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Abstract. Accurate estimation of the wind profile, especially in the lowest few hundred meters of the atmo-
sphere, is of great significance for the weather, climate, and renewable energy sector. Nevertheless, the Monin–
Obukhov similarity theory fails above the surface layer over a heterogeneous underlying surface, causing an
unreliable wind profile to be obtained from conventional extrapolation methods. To solve this problem, we pro-
pose a novel method called the PLM-RF method that combines the power-law method (PLM) with the random
forest (RF) algorithm to extend wind profiles beyond the surface layer. The underlying principle is to treat the
wind profile as a power-law distribution in the vertical direction, with the power-law exponent (α) determined
by the PLM-RF model. First, the PLM-RF model is constructed based on the atmospheric sounding data from
119 radiosonde (RS) stations across China and in conjunction with other data such as surface wind speed, land
cover type, surface roughness, friction velocity, geographical location, and meteorological parameters from June
2020 to May 2021. Afterwards, the performance of the PLM-RF, PLM, and RF methods over China is evaluated
by comparing them with RS observations. Overall, the wind speed at 100 m from the PLM-RF model exhibits
high consistency with RS measurements, with a determination coefficient (R2) of 0.87 and a root mean squared
error (RMSE) of 0.92 m s−1. By contrast, the R2 and RMSE of wind speed results from the PLM (RF) method
are 0.75 (0.83) and 1.37 (1.04) m s−1, respectively. This indicates that the estimates from the PLM-RF method
are much closer to observations than those from the PLM and RF methods. Moreover, the RMSE of the wind
profiles estimated by the PLM-RF model is relatively large for highlands, while it is small for plains. This result
indicates that the performance of the PLM-RF model is affected by the terrain factor. Finally, the PLM-RF model
is applied to three atmospheric radiation measurement sites for independent validation, and the wind profiles es-
timated by the PLM-RF model are found to be consistent with Doppler wind lidar observations. This confirms
that the PLM-RF model has good applicability. These findings have great implications for the weather, climate,
and renewable energy sector.
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1 Introduction

The atmospheric wind field is a critical factor in the trans-
portation of water vapor and matter, influencing weather
forecasting and climate change (Stoffelen et al., 2005, 2006).
The wind profile is a crucial parameter for measuring the
atmospheric wind field, which is related to turbulent mix-
ing, convective transport, and material diffusion in the atmo-
sphere (Solanki et al., 2022; Stoffelen et al., 2020). Particu-
larly in the lowest few hundred meters of the atmosphere, the
wind profile plays a significant role in evaluating wind en-
ergy resources and in understanding the interactions between
the atmosphere and the land (Gryning et al., 2007; Veers et
al., 2019). Therefore, it is crucial to accurately comprehend
the spatial distribution and dynamic variation of wind pro-
files.

Currently, there are multiple methods for observing wind
profiles. Atmospheric reanalysis data such as the fifth-
generation ECMWF reanalysis (ERA5), which is based on
known physical mechanisms combined with the assimilation
of a vast amount of observational data, have been widely
used to derive the spatiotemporal distribution of wind pro-
files (Laurila et al., 2021; Gualtieri, 2021). The spaceborne
Atmospheric Laser Doppler Instrument on board the Aeo-
lus mission can only provide line-of-sight wind profile data,
which can be further assimilated into atmospheric models to
generate global wind profile products (Stoffelen et al., 2006;
Guo et al., 2021). Nevertheless, the accuracy of wind pro-
file products from Aeolus and ERA5 within the planetary
boundary layer (PBL) requires improvement due to factors
such as atmospheric attenuation and turbulence (Straume et
al., 2020; Deng et al., 2022). On the other hand, ground-
based wind measurements from towers or radar wind or lidar
wind profilers can yield a highly precise wind profile for the
PBL at the observation station (Durisic et al., 2012; Wu et
al., 2022). However, single-site observations cannot provide
wind profile data on a regional or national scale. Therefore,
researchers are endeavoring to develop a theoretical model
for wind profiles to acquire large-scale PBL wind profiles.

The wind profile model was initially developed based on
the famous Monin–Obukhov similarity theory, which de-
scribes the wind profile using functions that rely on the sta-
bility parameter h/L (Obukhov, 1946; Monin and Obukhov,
1954). The h stands for height, while L stands for the
Obukhov length on the surface. The wind profile model
based on similarity theory can be expressed in different forms
depending on the atmospheric conditions. For neutral condi-
tions, the wind speed profile model can be simplified to a
logarithmic law (Powell et al., 2003; Marusic et al., 2013).
For unstable conditions, an exponential better describes the
wind speed profile in the surface layer over homogeneous
terrain (Barthelmie et al., 2020). In engineering applications,
most studies utilize a power-law model for the wind pro-
file in the surface layer (Sen et al., 2012; Jung et al., 2021).
This can achieve the conversion of the surface wind speed to

the wind speed at wind turbine hub height. These wind pro-
file models based on the Monin–Obukhov similarity theory
have demonstrated effectiveness within the Prandtl layer and
the surface layer. The Prandtl layer encompasses the initial
tens of meters within the atmospheric boundary layer (An-
derson, 2005). The top of the surface layer is approximately
100 m above the ground (Veers et al., 2019). Nevertheless,
due to factors such as the Coriolis parameter, baroclinic-
ity, and wind shear, the applicability of the Monin–Obukhov
similarity theory breaks down above the surface layer (Optis
et al., 2016; Tong et al., 2020). Therefore, extending wind
profiles above the surface layer is of significance when ap-
plying wind profiles to wind energy assessment and PBL dy-
namics.

