Supplement of

Quantifying the effects of the microphysical properties of black carbon on the determination of brown carbon using measurements at multiple wavelengths

Jie Luo et al.
Correspondence to: Jibing Qiu (qiujibing@ict.ac.cn)

The copyright of individual parts of the supplement might differ from the article licence.

Figure S1. The variations of $\mathrm{ABS}_{\mathrm{BrC}}$ of fully coated $\mathrm{BC}(\mathrm{F}=1.0)$ estimated based on the fixed AAE with the function of AAE and r_{g}, where the wavelength pair is $440 \mathrm{~nm}-675 \mathrm{~nm}$.

Figure S2. The variations of $\mathrm{ABS}_{\mathrm{BrC}}$ estimated using the WDA method with r_{g} for fully coated $\mathrm{BC}(\mathrm{F}=1.0)$.

Figure S3. The variations WDA of BC with different morphologies with r_{g} at different mixing states, where $\sigma_{\mathrm{g}}=1.4$.

$$
\mathrm{F}=0.0, f_{B C}=5 \%
$$

$$
\mathrm{F}=0.0, f_{B C}=20 \%
$$

$$
\mathrm{F}=0.2, f_{B C}=5 \%
$$

$\mathrm{F}=0.2, f_{B C}=20 \%$

Figure S4. Similar to Figure S3, but for $\sigma_{\mathrm{g}}=1.8$.

Figure S5. The global distributions of BC AAOD that is miattributed BrC based on the $\mathrm{AAE}_{440 _675}=1$ method, where negative sign means underestimation, and positive sign means overestimation.

Figure S6. Similar to Figure S5, but for using the core-shell WDA method.

