18H,,O2) in ESI— showed higher abun-
dance in the warm season than in the cold season, which
was contrary to the variation pattern of other CHO com-
pounds. These Ciz.138H,,O2 compounds were found to be
mainly fatty acids, such as stearic acid (C13H3602), oleic
acid (Cy1g8H3403), linolelaidic acid (Cig3H3207), palmitic
acid (C16H320,), and palmitoleic acid (C1¢H300>) (Fig. S4),
all of which usually accumulate in plants, particularly
Suaeda aralocaspica (Hogg and Gillan, 1984; Wang et al.,
2011). Interestingly, this plant was widely distributed in cen-
tral Asia, as well as on the southern edge of the Junggar Basin
in Xinjiang, China (Wang et al., 2011). Although fatty acids
can also originate from food cooking (Zhao et al., 2007),
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Figure 4. Van Krevelen diagrams of CHON molecules detected in (a, b) ESI+ and (¢, d) ESI— modes in PMj 5 collected from different pe-
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compounds, respectively. The (e) mean signal intensity of classified compounds was calculated for samples from different periods.

there seem to be no seasonal differences in cooking behavior CHON molecules in ESI4 were mainly identified as un-
locally. Thus, these results further confirmed our considera- saturated aliphatic-like compounds that are oxygen poor
tion that the abundance of CHO compounds in the warm pe- (Fig. 4a and b), accounting for more than 70 % of the total
riod was highly impacted by fresh biomass material burning signal intensities of CHON species (Fig. S5). The signal in-
(e.g., forest fires or wildfires). tensity of CHON species in ESI4 was greater in the warm
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period than in the cold period (Fig. 4e). Moreover, BBOA
contributed to 56.9 % of the total CHON signal intensity in
the warm period (Fig. S6). These characteristics of CHON
compounds were similar to those of CHO. Considering a
significant positive correlation (r = 0.62, P < 0.01) between
the total signal intensity of CHO and CHON compounds in
ESI+, we thus concluded that primary sources (i.e., fresh
biomass material burning) were also one of the main sources
of CHON compounds. In this study, CHON compounds with
O/N < 3 contributed 76.48 £ 1.11 % of total CHON species
in ESI+ (Fig. S7), which was much larger than the re-
sults observed in urban Tianjin in winter (less than 20 %)
(Zhong et al., 2023). In particular, C1¢H330N, C13H370N,
CigH350N, C1gH330N, C1gH3;ON, and C»oH330N showed
a high abundance, together accounting for 55.04 £ 7.09 % of
the total CHON abundance (Table S4). The carbon number of
these compounds was consistent with that of fatty acids men-
tioned above; moreover, their abundances showed a positive
correlation (r =0.43-0.81, P < 0.01) with the abundances
of corresponding fatty acids in the warm period. In con-
trast, these CHON compounds only showed a weak correla-
tion (r = —0.24-0.33) with atmospheric oxidants (e.g., *OH,
03, and NOy). Thus, the formation mechanism of biomass-
burning-related NOCs in Uriimqi during the warm period
may be the interaction between fatty acids and reduced ni-
trogen species (e.g., NH3) rather than the oxidation pathway
involving CHO compounds and NO,.