Above the surface layer, the wind profiles are influenced
not only by the surface roughness, friction velocity, and
atmospheric stability but also by factors including low-
level jets, entrainment processes, and the Coriolis parame-
ter (Gryning et al., 2007; Coleman et al., 2021). To obtain
accurate wind profiles above the surface layer, some stud-
ies seek to introduce auxiliary variables to account for the
influence of these factors. Gryning et al. (2007) established
a straightforward model that regulates the combined length
scale of wind profiles along with their stability correlations.
This model is used to calculate wind profiles above the sur-
face. On the other hand, Liu et al. (2022) present an analytical
approach based on the Ekman equations and the foundation
of the universal potential temperature flux profile. This ap-
proach enables one to describe the profiles of the wind and
the turbulent shear stress, which in turn can capture aspects
such as the wind veer profile. In addition, some studies have
used machine learning (ML) technology to transform the
surface wind speed and meteorological parameters to wind
speeds at different heights. Yu et al. (2022) have devised a
transfer method that leverages three ML methods, including
the least absolute shrinkage selector operator, random forest
(RF), and extreme gradient boost, for calculating the wind
speed at 100 m. Liu et al. (2023) employed the RF model to
estimate the wind speed at 120, 160 and 200 m. Nevertheless,
the calculation procedure used by ML algorithms remains an
unexplained process that does not clarify the input param-
eter’s physical significance. Therefore, it is worth trying to
combine ML algorithms with physical models to achieve the
inversion of wind profiles above the surface layer.

The present study aims to extend wind profiles beyond
the surface layer by combining physics and machine learn-
ing approaches. For this purpose, we attempt to combine the
power-law method (PLM) with the RF, resulting in a model
named PLM-RF, to extend wind profiles beyond the surface
layer. The PLM-RF model is trained and tested using ra-
diosonde (RS) data and reanalysis gridded meteorological
data over China. A performance comparison of the PLM, RF,
and PLM-RF models is also carried out. Then, the wind pro-
file generated by the PLM-RF model is evaluated against RS
observations, which is followed by an independent validation
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Figure 1. Geographical distribution of the radiosonde stations in China, which is overlaid over the surface land cover type distribution from
MODIS observations. The color bar indicates the different surface land cover types.

of the model at Atmospheric Radiation Measurement (ARM)
sites. The results of our study have great implications for the
weather, climate, and renewable energy sector.

2 Materials and data

2.1 Land cover type data

The land cover type data are derived from the Moderate
Resolution Imaging Spectroradiometer (MODIS), a satellite-
borne instrument that captures images and measures a wide
range of surface properties such as the land surface tempera-
ture, vegetation cover, and atmospheric aerosols (Friedl et al.,
2002). The high spatial resolution of the instrument enables
the identification of diverse land features, including forests,
urban areas, and agricultural fields, thereby making it an im-
portant instrument for the purpose of environmental moni-
toring and land management (Sulla-Menashe et al., 2018).
MODIS provides two land cover type products: MCD12Q1
and MCD12C1. MCD12Q1 comprises observation data from
different regions, which require self-splicing. MCD12C1
comprises annual concatenated data (one image per year).
Following the previous study (Liu et al., 2020), the land cover
type data used here were obtained from MCD12C1 and are
named “MCD12C1.A2021001.061.2022217040006”. Fig-
ure 1 displays the geographic distribution of the dominant
land cover types in China. The land cover type data help us
to determine the power-law exponent (α).

2.2 Radiosonde measurements

An L-band RS can measure profiles of the atmospheric tem-
perature, pressure, humidity, wind direction, and wind speed

in situ. Measurements are taken at 1 min intervals starting
from the ground surface up to approximately 30 km a.g.l.
(above ground level) (Guo et al., 2016). RS observations are
conducted at 119 observation stations in China, which are
shown in Fig. 1. RSs are launched twice per day at around
08:00 and 20:00 local time (LT). Here, the wind speed pro-
files from RS measurements at 119 stations are used as ref-
erence values (National Meteorological Science Data Center,
2023). The RS observations were made between 1 June 2020
and 30 May 2021. In addition, the drift of the RS during its
ascent was investigated, as illustrated in Fig. S1 in the Sup-
plement. The coordinates of the RS and observation station
within a height of 0.5 km indicated that the drifting distance
was less than 0.5 km. This indicates that the drift of the RS
will not impact the attainment of wind profiles in the surface
layer.

