

Supplement of

Simulation of ozone–vegetation coupling and feedback in China using multiple ozone damage schemes

Jiachen Cao et al.

Correspondence to: Xu Yue (yuexu@nuist.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

Figure S1 Offline O_3 damage (%) to the summertime photosynthesis of sunlit leaves in (a-c) June, (d-f) July, and (g-i) August for different O_3 damage schemes and sensitivities. The area-weighted percentage changes are shown in the lower left corner.

Figure S2 The same as Fig. S1 but for the changes in photosynthesis of shaded leaves.

Figure S3

Figure S3 Distribution of CUO (Units: mmol m⁻²) in China averaged for June-August. The area-weighted amount is shown in the lower left corner.

Figure S4

Figure S4 Distributions of plant functional types (PFTs) in China.

Figure S5 The undamaged fraction by $O_3(F)$ predicted with the S2007 scheme using (a, d) high and (b, e) low sensitivities or the (c, f) L2013 scheme. The area-weighted percentage changes are shown in the lower left corner.

Text S1

In NOAH-MP, stomatal resistance is calculated separately for sunlit and shaded leaves. Therefore, the undamaged fraction $F_{(sunlit/shaded)}$ in S2007 is dependent on the sensitivity parameter a_{PFT} and excessive area-based stomatal O₃ flux, which is calculated as the difference between $f_{O3(sunlit/shaded)}$ and threshold y_{PFT} :

$$F = 1 - a_{PFT} \times max\{f_{O_{3(sunlit/shaded)}} - y_{PFT}, 0\}$$
(1)

The stomatal O₃ flux $f_{O_3(sunlit/shaded)}$ is calculated as:

$$f_{O_{3(sunlit/shaded)}} = \frac{[O_3]}{r_a + k_{O_3} \cdot r_{s(sunlit/shaded)}}$$
(2)

where $r_{s(sunlit/shaded)}$ represents stomatal resistance (s m⁻¹) for sunlit/shaded leaves.

For the L2013 scheme, the leaf-level CUO for sunlit and sunshade (mmol m⁻²) over the growing season is calculated as follows:

$$CUO_{(sunlit/shaded)} = \sum \left(\frac{[O_3]}{r_a + k_{O_3} \cdot r_{s(sunlit/shaded)}} \right)$$
(3)

$$F_{PO3(sunlit/shaded)} = a_p \times CUO_{(sunlit/shaded)} + b_p \tag{4}$$

$$F_{cO3(sunlit/shaded)} = a_c \times CUO_{(sunlit/shaded)} + b_c$$
(5)

where $F_{pO3(sunlit/shaded)}$ and $F_{cO3(sunlit/shaded)}$ are the damage ratios of photosynthesis and stomatal conductance for sunlit/shaded leaves, respectively.