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Abstract. The Measurements Of Pollution In The Troposphere (MOPITT) instrument aboard NASA’s Terra
satellite has been measuring upwelling radiance in a nadir-viewing mode since March 2000. These radiance
measurements are inverted to yield estimates of carbon monoxide (CO) profiles and total columns, providing the
longest satellite record of this trace gas to date. The CO measurements from MOPITT have been used in a variety
of ways, including trend analyses and the construction of CO budgets. However, their use is complicated by the
influence of episodic emission events, which release large quantities of CO into the atmosphere with irregular
timing, such as large sporadic wildfires of natural or anthropogenic origin. The chaotic nature of these events is
a large source of variability in CO budgets and models, requiring that these events be well characterized in order
to develop an improved understanding of the role they have in influencing tropospheric CO. This study describes
the development of a multistep algorithm that is used to identify large episodic emission events using daily mean
Level 2 (L2) MOPITT total column measurements gridded to a 0.5 by 0.5° spatial resolution. The core compo-
nent of this procedure involves empirically determining the expectation density function (EDF) that describes
the departure of daily-mean CO observations from the baseline behaviour of CO, as described by its periodic
components and trends. The EDFs employed are not assumed to be symmetric but instead are constructed from
a pair of superimposed normal distributions. Enhancement flag files are produced following this methodology,
identifying the episodic events that show strong enhancement of CO outside of the range of expected CO be-
haviour and are now made available for the period 3 March 2000 to 31 July 2022. The distribution and frequency
of these flagged measurements over this 22-year period are analyzed in order to illustrate the robustness of this
method.

1 Introduction

Carbon monoxide (CO) is an important trace gas species due
to its role as a tropospheric pollutant, its use as a tracer of
atmospheric transport, and its involvement in tropospheric
chemistry. The global budget of atmospheric CO involves
both surface and in situ sources, as well as a single domi-
nant atmospheric sink. Surface sources account for approxi-
mately 45 % of CO emissions and are principally composed
of anthropogenically derived emissions from the incomplete
combustion of fossil fuels and biofuels and emissions from
biomass-burning events of both natural (lightning fires) and
anthropogenic origin (Seiler and Crutzen, 1980; Zheng et al.,

2019; Saito et al., 2022). In situ atmospheric CO comes from
the oxidation of hydrocarbons, largely methane and isoprene,
while oxidation by the hydroxyl radical (OH) is the domi-
nant sink of CO (Brenninkmeijer et al., 1999; Lelieveld et al.,
2016). The reaction of CO and OH gives CO an average life-
time of 1–3 months in the troposphere and accounts for 40 %
of the removal of tropospheric OH (Brenninkmeijer et al.,
1999; Seinfeld and Pandis, 2006; Lelieveld et al., 2016). As
OH dominates the oxidizing capacity of the troposphere, the
presence of CO plays an important role in modulating tro-
pospheric chemistry. Additionally, this short lifetime is what
enables CO to serve as a tracer of tropospheric transport pro-
cesses as it prevents CO from becoming well mixed globally;
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thus, pollution sources appear as regions of significantly en-
hanced CO as compared to background levels (e.g., Worden
et al., 2013a; Zheng et al., 2019).

Due to the direct influence CO has on atmospheric chem-
istry, prior work has asserted that it is crucial to accurately
characterize its atmospheric budget, sources, and trends (e.g.,
Worden et al., 2013a; Zheng et al., 2019). Following industri-
alization, tropospheric CO concentrations increased until the
early 1980s before plateauing and beginning to decrease in
the 1990s and through to the present (Khalil and Rasmussen,
1994; Wang et al., 2012; Petrenko et al., 2013; Worden et al.,
2013a; Zheng et al., 2019; Hedelius et al., 2021). Current
estimates for global CO trends show a decrease of approxi-
mately − 1 % yr−1, a decline that has been attributed to de-
creasing direct emissions of CO rather than changes to indi-
rect emissions or atmospheric sinks (Worden et al., 2013a;
Jiang et al., 2017; Hedelius et al., 2021). Trend estimates
for CO are larger in the Northern Hemisphere, where most
global economic activity occurs, and this decline is asso-
ciated with improvements in combustion technologies that
more than offset increased global fossil fuel consumption
(Granier et al., 2011; Worden et al., 2013a; Jiang et al., 2017;
Hedelius et al., 2021).