2.3 ERA5 data

ERA5 is a fifth-generation reanalysis dataset that offers a
range of atmospheric parameters, such as temperature, hu-
midity, pressure, and radiation (Hersbach et al., 2020). Fol-
lowing a previous study (Liu et al., 2023), nine surface pa-
rameters are obtained in this study, including the Charnock
coefficient (Char), forecast surface roughness (FSR), friction
velocity (FV), dew point (DP), temperature (Temp), pressure
(Pres), net solar radiation (Rn), latent heat flux (LHF), and
sensible heat flux (SHF). These parameters are processed
into grid data with a 0.25°×0.25°size and an hourly time
resolution. Based on the longitude and latitude information
for the RS and ARM stations, those parameters in the corre-
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Figure 2. The spatial distributions of (a, b) the RMSE and (c, d) the difference for the WS100 estimated by the traditional PLM (constant α
of 0.14) and PLM (dynamic α). Also shown in the bottom left corner of each map are the mean values of the RMSE and the difference.

sponding grid are obtained accordingly. These data are also
collected for the period from 1 June 2020 to 30 May 2021.

2.4 ARM data

The ARM user facility was established by the US Depart-
ment of Energy (Lubin et al., 2020; Zhang et al., 2022). It sets
up observation stations and instruments for atmospheric ob-
servation experiments globally, making the atmospheric ob-
servations, including temperature, wind, radiation, and cloud
properties, publicly accessible (Liu et al., 2022). Wind pro-
file data from the Doppler wind lidars deployed at the east-
ern North Atlantic (ENA), North Slope of Alaska (NSA),
and Southern Great Plains (SGP) stations are collected for
independent comparison with the proposed method. Statisti-
cal parameters such as the coefficient of determination (R2),
mean absolute error (MAE), and root mean squared error
(RMSE) are used to quantify the comparison results. Fig-
ure S2 presents the geographic locations and land cover types
of the three lidar stations. ENA is situated on an Atlantic
Ocean island with ocean as its primary land cover, NSA is
situated on Alaska’s north coast with grassland as its ground
cover, and SGP is located in the Great Plains in the cen-
tral United States where grassland is also the dominant land
cover. The Doppler wind lidar observations cover the period
from 1 June 2020 to 30 May 2021. Moreover, these wind pro-
filing measurements are processed as hourly averages so that
they correspond with other data.

3 Methods

3.1 Power-law method

The PLM assumes that wind speed increases exponentially
with height (Hellman et al., 1914). The wind profile can be
calculated based on the surface wind speed (v0) using the
following formula:

vi = v0×

(
hi

h0

)α
, (1)

where vi represents the wind speed at height hi . h0 is
the measurement height of v0. Here, v0 is observed by an
anemometer at a height of 10 m above the ground. α is
the power-law exponent, which varies with land cover type,
height, and time (Li et al., 2018).
α is usually set as a constant (0.14) for the purpose of ap-

proximating the wind profile at stations with no available
observations or empirical formulas. Figure 2a and c show
the RMSE and difference between the PLM (α = 0.14) re-
sults and the RS measurements of the wind speed at 100 m
(WS100). The average RMSE and difference over China are
1.49±0.39 and−0.23±0.68 m s−1, respectively. The results
indicate that PLM (α = 0.14) underestimates the wind pro-
file at almost a quarter of the sites (Fig. 2c). These results
suggest that the estimation of wind profiles based on a con-
stant α value is subject to large errors. Some studies have
also confirmed this (Jung et al., 2021; Liu et al., 2023). Fur-
thermore, other studies have demonstrated that the value of
α differs with the land cover type due to varying surface
roughness (Durisic et al., 2012). An empirical lookup table is
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Figure 3. The differences in (a, b) WS100 and (c, d) α estimated by PLM (α = 0.14) and PLM (dynamic α) relative to RS observations
shown as a function of land cover type (color shading). The color bar indicates the various land cover types.

summarized with respect to the setting of α, as shown in Ta-
ble S1 in the Supplement. The value of α ranges from 0.1 to
0.4 with increasing surface roughness. Based on the MODIS
land cover type dataset, the corresponding value of α can be
obtained for each RS site. Figure 2b and d show the RMSE
and the difference between the PLM (dynamic α) results and
the RS measurements. Compared with the PLM (α = 0.14)
results, the results of PLM (dynamic α) are improved. How-
ever, the results of PLM (dynamic α) are still underestimates
for most stations in the northeastern and Inner Mongolia re-
gions.