A recent laboratory study has suggested that NH3 pro-
duced during the thermal degradation of amino acids can
react with oleic acid from the pyrolysis of triglycerides to
form amides (Reaction R1) (Ditto et al., 2022a). As discussed
above, the combustion of fresh biomass materials (e.g., for-
est fires or wildfires) can release abundant fatty acids. In ad-
dition, wildfires can also emit large amounts of NH3, with
an average emission factor more than twice the NH3 emis-
sion factor of agricultural fires (Tomsche et al., 2023). Ac-
cording to tandem mass spectrometry (MS/MS) analysis (Ta-
ble S5), potential fatty-acid-derived NOCs were indeed iden-
tified as amides. Thus, we proposed that the high temperature
generated during wildfires or forest fires provides suitable
conditions for the reaction of carboxylic acids and NH3 to
form amides. The specific process was presented in Fig. 5
(Pathway 1). It has been suggested that atmospheric oxi-
dants can oxidize olefins (Reactions R2 and R3) to form hy-
droxyl nitrates and carbonyl nitrates (Perring et al., 2013).
Therefore, fatty acids (oleic acid as a representative) released
from fresh biomass material burning may also rely on ox-
idation pathways to form NOCs (Fig. 5, Pathway 2). It is
worth noting that some products with double bonds after
the amidation of unsaturated fatty acids can continue to un-
dergo Reactions (R2) and (R3) in the atmosphere, result-
ing in the formation of nitrooxy amides (Fig. 5, Pathway 3).
However, we found that the abundance of oleic-acid-derived
amides via Pathway 1 in the warm period was more than
100 times higher than that of NOCs with —ONH (thus, the
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impact of ionization efficiency is expected to be less than
100 times) from Pathways 3. In the cold period, the abun-
dance of fatty-acids-derived amides decreased dramatically
(Figs. 5 and S8). Thus, the overall results demonstrated that
the combustion of fresh biomass materials indeed contributed
significantly to aerosol NOCs (e.g., amides) in the warm pe-
riod in Uriimgi.

ROOH il RCONH, (R1)
H,O and high temperature
RH -% R 2 RO, Y4 RONO, (R2)

R; =Ry "2 R, (ONO,) — Ry 2> R, (ONO»)

RO, +,NO3«

—R;02- — " R{(ONO2) —R2(0) (R3)

The CHON species detected in ESI— were mainly
aromatic-like compounds, whose signal intensities were sig-
nificantly greater in the cold period than in the warm pe-
riod (Figs. 4c, e and S5). Moreover, we found that several
nitro-aromatic compounds, including C¢H503N, CgH504N,
C7H703N, C7H704N, C7H505N, and C8H903N (conﬁrmed
by their authentic standards in the LC/MS analysis), con-
tributed up to 50 % of the total CHON (ESI— mode) in-
tensity (Table S6). Other NOCs with relatively high sig-
nal intensity were mainly O4_¢N> species (contributed up
to 25 %), such as C6H405N2, C7H407N2, C7H605N2, and
C7HgOgN>, which have been suggested to be associated with
secondary photochemical or multiphase chemical processes
(Harrison et al., 2005; Cecinato et al., 2005; Salvador et al.,
2021). However, the abovementioned nitro-aromatic com-
pounds, including C¢HsO3N (nitrophenol), C¢HsO4N (ni-
trocatechol), C;H703N (methyl-nitrophenol), and C7H704N
(methyl-nitrocatechol), were primarily identified as tracers
of straw and wood burning (aged biomass materials com-
monly used in suburban and rural China) (linuma et al.,
2010; Kourtchev et al., 2016). A study about molecular char-
acterization (ESI— mode) of water-soluble aerosols emitted
from the combustion of aged biomass materials (i.e., dry corn
straw, rice straw, and pine branches) and coal showed that
OA from aged biomass burning typically contained much
more nitro compounds and/or organonitrates than that from
coal, while OA from coal smoke contained more sulfur-
containing compounds (Song et al., 2018). Thus, the aged
biomass burning associated with winter heating rather than
coal combustion may contribute a significant amount of
aerosol NOCs (e.g., nitrophenols) in wintertime Uriimgi.
However, it does not necessarily suggest that the importance
of multiphase chemistry in the formation of NOCs was ig-
norable, as indicated by relatively high signal intensity of
04_6N3 species. In general, the differential molecular char-
acteristics of CHON species in different seasons in Uriimgi
can largely be attributed to different impacts of the combus-
tion of fresh and aged biomass materials.
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3.3 CHN molecule evidence of fresh and aged biomass
burning in different periods