In contrast to the well-defined trends in CO, estimates of
CO sources for use in constructing atmospheric budgets vary
significantly (e.g., Zheng et al., 2019; Desservettaz et al.,
2022; Saito et al., 2022). A large part of this variability is
due to estimates of biomass-burning emissions, which vary
much more significantly than anthropogenic CO emissions
from fossil fuel and biofuel consumption. These biomass-
burning emission estimates typically exhibit interannual vari-
ability 2–3 times greater than that of fuel consumption, and
this variability, along with the variability in indirect sources
of CO, complicates efforts to model and fully understand at-
mospheric CO (e.g., Granier et al., 2011; Zheng et al., 2019;
Dasari et al., 2022). A major component of this is due to the
variation with climate conditions, such as droughts caused by
heat waves, of fire intensity and the amount of CO emitted
in biomass burning events (Zheng et al., 2019; Saito et al.,
2022). Recent work has shown that anthropogenic climate
change may lead to an increase in fire frequency and inten-
sity, altering the global CO emission budget (Dutta et al.,
2016; Hart et al., 2019; Saito et al., 2022). This complicates
the characterization of highly variable sources of CO emis-
sion, such as biomass-burning events, as climate conditions
change.

The Measurements Of Pollution In The Troposphere (MO-
PITT) satellite instrument has been continuously monitor-
ing CO since 2000, and it has produced the longest-running
global record of CO (Drummond et al., 2010, 2022; Deeter
et al., 2022). This data record is well suited for a variety of
applications, including analysis of the variability and long-
term trends in global CO distributions, examination of atmo-
spheric transport, and exploration of the influence of human
activity on global CO emissions (e.g., Worden et al., 2013a;

Strode and Pawson, 2013; Buchholz et al., 2021, 2022). MO-
PITT data have been used to explore emission sources of
both a regular or periodic nature, such as from industry and
annual cycles in anthropogenic biomass burning (e.g., Zhao
et al., 2012; Stroud et al., 2016; Zheng et al., 2019; Qu et al.,
2022), and those of an irregular episodic nature, such as the
2019–2020 Australia bushfires (e.g., Worden et al., 2013b;
John et al., 2021). Both types of emissions need to be char-
acterized accurately to understand atmospheric CO; the for-
mer underpins climatological signals in global CO, while the
latter leads to deviations from such and can influence analy-
sis of the long-term trends and distributions of CO (Hedelius
et al., 2021).

The irregular nature of episodic emission events can make
them hard to identify reliably in a dataset. Multiple methods
have been employed to identify them, often employing mixes
of qualitative and quantitative assays, with the most common
approach involving the generation of CO anomalies by sub-
tracting an average CO value for the period or region from
a time series or climatology and then choosing a threshold
for which larger/smaller values are associated with episodic
events. These thresholds are often based on some multiple
of the standard deviation or median average deviation of the
dataset. However, this method can be ineffective if the data
contain multiple extreme outliers, if there is large variability
in the dataset, or if the data are multimodal or asymmetri-
cally distributed. This paper presents a method of detecting
nonseasonal emission events in the 22-year MOPITT data
record using a multistep algorithm based on prior work by
Sheese et al. (2015) in detecting outlier measurements from
the Atmospheric Chemistry Experiment–Fourier Transform
Spectrometer (ACE-FTS) measurement dataset. Emphasis is
placed within this approach on minimizing the need to di-
rectly constrain the MOPITT data, thereby generating a ro-
bust, quantitatively defined set of markers for these episodic
events for use with applications such as event statistics, the
analysis of individual events, and for filtering data from av-
eraged ensembles.

The rest of the paper is organized as follows: Sect. 2 out-
lines the MOPITT instrument and the version 9 (V9) CO data
products. Section 3 addresses the detection algorithm and the
enhancement event flags produced, while Sect. 4 presents the
results from the application of this detection algorithm. Fi-
nally, a summary is presented in Sect. 5.

2 MOPITT

2.1 Instrument description

The NASA Terra satellite was launched on 18 Decem-
ber 1999 into a sun-synchronous low-Earth orbit (98.4° in-
clination, 705 km altitude), with a descending node at 10:30
local time (Drummond et al., 2022). One orbit takes approx-
imately 98 min, and the satellite orbital track repeats exactly
every 16 d. Aboard Terra is the MOPITT instrument, which
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is a gas correlation radiometer that measures upwelling ra-
diation in both the thermal infrared (TIR; 4.7 µm) and near-
infrared (NIR; 2.3 µm), which together enable retrievals of
CO vertical profiles and total columns (Drummond et al.,
2022; Deeter et al., 2022). Operating in a nadir-viewing
geometry, MOPITT has an instantaneous field of view of
22 km× 22 km and a swath width of 640 km (Drummond
et al., 2010). Coupled to the orbit of the Terra satellite, this re-
sults in global coverage, from 82° N to 82° S, being achieved
every 3 d. MOPITT has been operating nearly continuously
since March 2000.

