Supplement of

A large role of missing volatile organic compound reactivity from anthropogenic emissions in ozone pollution regulation

Wenjie Wang et al.
Correspondence to: Wenjie Wang (wenjie.wang@mpic.de) and Bin Yuan (byuan@jnu.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

S1 The correction of NO interference on $\mathrm{Rof}_{\text {of }}$ measurements

The NO-correction experiments were conducted by introducing given amounts of VOC standard gases into the reactor. Different levels of NO were injected into the reactor and the difference between "measured" Rон and true $\mathrm{Roн}_{\text {о }}$ increased as the NO concentration increased. Here, the difference between "measured" Rон and true Rон is defined as δ Roн. Then, a correction curve was fitted between the δ Roн and NO concentrations. Several standard gases (propene and PAMS mixture) and different levels of base reactivity (from 30 to $90 \mathrm{~s}^{-1}$) have been tried and the curve was quite consistent for all tested gases, as shown in Fig. S1. According to this correction curve and ambient NO concentrations, we calculated the δ Roн which was used to correct the measured Roн.

Figure S1. NO-correction experiments and fitting curves in Guangzhou in 2018 at different Roн of propene standard gas and mixture standard gas. The mixture standard gas used is the mixture PAMS (photochemical assessment monitoring stations) of 56 non-methane hydrocarbons (NMHCs; SpecialGas Ltd, USA).

Figure S2. Correlation of missing $\mathrm{VOC}_{\mathrm{R}}$ with NO x , formic acid (HCOOH) and acetonitrile during the measurement in Guangzhou. Each point represents hourly data.

Figure S3. Diurnal variations in Ox , formic acid and acetic acid.

Classes VOC species
ethane, propane, isobutane, n -butane, cyclopentane, isopentane, n pentane, 2,2-dimethylbutane, 2,3-dimethylbutane, 2-methylpentane, 3-methylpentane, n-hexane, 2,4-dimethylpentane,
Alkane methylcyclopentane, 2-methylhexane, cyclohexane, 2,3dimethylpentane, 3-Methylhexane, 2,2,4-trimethylpentane, n-heptane, methylcyclohexane, 2,3,4-trimethylpentane, 2-methylheptane, 3methyl Heptane, octane, n-nonane, n-decane, n-undecane, n-dodecane ethylene, propylene, trans-2-butene, 1-butene, cis-2-butene,
Alkene 1,3-butadiene, 1-pentene, trans-2-pentene, isoprene, cis- 2-pentene, 1-hexene
benzene, ethylbenzene, m / p-xylene, o-xylene, styrene, n-propylbenzene, 3-ethyltoluene, 4-ethyltoluene,
Aromatic 1,3,5-trimethyl Benzene, 2-ethyltoluene, 1,2,4-trimethylbenzene, 1,2,3-trimethylbenzene, 1,3-diethylbenzene, 1,4-diethylbenzene, toluene

VOC species	Ion formula	Sensitivity, $\mathrm{cps} / \mathrm{ppb}$
Formaldehyde	$\mathrm{CH}_{2} \mathrm{OH}^{+}$	1042
Methanol	$\mathrm{CH}_{4} \mathrm{OH}^{+}$	629.3
Acetonitrile	$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{NH}^{+}$	3374
Acetaldehyde	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{OH}^{+}$	2767
Ethanol	$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OH}^{+}$	99.23
Acrolein	$\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{OH}^{+}$	4107
Acetone	$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{OH}^{+}$	4299
Furan	$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{OH}^{+}$	2544
Isoprene	$\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{H}^{+}$	1888
MVK+MACR	$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{OH}^{+}$	3868
MEK	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{OH}^{+}$	4467
Benzene	$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{H}^{+}$	3151
2-Pentanone	$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{OH}^{+}$	4510
Toluene	$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{H}^{+}$	3978
Phenol	$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{OH}^{+}$	4076
Furfural	$\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{O}_{2} \mathrm{H}^{+}$	7460
Methyl Isobutyl Ketone	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{OH}^{+}$	3988
Styrene	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{H}^{+}$	4289
xylene	$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{H}^{+}$	4241
Cresol	$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{OH}^{+}$	4299
Trimethylbenzene	$\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{H}^{+}$	4413
Naphthalene	$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{H}^{+}$	5117
a-Pinene	$\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{H}^{+}$	2332
Formic acid	$\mathrm{CH}_{2} \mathrm{O}_{2} \mathrm{H}^{+}$	856.6
Acetic acid	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2} \mathrm{H}^{+}$	1711
Propionic acid	$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2} \mathrm{H}^{+}$	2072
Butyric acid	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{H}^{+}$	2358
Pyrrole	$\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{NH}^{+}$	2842
Formamide	$\mathrm{CH}_{3} \mathrm{NOH}^{+}$	2871
Acetamide	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NOH}^{+}$	3992

Table S2. The 31 VOCs which were calibrated using either gas or liquid standards. The ion formula of these VOCs detected by PTR-ToF-MS and corresponding sensitivity are provided.

Table S3. The units of variables used in this study.

Variables	Units
$R_{O H}$	$\mathrm{~s}^{-1}$
$k_{O H+X i}$	$\mathrm{ppb}^{-1} \mathrm{~s}^{-1}$
$\left[X_{i}\right]$	ppb
$V O C_{R}$	$\mathrm{~s}^{-1}$
Missing $V O C_{R}$	$\mathrm{~s}^{-1}$
$C_{\text {backgound }}$	s^{-1}
$P\left(O_{3}\right)$	$\mathrm{ppb} \mathrm{h}^{-1}$
$L\left(O_{3}\right)$	$\mathrm{ppb} \mathrm{h}^{-1}$
$j\left(O^{1} D\right)$	s^{-1}
L_{N} / Q	unitless