3.2 Random forest model

The RF model is a nonlinear fitting algorithm that has been
used to calculate wind profiles (Yu et al., 2022; Liu et al.,
2023). Here, the RF model is also used to fit the surface
parameters to obtain the wind profile. The input variables
include surface wind speed (WS), surface wind direction
(WD), land cover type (Type), altitude (Alt), longitude (Lon),
latitude (Lat), month (M), hour (H), Char, FSR, FV, DP,
Temp, Pres, Rn, LHF, and SHF. The reference value is the

wind speed provided by RS. In addition, the parameter tuning
of the RF model directly affects the performance and general-
ization ability of the model (Zhu et al., 2021). The parameter
tuning process for estimator number and minimum leaf size
is shown in Fig. S3. The minimum RMSE (1.02 m s−1) and
maximum R (0.91) are obtained when Estimator number is
300 and Min Leafsize is 5. Therefore, the Estimator number
and the Min Leafsize are set to 300 and 5 for the RF model,
respectively.

3.3 Combining the physical and RF models

In this study, we propose a novel method, termed PLM-RF,
that combines the PLM and the RF model to estimate wind
profiles. Its principle is to treat the wind profile as a power-
law distribution in the vertical direction, with α fitted by us-
ing the RF model. Further details about this method are given
below.
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Figure 4. The α bias (assumed value minus observed value) at 100 m as a function of the surface wind speed over (a) all types of land cover,
(b) urban areas, (c) woodland, (d) shrubs, (e) grassland, and (f) smooth surfaces.

3.3.1 Physical constraint

Previous studies have confirmed that the wind profile in the
surface layer adheres to a power-law distribution (Liu et al.,
2023). The primary reason for the error is the uncertainty
in the value of α. Therefore, to achieve more accurate re-
sults, it is necessary to first analyze the reasons for the er-
ror. Figure 3a–b show the differences in WS100 estimated
by PLM (α = 0.14) and PLM (dynamic α) relative to RS
observations. Based on MODIS land cover type data, each
of the 119 RS sites is classified as either an urban area,
woodland, shrubs, grassland, or a smooth surface. It is found
that, regardless of the land cover type, the difference in wind
speed decreases as the surface wind speed increases. Simi-
larly, the difference between the assumed α and the observed
α at 100 m decreases with increasing surface wind speed

(Fig. 3c–d). These results indicate that there is a relationship
between the error of the PLM results and the surface wind
speed. This may be due to the limited influence of surface
friction on the wind profile. When the wind speed within the
PBL is low, factors such as surface friction and the Coriolis
force complicate the vertical distribution of the wind profiles,
leading to a low surface wind speed and large errors in the
PLM (Wang et al., 2023). On the contrary, when the wind
speed within the PBL is high, the effect of surface friction
can be neglected to some extent. This results in the real wind
profile being closer to the power-law distribution, thereby re-
ducing the error of the PLM results.

To quantify the effect of the surface wind speed on α, the α
bias (assumed value minus observed value) at 100 m is exam-
ined as a function of surface wind speed over different land
cover types, as shown in Fig. 4. The gray dots and black lines

Atmos. Chem. Phys., 24, 4047–4063, 2024 https://doi.org/10.5194/acp-24-4047-2024
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Figure 5. The importance scores of predictor variables for the
(a) RF and (b) PLM-RF models. WS: surface wind speed; WD:
surface wind direction; Type: land cover type; Alt: altitude; Lon:
longitude; Lat: latitude; M: month; H: hour; Char: Charnock coef-
ficient; FSR: forecast surface roughness; FV: friction velocity; DP:
dew point; Temp: temperature; Pres: pressure; Rn: net solar radia-
tion; LHF: latent heat flux; SHF: sensible heat flux; and 1α: cor-
rection factor for α.

indicate the sample points and the logarithmic curve, respec-
tively. The coefficients of determination between the surface
wind speed and the difference in α on all land cover types, an
urban area, woodland, shrubs, grassland, and a smooth sur-
face are 0.92, 0.97, 0.94, 0.97, 0.93, and 0.84, respectively.
These indicate that there is a good correlation between the
surface wind speed and difference in α. Therefore, the cor-
rection factor for α (1α) can be defined statistically based on
the land cover type and surface wind speed. The correction
functions for α for different land cover types are also plot-
ted in Fig. 4. For each sample, 1α can be calculated by the
correction functions and can then be used in the fitting of the
RF model as a physical constraint to improve the accuracy. In
addition, the α bias as a function of surface wind speed at dif-
ferent heights is also investigated, as shown in Fig. S4. At 50,
100, 150, 200, 250, and 300 m, the coefficients of determina-
tion between the surface wind speed and the difference in α
are larger than 0.9. This indicates that1α can be constructed
using the surface wind speed to improve the accuracy of the
inversion of wind speed at high altitude.

3.3.2 Model construction

For the PLM-RF model, the wind profile is considered to
have a power-law distribution, and α is fitted by the RF
model. The inputs include 1α, WS, WD, Type, Alt, Lon,
Lat, M, H, Char, FSR, FV, DP, Temp, Pres, Rn, LHF, and
SHF. The reference value is the α calculated from RS ob-
servations. The tuning parameter evolution for the PLM-RF
model is shown in Fig. S5. The RMSE reaches a minimum
(0.91 m s−1) and R reaches a maximum (0.93) when Estima-

Figure 6. The mean and standard deviation of the difference be-
tween the assumed α and the observed α at 100 m as a function of
(a) surface wind speed, (b) land cover type, and (c) net solar radia-
tion. Green, blue, and red lines represent the results from PLM, RF,
and PLM-RF, respectively.

tor number is 500 and Min Leafsize is 5. Therefore, Estima-
tor number and Min Leafsize are set to 500 and 5, respec-
tively.