2.2 Retrieval of CO

MOPITT radiance measurements are used to determine CO
volume mixing ratio (VMR) profile estimates using an opti-
mal estimation-based retrieval algorithm. As described in de-
tail in Deeter et al. (2003, 2022), this process retrieves CO, as
a log(VMR) state vector, on a 10-layer grid, spanning from
the surface to 100 hPa in 100 hPa intervals. CO values above
the topmost retrieval layer are fixed to the Community Atmo-
sphere Model with Chemistry (CAM-chem; Lamarque et al.,
2012) model climatology, which is also used to generate a
priori profiles of CO. Specifically, monthly mean model out-
put with a 1° latitude by 1° longitude horizontal resolution is
averaged over multiple years to generate monthly mean cli-
matologies with the same horizontal resolution. These clima-
tological data are interpolated both spatially and temporally
to the location and date of a measurement in order to serve
as the a priori for each retrieval. The MOPITT retrieval al-
gorithm also requires meteorological profiles of temperature
and water vapour for use with the MOPITT operational radia-
tive transfer model, MOPFAS. These come from the Modern-
Era Retrospective Analysis for Research and Applications
version 2 (MERRA-2; Gelaro et al., 2017) reanalysis (Deeter
et al., 2017, 2019). MOPFAS itself is updated monthly with
the mean instrument state (Edwards et al., 1999; Deeter et al.,
2013). CO total columns are calculated directly from the re-
trieved vertical profiles rather than through a separate re-
trieval. The retrieved CO profiles and total columns consti-
tute the MOPITT Level 2 (L2) products. These are in turn
averaged together to form the gridded 1° latitude by 1° lon-
gitude daily-mean and monthly-mean MOPITT Level 3 (L3)
products, which are not used in this study. The analysis here
is performed on the L2 products, which can be analyzed at a
finer horizontal resolution.

Three sets of MOPITT CO retrievals are produced using
subsets of the MOPITT measurement channels: a TIR-only
product, a NIR-only product, and a combined multispec-
tral TIR–NIR product. Each of these products have different
characteristics, with the TIR-only product typically showing
the greatest sensitivity to CO in the middle and upper tro-
posphere (Deeter et al., 2007), the NIR-only product show-
ing the greatest sensitivity to the CO total column (Deeter
et al., 2009; Worden et al., 2010), and the TIR–NIR product

showing the finest vertical resolution with the greatest sen-
sitivity to CO in the lower troposphere (Deeter et al., 2013).
The NIR measurements require reflected solar radiation, so
the NIR-only product is only produced for daytime obser-
vations over land, whereas the TIR measurements are opera-
tional during both day and night and over both land and water
(Deeter et al., 2017, 2022). The dependencies of the former
limit the benefits of the TIR–NIR product to daytime land
observations. Due to the limitations of the observational cov-
erage in the NIR-only and TIR–NIR products, the TIR-only
product is used in this study.

The MOPITT products are periodically updated, with the
current V9 product used in this study representing the lat-
est improvements in the retrieval algorithms (Deeter et al.,
2022). One of the key changes made to the MOPITT V9
retrieval algorithm provides an improvement in the cloud
detection algorithm. MOPITT cannot see through clouds,
and so MOPITT and collocated Moderate Resolution Imag-
ing Spectroradiometer (MODIS) information is used to fil-
ter out pixels with significant cloud coverage. As of V9, the
criteria used to identify clear-sky conditions have been re-
laxed, which has led to significantly enhanced coverage of
global CO. This is particularly relevant in regions with heavy
pollution, including those areas affected by large biomass-
burning events, as the aerosols in these scenes were fre-
quently misidentified as clouds in previous versions and fil-
tered from the MOPITT data record. The V9 retrieval prod-
ucts have been shown to be more statistically robust and
have fewer gaps due to missing data than previous versions
of MOPITT retrievals, as shown through analysis of the L3
products by Deeter et al. (2022). Additionally, the V9 prod-
ucts have been found by Deeter et al. (2022) to be more ac-
curate in their representation of heavily polluted regions than
prior versions, which is of particular benefit for the goal of
this study to develop episodic-emission-based enhancement
flags.