Figure 6a and b present the van Krevelen diagram of CHN
compounds in the cold and warm periods. The CHN; com-
pounds with relatively high signal intensity mainly con-
tained 7-20 carbon atoms, among which CsHsN(CHy),,
CyoH7N(CH»),,, and C13H9N(CH3),, were dominant (78.68 +
7.59 % of the total signal intensity of CHN; compounds in
the cold period, Table S7). CsHsN(CH>), could be identi-
fied as pyridine and its homologues, which have been de-
tected in freshly discharged BBOA (Dou et al., 2015). Ad-
ditionally, the abundance of CsHs;N(CH), was positively
correlated with that of CoH7N(CH,),,, C;3H9N(CH>),, and
nitro-aromatic compounds mentioned above (r = 0.46-0.81,
P < 0.01), particularly in the cold period with aged biomass
burning for heating. We further found that both the total sig-
nal intensity and aromaticity of CHN; species were much
higher in the cold period (Alyeg of 0.52) than in the warm
period (Alpeq of 0.35) (Figs. 6 and S9). It has been sug-
gested that aged leaves contain more aromatic compounds
compared to fresh leaves (Jian et al., 2016). Thus, the overall
results implied that aged biomass burning had an important
contribution to the variation of CHN; compounds. In particu-
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lar, the intensity of CHN| compounds was significantly neg-
atively correlated with the concentration of O3 and *OH (r =
—0.44-0.53, P < 0.01), suggesting that atmospheric oxida-
tion processes were the potential pathway for amine removal
rather than the sources of particle amine salts (Zahardis et al.,
2008; Qiu and Zhang, 2013). This result differed from the
previous case, which showed that the formation processes
of CHN; and its homologs in Guangzhou (South China)
were tightly related to photo-oxidation processes (Jiang et al.,
2022). The CHN; species showed a similar temporal varia-
tion pattern to the CHN; species. Moreover, the abundances
of total CHN; and major components (Cg_11HgN2(CH»),,
Ci10H14N2(CHy),, C1oHi6N2(CH2),, and CsHgN2(CHz),)
were positively correlated with that of total CHN; (r = 0.55-
0.90, P < 0.01) but negatively correlated with the concen-
tration of O3 and *OH (r = —0.43-0.60, P < 0.01). Clearly,
aged biomass burning, particularly in the cold period, also
exerted significant impacts on the abundance of CHN, com-
pounds, which was also supported by several previous stud-
ies (Laskin et al., 2009; Y. Wang et al., 2017; Song et
al., 2022). A study about molecular characterization (ESI+
mode) of humic-like substances emitted from the combus-
tion of aged biomass materials (i.e., dry corn straw, rice
straw, and pine branches) and coals showed that OA from

Atmos. Chem. Phys., 24, 4331-4346, 2024
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Figure 6. Van Krevelen diagrams of CHN molecules detected in PMj 5 collected from the (a) cold and (b) warm periods. The size and
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aged biomass burning typically contained much more CHN;
compounds (55 %—64 %) than that from coal (20 %-37 %),
while OA from coal smoke showed more CHN; compounds
(78 %—84 %) compared to that from aged biomass materi-
als (15 %-22 %) (Song et al., 2022). In this study, the sig-
nal intensity of CHN; compounds in the cold period was
about 40 % higher than that in the warm period, while that
of CHN, compounds showed a 160 % increase from the
warm period to the cold period. Thus, although the contri-
bution of fossil fuel (e.g., coal) combustion to NOCs in the
cold period cannot be ignored, our results at least suggested
that the biomass-burning-derived CHN compounds showed
a more significant increase compared to coal combustion-
derived compounds from the warm period to the cold period
in Uriimgi.

Interestingly, we found some CHN species with 16-20 car-
bon atoms showed higher abundance in the warm period than
in the cold period, a pattern opposite to that of all other
CNH compounds (Fig. 6¢). These Ci6-20N1H, compounds
were further identified as alkyl nitriles (Table S5) (Simoneit
et al., 2003). In addition, the carbon number of the identi-
fied alkyl nitriles was consistent with those of amides pre-
viously proposed to be produced by fresh biomass burning.
Thus, we proposed that fresh biomass material burning in