To comprehend the model’s physical meaning, an impor-
tance analysis of the inputs is performed for the RF and
PLM-RF models, as shown in Fig. 5. The relevant features
that can affect the accuracy of the model accuracy are marked
with red bars. For the RF model, the relevant features are WS,
Type, SHF, FV, WD, and FSR. The importance of WS, Type,
and SHF is greater than the importance of the other features.
WS is the surface wind speed. Type is the value of α based on
the land cover type. From the perspective of a physical mean-
ing, the RF model calculates wind profiles through complex
fitting methods based on the surface wind speed and mete-
orological conditions. In contrast, for the PLM-RF model,
1α, FV, SHF, Type, WS, FSR, and Temp are the relevant fea-
tures.1α is the most important, but Type and WS are ranked
fourth and fifth in importance, respectively. In addition, the
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importance of FV ranks second. FV is used to calculate the
way that the wind changes with height at the lowest levels of
the atmosphere (Liu et al., 2023). These results indicate that
the PLM-RF model calculates the way that the wind speed
changes in the vertical direction. In addition, SHF and FSR
are both relevant features in the construction of the RF and
PLM-RF models. This indicates that surface roughness and
solar radiation are factors that need to be considered in the
calculation of wind profiles.

3.4 Sensitivity analysis

The average value and standard deviation of the difference
between the assumed α and the observed α are illustrated
for the primary input features in Fig. 6. Green, blue, and red
represent the PLM, RF, and PLM-RF models, respectively.
The differences in deviations for PLM-RF models decrease
slightly with increasing surface wind speed. Moreover, the
mean and deviation of the difference for the PLM-RF model
are relatively stable and do not vary with the land cover type.
These results indicate that both the RF and PLM-RF models
exhibit good generalization across different land cover types
and surface wind speeds. This is due to the fact that the RF
model considers random perturbations in the sample space
to improve generalization ability (Breiman, 2001). In addi-
tion, due to the samples only being obtained at 08:00 and
20:00 LT, it is noted whether or not the performance of the
PLM-RF model is affected by time. The RS observation sta-
tions are geographically distributed in several time zones, but
they are all observed at the same time. This means that al-
though the recording time of the RS measurements is 08:00
or 20:00 LT, the training and test samples contain observa-
tion data from multiple time periods. Therefore, Rn is used
as a measure of time to investigate the applicability of the
methods (Fig. 6c). For the three methods, the mean of the dif-
ference is relatively stable and the standard deviation of the
difference decreases slightly as Rn increases. This indicates
that the generalization of the PLM-RF model within the sam-
ple is reliable. However, the Rn in China at noon can reach
1.5–2×106 J m−2, which exceeds the upper limit of the input
values in the current sample. This indicates that the general-
ization of the PLM-RF model at noon cannot be proven based
on the existing training and test samples. Therefore, we must
rely on the Doppler wind lidar observations from the ARM
sites for comparison to evaluate the performance of the PLM-
RF model at noon. Specific comparisons will be discussed in
Sect. 4.4.

4 Results and discussion

In this section, the performances of the PLM, RF, and PLM-
RF models are first compared by conducting intercomparison
analyses. The wind profiles calculated by the PLM-RF model
are then evaluated by comparing them with the RS observa-

tions. Finally, the PLM-RF model is applied to three ARM
sites for independent validation.

4.1 Intercomparison of different methods

Figure 7 displays scatter plots of the estimated WS100 versus
the observed WS100 for all three methods at different times.
Overall, theR2 (RMSE) of the WS100 from the PLM, RF, and
PLM-RF at all times is 0.75 (1.37 m s−1), 0.83 (1.04 m s−1),
and 0.87 (0.92 m s−1), respectively. The accuracy of the RF
and PLM-RF models is better than that of the PLM. For
the PLM, most of the estimated WS100 values are underesti-
mated when the observed wind speed is high. This is because
the PLM relies on an exponential relationship to calculate the
WS100. However, the wind profile is affected by turbulence,
surface friction, and other factors (Tieleman, 1992; Solanki
et al., 2022). The exponential law based on constants is un-
able to obtain the WS100 with high accuracy. In contrast, the
RF and PLM-RF models show significantly improved perfor-
mance. The RF and PLM-RF models consider more environ-
mental factors, such as SHF and FV, in the inversion process.
They improve the accuracy of the model because the effects
of surface friction and surface radiation flux on the wind pro-
files are taken into account. Briefly, these two methods rely
on a dynamic α to invert the wind profiles. Each site uses
an α that varies with environmental factors, resulting in im-
proved accuracy of inversion. In particular, for the PLM-RF
model, the correction function for α can be used to obtain a
value of α that is closer to the observed α, resulting in the
highest R2 (0.87) and the lowest MAE (0.60 m s−1). In addi-
tion, the MAE values of the WS100 from the PLM, RF, and
PLM-RF at 08:00 (20:00) LT are 1.03 (1.01), 0.79 (0.77), and
0.60 (0.60) m s−1, respectively. Comparisons of the results
for both 08:00 and 20:00 LT also show that the performance
of PLM-RF is the best, followed by RF and finally by PLM.