3 Episodic event detection

Detection algorithm

To identify episodic emission events in the MOPITT CO
dataset, a multistep algorithm has been developed. The phi-
losophy behind the approach outlined here is to separate CO
emissions into two broad categories: those periodic events
that occur with regular frequency, which can be considered
climatological in nature, and those episodic events that tran-
siently influence daily-mean distributions of CO in a signifi-
cant manner. It is the latter that is of particular interest here as
they represent those departures from the expected behaviour
of CO that require empirical means for identification.

Prior to the application of the detection algorithm, the MO-
PITT L2 total column CO observations are gridded to 0.5°
latitude by 0.5° longitude and used to generate daily means
at this spatial resolution. Specifically, the MOPITT data are
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partitioned into discrete bins at this spatial resolution using
the measurement latitude and longitude, and the daily mean
for each bin is calculated as the weighted average of the data,
with weights assigned as the inverse square of the retrieval
error for each measurement. The detection algorithm can
then be applied to each spatial bin in the MOPITT total co-
lumn dataset. Despite atmospheric transport linking adjacent
grid cells, each is treated independently to focus on the ar-
eas directly impacted by these events, as shown in their daily
means. Within each 0.5 by 0.5° bin, the daily-mean total co-
lumn data were used to form a CO time series spanning from
3 March 2000 through to 31 July 2022. Using a definition of
episodic emission events as those that contribute significantly
to departures of the daily mean from the expected behaviour
of CO, this expected behaviour is first removed from the CO
time series. To this end, in each grid cell, a climatological
multiyear centred moving average was calculated for each
day of the year using a 15 d moving window centred on each
day in turn. This was subtracted from the total column CO
time series of each bin to deseasonalize it, removing annual
and semiannual signals. The top and middle panel of Fig. 1
show an example of a CO total column time series along with
the deseasonalized time series.

Following deseasonalization, a multivariable linear regres-
sion (MLR) technique is used to account for the trend and the
influence of the El Niño–Southern Oscillation (ENSO). The
regression model, used to fit each spatial bin, is represented
as

CO(t)= a0+ att + aMEIMEI(t), (1)

where the regressed deseasonalized time series of the bin
is expressed as CO(t) for a given time step t . The a co-
efficients correspond to the regression components of the
model, with the first two corresponding to the offset, a0,
and linear trend, at. The remaining coefficient corresponds
to a model parameterization of the multivariate ENSO index
(MEI; MEI(t)) provided by the National Oceanic and Atmo-
spheric Administration Physical Sciences Laboratory (https:
//psl.noaa.gov/data/climateindices/list/; last access: 26 Octo-
ber 2022) and computed from the combined empirical or-
thogonal function of meridional and zonal surface winds,
outgoing longwave radiation emitted over the tropical Pacific
basin (30° S–30° N, 100° E–70° W), and sea surface pressure
and temperature. It is included in the regression due to the in-
fluence of the ENSO on temperatures, which drives drought
and increases fire emissions (e.g., Worden et al., 2013b; Park
et al., 2021). Weights for the regression were assigned as the
inverse square of the uncertainty in the calculated daily-mean
total column data. An example of the regression fit is illus-
trated by the orange line in the middle panel of Fig. 1.

After the coefficients of the regression model are deter-
mined from MLR, the residuals from the fit are calculated
for each grid cell, as shown in the bottom panel of Fig. 1.
These residuals are partitioned into discrete histogram bins,

Figure 1. Time series of MOPITT daily-mean CO total column
(TC; in 1016 molec. cm−2) between 3 March 2000 and 31 July 2022
(a) as well as the deseasonalized time series and the regression fit
of the deseasonalized time series (b; blue dots represent the time
series and the orange line represents the fit). The MEI term in the
regression is included to account for the influence of the ENSO. Fit
coefficients were determined for this grid cell as a0 = 228.7, at =
0.11, and aMEI = 2.74. The residuals from this fit, used to identify
episodic emission events, are shown in panel (c). Data are shown
for a 0.5 by 0.5° grid cell centred over land in New South Wales,
Australia (grid box centre at 30.25° S, 150.75° E).

using the Freedman–Diaconis method to determine the bin
width according to the following equation:

bin width= 2 ·
IQR(r)

3√
N

, (2)

where IQR(r) is the interquartile range of the residual data r
and N is the number of observations (Freedman and Diaco-
nis, 1981). As a result of the differences in the interquartile
range and the number of observations available in each 0.5
by 0.5° grid cell, the histogram bin width of each grid cell
varies. This method is employed as it minimizes the differ-
ence between the generated histogram and the shape of the
theoretical probability density function (PDF) that underlies
the data (Freedman and Diaconis, 1981). It is crucial to note
that the residuals cannot be assumed to be characterized by a
unimodal Gaussian distribution, as illustrated in Fig. 2.