Atmos. Chem. Phys., 24, 4331-4346, 2024

the warm period may provide a continuous high-temperature
environment to promote the dehydration of amides (Fig. 5,
Pathway 4). These alkyl] nitriles with double bonds can con-
tinue to undergo Reactions (R2) and (R3) (Fig. 5, Path-
way 5). However, the signal intensity of the nitrooxy prod-
ucts in the warm period was insignificantly correlated with
the concentration of O3, *‘OH, and NO, (P > 0.05), likely
indicating a weak influence of atmospheric oxidation on
alkyl nitrile removal in this site. The high-temperature de-
hydration of amides (e.g., erucamide) to form alkyl nitriles
(e.g., erucyl nitrile) has been demonstrated by Simoneit et
al. (2003) in a laboratory simulation experiment. A study
on BBOA also showed that alkyl nitriles can be serve as
indicators of biomass burning in the ambient atmosphere
(Radzi Bin Abas et al., 2004). Furthermore, the abundance
of identified alkyl nitriles initially increased from March and
peaked in September and October (Fig. S10), a pattern which
was consistent with the interannual variation in wildfire ar-
eas (more in the warm period) in Central Asian countries
(Xu et al., 2021). Although cooking is also a potential source
of alkyl nitriles (Schauer et al., 1999), this activity does not
have seasonal differences. In contrast, the dramatically in-
creased abundance of aromatic CNH compounds in the cold
period (Fig. S9) can be attributed to the aqueous reactions of
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Figure 7. Conceptual picture showing the differential impacts of combustion of fresh and aged biomass materials on aerosol NOCs in
suburban Uriimgi. The map was derived from © Baidu Maps (BIDU, China).

amines emitted from aged biomass material and coal com-
bustion with acidic substances, as indicated by significant
correlations (r = 0.61-0.95, P < 0.01) between total CHN
abundance and SO?[ and NOj concentrations. These find-
ings further confirmed that the NOCs from the combustion
of fresh biomass materials in the warm period in suburban
Uriimqi were compositionally different from those from aged
biomass burning in the cold period.

4 Conclusions

The complexity of NOCs restricts our understanding of its
sources and formation processes. In this study, the molecu-
lar compositions of organic aerosols in PM» 5 collected in
Urilimgi over a one-year period were systematically charac-
terized in both ESI— and ESI4 modes, with a major focus
on NOCs. A large amount of NOCs were identified, show-
ing that NOCs in relatively highly oxidative and reduced
forms can be roughly distinguished via these two ionization
modes. Based on the identification of molecular markers of
amides and alkyl nitriles (much higher in the warm period)
and the analysis of their formation mechanisms (less con-
tribution of atmospheric oxidation), we highlighted the im-
portant contribution of combustion of fresh biomass materi-
als such as forest fires and wildfires to NOCs in the warm
season in Uriimgi. In contrast, the dramatically increased
abundances of aromatic CNH compounds and nitro-aromatic
CHON compounds (mainly nitrophenols) in the cold period
were tightly associated with the impacts of aged biomass ma-
terial burning. These results were illustrated in a diagram
(Fig. 7).
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Biomass materials in rural China were typically aged plant
tissues, as mentioned above. Fresh biomass materials (e.g.,
green vegetation) with the enrichment of oils and proteins
can exist in forest fires or wildfires. Indeed, previous stud-
ies have suggested that biomass burning can lead to the for-
mation of aerosol amines and nitriles. However, field obser-
vation studies have yet to pay attention to the differences
in aerosol NOCs emitted from the combustion of fresh and
aged biomass materials. For the first time, our results reveal
that fresh biomass material combustion can contribute more
amines and nitriles than aged biomass material combustion.
Generally, this study provides field evidence on the differ-
ential impacts of the combustion of fresh and aged biomass
materials on aerosol NOCs, improving our current under-
standing of the molecular compositions of organic nitrogen
aerosols in a vast territory with a sparse population in north-
western China. Moreover, according to the fact that the stud-
ied site is highly affected by combustion emissions of dif-
ferent types of biomass materials, future work is needed to
deeply understand the quantitative contributions of different
types of biomass burning to OA in China.

Data availability. The data in this study are available at
https://doi.org/10.5281/zenodo.10453929 (Ma et al., 2024).
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