Figure 8 shows the R2, MAE, and RMSE between the es-
timated WS100 and the observed WS100 for the three meth-
ods in different months. The R2 is relatively consistent be-
tween months, irrespective of the method used (Fig. 8a). For
the PLM, the monthly mean MAE values are higher during
the cold season (October–April) than during the warm sea-
son (June–September). This is because the wind speed vari-
ations are more complex during the cold season. Large-scale
synoptic systems have a relatively high frequency of occur-
rence during the cold season (Liu et al., 2019). Compared
with PLM, the RF and PLM-RF models show stable accuracy
over the 12 months; i.e., the difference between the months
is relatively small. The monthly mean MAE of the PLM-RF
model does not show significant seasonal differences. This
indicates that the PLM-RF model is not affected by seasonal
variation, which is because the RF models are data-driven
(Zhu et al., 2021; Ma et al., 2021). After correcting the α
based on the RF model, the PLM-RF model can effectively
overcome the influence of seasonal factors. Figure 8c shows
that the WS100 from the PLM-RF model has a smaller RMSE
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Figure 7. Comparisons between the observed WS100 and the estimated WS100 for the (a, d, g) PLM, (b, e, h) RF, and (c, f, i) PLM-RF
models for all times at 08:00 and at 20:00 LT. The gray and black lines are the reference and regression lines, respectively. The color bar
represents the data density. The asterisk indicates that the correlation coefficient (R) passed the t test at a confidence level of 95 %.

Figure 8. Annual cycles of the (a) R2, (b) MAE, and (c) RMSE between the estimated WS100 and the observed WS100 for the PLM, RF,
and PLM-RF models. The green, blue, and red colors represent the PLM, RF, and PLM-RF methods, respectively.
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Figure 9. Spatial distributions of the mean WS100 from ERA5 (colored shading) and the PLM-RF model (colored dots) in (a) spring,
(b) summer, (c) autumn, and (d) winter as well as at (e) 08:00 LT and (f) 20:00 LT.

in each month, and the RMSE is relatively stable over the 12
months. The results indicate that the PLM-RF model outper-
forms both the PLM and RF in terms of accuracy and stabil-
ity. Therefore, the PLM-RF model may be a more suitable
choice for estimating wind profiles in China than either RF
or PLM.

4.2 Wind speed evaluation of the PLM-RF model

Figure 9 shows the spatial distributions of the mean wind
speed from ERA5 (colored shading) and the PLM-RF model
(colored dots) at 100 m for different periods. In general, the
mean WS100 values of ERA5 and the PLM-RF model are
similar. Regarding the seasonal variation, the WS100 is low
in summer and fall and high in spring and winter. This is
due to large-scale synoptic systems that occur often in the
cold season (Liu et al., 2019). Regarding the spatial distri-
bution, the WS100 is highest in Inner Mongolia and north-
eastern China, followed by coastal areas, and it is lowest in
inland areas. There are two reasons for the high wind speeds

in Inner Mongolia and northeastern China. One is that the
climate in these areas is dry and cold, especially in winter.
The low temperature and high air density lead to the forma-
tion of a strong pressure gradient (Liu et al., 2019). When the
pressure gradient is large, cyclonic and anticyclonic weather
will occur, resulting in higher wind speeds. Another reason
is that these areas are susceptible to the influence of the
Siberian monsoon and warm currents from the Pacific (Yu
et al., 2016). This monsoon causes an increase in wind speed
as it passes through Inner Mongolia and northeastern China.
In addition, comparisons between the WS100 from ERA5 and
that from the PLM-RF model for different periods are shown
in Fig. S6. Although the output of the PLM-RF model has a
good correlation with the WS100 from ERA5, there are still
some differences. Most of the WS100 values from the PLM-
RF model are greater than those from ERA5 when the wind
speed is high. This is because 1α is introduced in the PLM-
RF model, which makes the model tend to produce large out-
put values.
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Figure 10. The spatial distribution of the difference between the estimated wind speed and the observed wind speed for the PLM-RF model
over 120 radiosonde stations in China at different heights: (a) 50 m, (b) 100 m, (c) 150 m, (d) 200 m, (e) 250 m, (f) 300 m.