Once the histogram of the residual data is generated, the
methods adapted from Sheese et al. (2015) for screening for
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Figure 2. MOPITT daily-mean CO total column (TC) residu-
als, partitioned into discrete histogram bins using the Freedman–
Diaconis method (blue bars), and the empirically fitted expecta-
tion density functions (EDFs; orange lines) tested. For the grid cell
shown, the interquartile range is 14.11× 1016 molec. cm−2, and
there were 3015 observations, resulting in a histogram bin width
of 1.95× 1016 molec. cm−2. The residuals are fit with both a uni-
modal (dashed orange line) and bimodal (solid orange line) Gaus-
sian distribution, with the latter having been found to yield the better
estimate of the EDF for this grid cell as per the reduced χ2 metric.
Note the extended wings of the residual distribution that necessitate
a bimodal Gaussian to properly capture the behaviour of the under-
lying EDF. The black arrow indicates the threshold value (rth) for
this grid cell, of 63×1016 molec. cm−2, and the inset shows a mag-
nified view of the data found to be above this threshold value. Data
are shown for a 0.5 by 0.5° grid cell centred over land in New South
Wales, Australia (grid box centre at 30.25° S, 150.75° E), and they
cover the period 3 March 2000 to 31 July 2022.

outlier data, which explicitly do not assume symmetric or
unimodal Gaussian characteristics for the data, can be ap-
plied. This process involves analyzing the expectation den-
sity function (EDF) of the data, represented by

EDF(r)= PDF(r) ·N, (3)

which is equal to the normalized probability density function
(PDF) of the data multiplied by the number of data points,
N . The integral of the EDF over all space is equal to the total
number of data points observed, and the integral between any
two values gives the number of observations expected in that
range. As noted in Sheese et al. (2015), this latter property
allows for the identification of threshold values, rth, the inte-
gral from which to infinity would evaluate to some tolerance
level as given by

∞∫
rth

EDF(r)≤ 1. (4)

This is similar in application to both Pierce’s criterion and
Chauvenet’s criterion; however, this approach does not ne-
cessitate that the data are normally distributed (Sheese et al.,

2015). It is through the identification of these threshold val-
ues that observations potentially affected by episodic emis-
sion events can be identified.

Given the aforementioned property of the threshold values,
the criteria for detecting episodic emission events then be-
come those events whose residuals are larger than the thresh-
old value for a given grid cell, indicative that those are the
points with very low probability of occurring given the ex-
pected behaviour outlined in the regression model. The toler-
ance level is chosen to be 0.05, corresponding to a 95 % con-
fidence that the outlier values correspond to irregular emis-
sion events (Sheese et al., 2015). This method requires an an-
alytical estimate of the EDF for each grid cell, which is found
by empirically fitting the histogram of the residual data us-
ing a unimodal and bimodal Gaussian distribution in order to
account for any asymmetry or non-Gaussian features in the
distribution. The reduced χ2 metric is calculated for each fit
and used to evaluate the goodness of fit for both fits of each
grid cell. The fit with the better reduced χ2 value is used
as the estimate of the EDF. An example of a unimodal and
bimodal fit is shown in Fig. 2, with the latter having been
found to be the better fit, as per the reduced χ2 metric, for
the grid cell shown. From this, the threshold values are iden-
tified by evaluating the integral in Eq. (4) over a range of
values for rth until the threshold value is found that satis-
fies the tolerance level. Values outside of the threshold range
are flagged as those being potentially affected by episodic
emission events, and the results are used to produce a set of
enhancement flag files, which contain the location and time
information for these flagged daily-mean observations along
with the threshold value for the grid cell in which the en-
hancement occurs and the daily-mean CO total column and
measurement error for the anomaly event.