Figure 10 shows the spatial distribution of the differ-
ence between the estimated wind speed from the PLM-RF
model and the RS observation at different heights. At 50 and
100 m, most sites (more than 90 %) show a mean difference
of less than 0.2 m s−1, with an overall mean difference of
−0.02± 0.02 and −0.15± 0.05 m s−1, respectively. In con-
trast, above 100 m, the average differences are negative at al-
most all sites. The mean differences for all sites at 150, 200,
250, and 300 m are−0.19±0.08,−0.24±0.10,−0.24±0.10,
and −0.25± 0.11 m s−1, respectively. Compared to the re-
sults of the PLM (Fig. 2c and d), the accuracy of the wind
speed in the PLM-RF model is improved. Overall, the wind
speed estimated by the PLM-RF model is slightly underes-
timated compared to the observed value. Moreover, the av-
erage difference gradually increases with increasing height.
This is because the wind profile above the surface layer is not
logarithmic; it increases faster in response to the reduction in
surface friction force (Gryning et al., 2007; Liu et al., 2023).

The RMSE and MAE between the estimated and observed
wind speeds at different heights can be seen in Figs. S7 and
S8. These results also confirm that the performance of the
PLM-RF model decreases with increasing height. This is be-
cause the wind profile above the surface layer is affected by
the influence of low-level jets, entrainment processes, and
the Coriolis parameter (Coleman et al., 2021). In addition,
the spatial distributions of RMSE and MAE indicate that the
performance of the PLM-RF model may be influenced by the
terrain.

4.3 Effect of terrain

To evaluate the effect of the terrain factor on the performance
of the PLM-RF model, the plain terrain is defined as the ter-
rain in which the topographic relief is less than 50 m within
a radius of 5 km around the observation station. The RS sites
are divided into two categories: plains (marked by red dots
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Figure 11. (a) The mean α observed by RS as a function of height.
(b) The difference and (c) the RMSE between the estimated wind
speed and the observed wind speed as a function of height. Blue
and red boxes represent the results over plains and highland areas,
respectively.

in Fig. S9) and highlands (marked by black dots in Fig. S9).
Figure 11a shows the mean α observed by RS at different
heights. Blue and red boxes represent the results over plains
and highland areas, respectively. The mean α in highlands is
greater than that in plains. This indicates that the variation
of wind profiles in highlands is more complex than that in
plains. Previous studies have also shown that valley winds
and low-level jets can complicate the wind profiles in the
PBL (Solanki et al., 2021; Wang et al., 2023). Figure 11b
shows the difference between the estimated and observed
wind speeds for the PLM-RF model at different heights. The
difference in highlands is obviously larger than that in plains.
Moreover, similar phenomena were also found in the results
for the RMSE (Fig. 11c). The RMSE in highlands is rela-
tively large, while it is relatively small in plains. This may be
due to differences in terrain. The terrain in plains is mainly
flat, while the terrain in highlands is mainly mountainous
(Chen et al., 2016). The wind profile is not only affected by

factors such as surface friction and solar radiation, but it is
also constrained by the terrain (Panofsky et al., 1964; Jung
et al., 2021). In the construction of the PLM-RF model, the
influence of the terrain factor was not considered, resulting
in a higher RMSE of the PLM-RF model in the highlands.

4.4 Independent validation

Figure 12 displays the vertical wind speed distribution es-
timated using different methods at three ARM sites. At the
NSA site, the wind profiles calculated by the PLM-RF model
are similar to the observed values at 08:00 and 20:00 LT, but
they are slightly overestimated at 14:00 LT. The performance
of the PLM-RF model at 14:00 LT is inferior to that of the
PLM (Fig. 12c). This phenomenon also occurs at the SGP
site. The results of the PLM-RF model are significantly over-
estimated at 14:00 LT. These results indicate that the perfor-
mance of the PLM-RF model is influenced by hourly vari-
ations. However, to our surprise, the result of the PLM-RF
model is very consistent with the observations at the ENA
site, even at 14:00 LT (Fig. 12g). This may be due to the dif-
ferences in land cover type between the sites. Although the
PLM-RF model produces some overestimation at 14:00 LT,
the comparisons made at other times indicate that the wind
profiles of the PLM-RF model are still like the observed re-
sults (Fig. 12a, e and i). The PLM-RF model’s wind profiles
exhibit greater proximity to the observed values when com-
pared to the results generated by the PLM at the three ARM
sites.