4 Results

To illustrate the results of this methodology, the measure-
ments that are flagged as those affected by episodic events
from the example time series and residual histogram shown
in Figs. 1 and 2 can be explored in detail. Integration of the
empirically derived estimate of the EDF for this particular
grid cell (centred over 30.25° S, 150.75° E; over land in New
South Wales, Australia) determined the threshold value for
the deseasonalized time series to be 63× 1016 molec. cm−2.
Given this threshold, 24 daily-mean observations are identi-
fied as statistically unlikely to have arisen, given the EDF,
without the influence of an episodic CO emission event.
Of these 24 observations, 7 correspond to the 2019–2020
Australia Black Summer bushfires which were some of the
largest biomass-burning events on record for New South
Wales (Davey and Sarre, 2020). Outside of these days, five
further observations are found to be coincident with other
major Australian bushfires. These events include one on
23 January 2002, around the time of the Black Christmas
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bushfires; one on 7 November 2002, near the end of the 2002
Victoria wildfires; one on 24 January 2003, at the end of the
Canberra bushfires; and a pair on 23 September 2006 and
13 January 2007 that align with the 2006–2007 Australian
bushfire season. However, half of the observations flagged as
those influenced by episodic emission events do not directly
correspond to known major biomass-burning events in the re-
gion. Furthermore, not all known major burning events lead
to observations that are flagged using this method. This un-
derpins one of the key strengths of the detection algorithm
outlined in this work, which is that it is agnostic toward prior
assumptions of the impact various events can have on the
MOPITT L2 data. This selective flagging allows for an ex-
tremely robust approach to data handling that maximizes the
amount of information available for analysis, as it does not
flag events which do not impact the CO time series in a sig-
nificant manner.

Examining the global dataset, the MOPITT episodic event
threshold values are shown in Fig. 3, while Fig. 4 shows the
global distribution of enhancement flags for the daily-mean
observations in the gridded L2 dataset. Beginning with the
threshold values in Fig. 3, the highest threshold values are
found in central South America, Indonesia, western Africa,
and eastern China. Given that the seasonality and contri-
butions from the ENSO are explicitly accounted for in the
emission event algorithm, the sources of the high thresholds
in these cases are frequent large CO emissions with high
year-to-year variability. This leads the underlying EDFs of
these regions to be very broad and results in there being
few enhancement events observed where there are these high
thresholds. The lack of flagging for these regions indicates
that the method is functioning as it should, only highlight-
ing daily-mean observations that are statistically unlikely to
arise. This is exemplified in South America where frequent
emission events are found to occur in this region, as shown in
Fig. 4. In this example, little overlap is found between where
the high threshold values are observed and where the flagged
emission events occur, with the latter being located to the east
of the former. This pattern also emphasizes the role of trans-
port in enhancing the CO total column on a global basis, and
it illustrates the potential for the separation of CO sources
and the regions which they might impact.

From the analysis of the four regions with the highest
threshold values, the source of the observed threshold val-
ues in each is found to vary. The high threshold values over
central South America appear to be associated with the fre-
quent wildfires and deforestation in the Amazon, those over
Indonesia with the biomass burning during the Indonesian
dry season, those over western Africa with agricultural fires
in sub-Saharan Africa, and those over eastern China with
widespread industrial activity and irregular annual variation
in CO emissions. Within these four regions, the CO sources
are associated, to at least some degree, with human activity
and directly contribute to the interannual variation in these
emission sources. However, these sources are captured by

Figure 3. MOPITT deseasonalized time series of episodic event
threshold values. Data are shown on a 0.5 by 0.5° grid and cover the
period 3 March 2000 to 31 July 2022.

Figure 4. Distribution and number of days in the MOPITT L2
daily-mean measurement dataset that are flagged as having been
affected by episodic CO emission events. Data are shown on a 0.5
by 0.5° grid and cover the period 3 March 2000 to 31 July 2022.

the broad EDFs of these regions, implying a predictable be-
haviour with few events that arise outside of the expected
behaviour.

Figure 4, which shows the distribution of enhancement
flags, exhibits several regions that display notably higher
concentrations of episodic events than the rest of the world:
namely western North America (Canada and the United
States), the Amazon (Brazil), northeast Asia (Siberia), Aus-
tralia, and Antarctica. The first four of these experience semi-
frequent large CO-emitting wildfires that occur on a variable,
nonseasonal basis. Their variable and sporadic nature identi-
fies these events as outliers.

In contrast, the high concentration of outlier events over
Antarctica is thought to arise because of CO transport. As
there are few emission sources of CO in Antarctica, the CO
total column over Antarctica is typically much less than the
global average and very stable with little interannual vari-
ability. As a result, a relatively small quantity of CO, trans-
ported from emission sources elsewhere in the world, can
greatly enhance the CO total column, leading observations to
be flagged as being associated with an emission event. This
property is shown in Fig. 3, which shows that the episodic
event threshold values over Antarctica are among the lowest
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Figure 5. Differences in the number of enhancement events iden-
tified in the MOPITT L2 daily-mean measurements between two
periods corresponding to the measurements made between 3 March
2000 and 31 December 2010 and those made between 1 January
2011 and 31 December 2021.

in the world, and small enhancements are likely to be flagged
as outliers. Altogether, the combination of the enhancement
flags with the event thresholds enables a condensed examina-
tion of what can be considered the typical behaviour of CO
total columns on a global basis.

The temporal distribution of the flagged observations in
each grid cell can also be analyzed in order to identify
changes in the frequency of enhancement events over time.
While the sporadic nature of these enhancement events ob-
fuscates the detection of trends when considering the evolu-
tion in the number of these events between individual years,
examining multiyear periods allows for an overview of their
change with time. To this end, the episodic emission events
identified, shown in Fig. 4, have been separated into two pe-
riods of roughly equal length, corresponding to the MOPITT
measurements made between 3 March 2000 and 31 Decem-
ber 2010 and those made between 1 January 2011 and 31 De-
cember 2021. The difference in the number of events in each
of these two periods can then be readily calculated as the
number of enhancement events in latter period minus those
in the former. The results of this are shown in Fig. 5, and from
this plot several key features arise. Immediately evident is a
small overall trend toward fewer enhancement events over
most of the globe in the latter portion of the MOPITT mea-
surement dataset, with the largest decreases happening over
Antarctica. However, North America, Siberia, and the east-
ern coast of Africa all show increasing numbers of enhance-
ment events. Addressing first the general global decrease in
the number of events, while the exact cause of this general
decrease is uncertain, we found that there is a high like-
lihood that this decrease is correlated with the decrease in
global CO emissions over the MOPITT measurement period
(Worden et al., 2013a; Hedelius et al., 2021). The global de-
crease in CO emissions would also likely reduce the number
of observed enhancement events over Antarctica, which are
transport-dependent in nature and thus strongly influenced by
emissions elsewhere. In contrast to this, the regions display-

ing elevated numbers of enhancement events in the latter pe-
riod are most likely affected by an increase in fire frequency
and intensity associated with anthropogenic climate change
(Dutta et al., 2016; Hart et al., 2019; Saito et al., 2022). Alto-
gether, these findings indicate that the enhancement flags can
also aid in understanding the changes in the behaviour of the
CO total column over time on a global basis.

These enhancement flags can also be used to estimate
the fraction of flagged observations in each grid cell associ-
ated with major enhancement events by linking flagged mea-
surements based on their temporal distribution. For this pur-
pose, two main factors need to be considered: the number of
flagged observations required for an enhancement event to
be considered a major event (clustering) and the maximum
amount of time between flagged observations for them to still
be considered linked (persistence). Naturally, the selection of
these factors would impact the frequency and distribution of
major enhancement events; however, the response to either
of these factors in the number of these major events in any
grid cell is influenced by the unique distribution of flagged
observations in each cell.

To explore this, a set of nine classification criteria have
been examined using three different values for the choice
of the time frame for which observations can be considered
linked and three values for the number of observations re-
quired for an event to be considered a major event. For the
former, flagged observations are considered linked if they
are within at most 4, 8, or 16 d of each other, with all fur-
ther observations within a rolling window of that same pe-
riod treated as part of the same event, while for the latter,
at least two, three, or four flagged observations are required
for an event to be considered major. Figure 6 shows the frac-
tion of flagged daily-mean observations associated with ma-
jor enhancement events for each of the criteria permutations
tested. As expected, clustering generally increases with the
time window permitted between flagged observations for an
event and persistence decreases with the number of linked
observations in the window. However, not all areas are im-
pacted equally by each change in criteria. This property can
be exploited to investigate major enhancement events by an-
alyzing their responses to different criteria.

Here we focus briefly on five regions in Fig. 6 that show
that a majority of their flagged observations are associated
with major enhancement events under multiple classification
criteria. These five regions roughly correspond to northern
North America (Canada and Alaska), Siberia, the Amazon
(Brazil and the western Atlantic Ocean), the east coast of
equatorial Africa, and the equatorial Indian Ocean including
Indonesia. Antarctica is excluded from discussion here due to
the ease with which transport can dramatically enhance the
CO column, as discussed above. Across these five regions,
increasing clustering or decreasing persistence causes a grad-
ual reduction in major-event fractions.