To further evaluate the performance of the PLM-RF
model, the diurnal variations of theR2, MAE, and RMSE be-
tween the WS100 calculated by the PLM-RF model and the
WS100 observed by Doppler wind lidar are shown in Fig. 13.
At the SGP site, the R2 is higher in the nighttime and lower
in the daytime. These results confirm that the performance
of the PLM-RF model at the SGP site is influenced by diur-
nal variations. This is because the generalization of the RF
algorithm depends on the training and test samples (Zhu et
al., 2021). As mentioned in Sect. 3.4, the training and test
samples of the PLM-RF model do not actually contain any in
situ measurements from the period 11:00 to 15:00 LT. This
means that the PLM-RF model has no generalization at noon,
resulting in poor accuracy of the PLM-RF model during the
daytime. On the contrary, the performance of the PLM-RF
model is stable at the NSA and ENA sites. This is because the
SGP site is located over land and therefore experiences sig-
nificant diurnal variations in wind speed. The wind speed in
the daytime is relatively low – even lower than the estimated
value from the PLM. In contrast, the ENA site is located on
an island, so the diurnal variation of wind speed is not signif-
icant. The wind speed throughout the day is higher than the
estimated value from the PLM. For the PLM-RF model, since
the training data are mainly composed of relatively high wind
speeds in the nighttime, the model exhibits a significant over-
estimation correction. The model can accurately calculate the
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Figure 12. Vertical profiles of the wind speed from different methods at three ARM sites: (a–d) NSA, (e–h) ENA, and (i–l) SGP. Red, black,
and blue lines represent mean wind profiles from Doppler wind lidar, PLM, and PLM-RF, respectively, and their corresponding color-shaded
areas represent the standard deviation.

wind speed when the actual value is larger than the estimated
value from the PLM, while it will significantly overestimate
the actual value if it is lower than the estimated value from
the PLM. Overall, the wind speed results retrieved by the
PLM-RF model are consistent with the Doppler wind lidar
measurements at different heights. These results indicate that
the PLM-RF model has good spatial applicability and can be
used to obtain the wind profiles on different land cover types.

5 Summary and conclusions

The traditional wind profile model was constructed based on
the Monin–Obukhov similarity theory. As a result, the wind
profile based on the similarity theory is only effective within
the surface layer. To address this challenge, this study pro-
posed a PLM-RF method that combines the traditional PLM
with the RF algorithm to extend wind profiles beyond the
surface layer.

The reasons for the errors in the PLM above the surface
layer were first analyzed. The result indicated that the error
in the PLM is mainly attributable to the α setting. This is
because the wind profile above the surface is affected by fac-
tors such as the surface roughness, friction velocity, low-level
jets, and the Coriolis parameter, causing α to have complex-
ity. Moreover, the surface wind speed has a certain impact on
the variation of α. At heights of 50, 100, 150, 200, 250, and
300 m, the coefficients of determination between the surface
wind speed and the difference in α are greater than 0.9. This
may be due to the limited influence of surface friction on the
wind profile. When the PBL wind is high, the effect of sur-
face friction can be neglected to some extent, resulting in the
real wind profile being closer to the power-law distribution.
Based on this physical constraint, the PLM-RF method con-
siders the wind profile to have a power-law distribution in
the vertical direction, and the α values at different heights
are fitted by the RF model to calculate the wind profile.
A performance comparison of the PLM, RF, and PLM-RF
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Figure 13. Diurnal variations of the R2 (black lines), MAE (blue
lines), and RMSE (red lines) between the WS100 calculated by the
PLM-RF model and the WS100 observed by Doppler wind lidars at
the (a) NSA, (b) ENA, and (c) SGP sites.

methods was then carried out based on the RS observations
made over China from 1 June 2020 to 30 May 2021. The R2

(MAE) values of the WS100 from the PLM, RF, and PLM-
RF models were 0.75 (1.02 m s−1), 0.83 (0.78 m s−1), and
0.87 (0.60 m s−1), respectively. This shows that the PLM-RF
model has better accuracy and stability compared to the PLM
and RF. Especially for high-wind-speed events, the output of
PLM is significantly low, while the PLM-RF model can ef-
fectively correct this underestimation. The PLM-RF model
can be understood as the PLM based on a dynamic α. The
RF model is used to adjust α at different heights based on
factors such as surface wind speed, land cover type, and me-
teorological parameters to achieve high-precision wind pro-
file inversion.

Overall, the advantage of the PLM-RF model is that it
can provide more accurate wind profiles than the PLM, es-
pecially when the actual wind speed is high. Moreover, the
PLM-RF model is not affected by seasonal variation. This
is because the RF model is data-driven. The training sam-
ple of the PLM-RF model contains enough samples from the
four seasons. The PLM-RF model is recommended for areas
with high wind speeds, such as coastal areas. The limitation
of the PLM-RF model is that its performance is affected by
the diurnal variation and terrain. The generalization of the
RF model depends on whether the training samples contain
sufficient sample inputs. The training samples of the PLM-

RF model do not contain in situ measurements from the time
period of 11:00 to 15:00 LT, resulting in relatively poor ac-
curacy during this period. Similarly, the RMSE of the wind
profiles is relatively large in highland areas, which is likely
due to the fact that the influence of the terrain was not consid-
ered in the construction of the PLM-RF model. Therefore, it
is not recommended to use the PLM-RF model for the period
from 11:00 to 15:00 LT over highland areas before including
observation data to constrain the model.

Our study extends the wind profile beyond the surface
layer by combining physical and ML approaches, which has
great implications for the weather, climate, and renewable
energy sector. However, due to limitations in data size and
terrain factors, the performance of the PLM-RF model above
water surfaces is uncertain. In the future, global RS observa-
tion data will be used to train and test the PLM-RF model
and evaluate its performance on a global scale.
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