In northern North America and Siberia, there are moderate
episodic event thresholds (Fig. 3), fairly frequent enhance-
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Figure 6. Fraction of flagged observations in the MOPITT L2 daily-mean measurement dataset associated with major emission events using
nine different classification criteria. Major events consist of those events with two, three, or four flagged observations in a grid cell within at
most 4, 8, or 16 d of each other. The columns correspond to the number of required observations: two (a, d, g), three (b, e, h), or four (c, f,
i). The rows correspond to the maximum length of time between daily-mean observations for them to be considered part of the same event:
4 d (a, b, c), 8 d (d, e, f), or 16 d (g, h, i). Data are shown on a 0.5 by 0.5° grid and cover the period 3 March 2000 to 31 July 2022.

ment events (Fig. 4), and a reduction in the major-event frac-
tion (Fig. 6) with increasing clustering or persistence require-
ments for major-event classification. Together, this implies
that the major events over these two regions are sporadic and
likely originate within the regions themselves. As a result,
it is found that increasing the stringency of the major-event
classification criteria deemphasizes transport processes, re-
stricting the area within each region displaying high major-
event fractions to those areas most likely containing the di-
rect CO emission source(s).

The Amazon shows the relationship between transport
from emission sources and high major emission event frac-
tions. In the central Amazon, high event thresholds indicate
the presence of large, frequent CO emission sources. The
eastward propagation of CO from these sources leads to the
numerous enhancement events observed over western Brazil
and the high major-event fractions seen over Brazil and the
western Atlantic Ocean. Elevated episodic event thresholds
and major-event fractions are also found drifting across the
Atlantic Ocean to the coast of Africa, indicative of the far-
reaching effects of transport from these emission sources.

The eastern coast of equatorial Africa shows significantly
different behaviour than the prior regions. High episodic
event thresholds, shown in Fig. 3, are observed over cen-
tral Africa, extending westward out over the eastern Atlantic
Ocean; however, there are very few enhancement events, as

shown in Fig. 4, and very low major-event fractions over this
region. This implies a very regular annual cycle in CO emis-
sions with few deviations. The exception to the low major-
event fractions occurs off the eastern coast of Africa, an area
for which these fractions display high persistence and clus-
tering. As transport from central Africa appears to be pre-
dominately westward, evidenced by the drift in high thresh-
old values over the Atlantic, the high major-event fractions
off of the eastern coast are likely the result of instances of
eastward transport carrying large CO plumes out over a re-
gion with comparatively few regular emissions.

The equatorial Indian Ocean also displays significantly
different patterns than the previous regions. Around Indone-
sia, very high episodic event thresholds are found, and few
enhancement events are observed across the whole region.
However, the high persistence and clustering shown by the
major-event fractions, stretching from Indonesia across the
Indian Ocean toward the west coast of Africa, imply the ex-
istence of occasional extreme events. Thus, the likely source
of the most significant deviations in CO behaviour for this
entire region stems from the westward transport of CO emis-
sions from these extreme events.

Altogether, by combining the number of flagged obser-
vations from Fig. 4 with the major-event information from
Fig. 6, a thorough exploration of the types of events identified
in this study can be undertaken. From these examples, it is

Atmos. Chem. Phys., 24, 4253–4263, 2024 https://doi.org/10.5194/acp-24-4253-2024



P. S. Jeffery et al.: Identifying CO events 4261

evident that the utility of the MOPITT enhancement flags ex-
tends beyond identifying enhancement events and into classi-
fying groupings of these enhancements. Furthermore, group-
ing enhancement events to identify major events also facili-
tates analyses of major CO emission events on a global scale
by readily identifying major events and their properties.

5 Summary

Motivated by the need for an improved understanding of CO,
this study developed a multistep algorithm to detect days
in the L2 MOPITT CO dataset that had been affected by
large episodic CO emission events. This process involves
deseasonalizing an observed total column time series with
a centred moving average, fitting the deseasonalized time
series with an empirical model of CO trends and periodic
drivers, and then fitting the resulting residuals with multi-
modal Gaussian distributions to estimate the EDFs of the
data. This latter step, which adapts the work of Sheese et al.
(2015) for detecting outliers in the ACE-FTS measurement
dataset, allows for threshold values to be empirically de-
fined, the data above which correspond to observations in-
fluenced by episodic emission events. Using these methods,
the 22-year MOPITT L2 CO data record has been screened
for these events, and enhancement flag files have been pro-
duced that identify corresponding days. Overall, these en-
hancement flags, coupled with the extensive 22-year MO-
PITT data record, provide insight into the distribution and
frequency of these large episodic emission events and can
enable more robust approaches for a wide array of applica-
tions, such as measurement validation and CO modelling, by
carefully screening the data before use.
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