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Abstract. Models suggest that biomass burning causes thousands of premature deaths annually in Southeast
Asia due to excessive exposure to particulate matter (PM) in smoke. However, measurements of surface air
quality are sparse across the region, and consequently estimates for the public health impacts of seasonal biomass
burning, are not well constrained. We use the nested GEOS-Chem model of chemistry and transport (horizontal
resolution of 0.25°×0.3125°) to simulate atmospheric composition over Southeast Asia during the peak burning
months of March and September in the moderate burning year of 2014. Model simulations with GEOS-Chem
indicate that regional surface levels of PM2.5 (fine particulate matter with a diameter ≤ 2.5 µm) greatly exceed
World Health Organization guidelines during the burning seasons, resulting in up to 10 000 premature deaths in a
single month. However, the model substantially underestimates the regional aerosol burden compared to satellite
observations of aerosol optical depth (AOD) (20 %–52 %) and ground-based observations of PM (up to 54 %),
especially during the early burning season in March. We investigate potential uncertainties limiting the model
representation of biomass burning aerosols and develop sensitivity simulations that improve model–measurement
agreement in March (to within 31 %) and increase the estimated number of PM2.5-related premature deaths that
month by almost half. Our modifications have a much smaller impact on the same metrics for September, but we
find that this is due to canceling errors in the model. Compared to PM2.5 simulated directly with GEOS-Chem,
PM2.5 derived from satellite AOD is less sensitive to model uncertainties and may provide a more accurate
foundation for public health calculations in the short term, but continued investigation of uncertainties is still
needed so that model analysis can be applied to support mitigation efforts. Further reduction of uncertainties can
be achieved with the deployment of more aerosol measurements across Southeast Asia.
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1 Introduction

Widespread biomass burning contributes to unhealthy liv-
ing conditions across Southeast Asia, collectively home to
a population of more than 655 million people. Distinctive
climatologies between mainland (Cambodia, Laos, Myan-
mar, Thailand, Vietnam, and peninsular Malaysia) and mar-
itime (Brunei, Indonesia, Singapore, Timor-Leste, eastern
Malaysia, and the Philippines) Southeast Asia result in two
burning seasons every year. These burning seasons coincide
with dry conditions on the mainland in November–May and
across the more equatorial maritime nations in June–October
(Duncan et al., 2003; Csiszar et al., 2005). Although sea-
sonal burning patterns are fairly consistent, large-scale cli-
mate variations (e.g., the El Niño–Southern Oscillation) can
drastically affect the extent and intensity of regional fire ac-
tivity from year to year (van der Werf et al., 2008; Wooster
et al., 2012; Marlier et al., 2013; Field et al., 2016; Huijnen
et al., 2016). With such a large population at risk, it is of ut-
most importance to ensure that the public health impacts of
biomass burning in Southeast Asia are well understood.

The combustion process intrinsic to biomass burning re-
sults in the emission of numerous gases and aerosols, some
of which are hazardous to human health. Of primary concern
is PM2.5 (fine particulate matter with a diameter ≤ 2.5 µm),
which can impede normal functioning of the heart and lungs
when inhaled by humans, leading to an increased risk of pre-
mature death (Atkinson et al., 2014; Yorifuji et al., 2015). Al-
though total PM2.5 is complex in composition and may orig-
inate from a variety of sources, pyrogenic PM2.5 is primar-
ily comprised of particulate organic carbon (OC) (Wooster
et al., 2018), some of which is emitted directly and some
produced by emitted gases via secondary atmospheric chem-
istry (Akagi et al., 2011; Yokelson et al., 2013; Stockwell
et al., 2015). Current guidelines from the World Health Or-
ganization (WHO) recommend that short-term (24 h) expo-
sure to PM2.5 should not exceed 15 µg m−3 (World Health
Organization, 2021). However, ground-level PM2.5 concen-
trations in Southeast Asia are often much higher, especially
during the burning seasons. Atmospheric chemistry models
have been applied to estimate the public health impacts of el-
evated PM2.5 from severe fire events in Southeast Asia (Mar-
lier et al., 2013; Crippa et al., 2016), reporting in some cases
up to 100 000 attributable deaths (Koplitz et al., 2016). Stud-
ies like these tend to focus on extreme scenarios, and less is
currently known about the public health impacts of biomass
burning in Southeast Asia during more typical burning years.

Models are helpful tools for simulating atmospheric com-
position and assessing public health, but they are by defini-
tion limited by uncertainties in the underlying knowledge,
and there are few measurements in Southeast Asia available
for model evaluation. Satellite observations of aerosol optical
properties provide the best coverage in time and space, but
models are often needed to relate remotely sensed measure-
ments to air quality conditions on the ground (van Donkelaar

et al., 2010, 2015; Boys et al., 2014; Hammer et al., 2020;
Yao and Palmer, 2021). Continuous ground-based monitor-
ing of surface PM2.5 has been historically scant through-
out Southeast Asia, even among countries with extensive air
quality networks (e.g., Malaysia, Thailand, and Indonesia).
In recent years, however, Malaysia in particular has made
considerable progress in expanding its network to include
more measurements of PM2.5 (Ab. Rahman et al., 2022;
Ahmad Mohtar et al., 2022), and its central location span-
ning both mainland and maritime Southeast Asia is favor-
able for observing air quality during both burning seasons.
In situ measurements can provide further information about
the emissions and composition of PM2.5, but previous fire-
focused field experiments in Southeast Asia have been lim-
ited to certain ground sites, marine campaigns, and extreme
events (Lin et al., 2013; Wooster et al., 2018).

Here, we use satellite observations across Southeast Asia
and ground-based measurements from Malaysia to evalu-
ate uncertainties related to pyrogenic aerosols in the GEOS-
Chem atmospheric chemistry model for the moderate burn-
ing year of 2014. In a previous study (Marvin et al., 2021),
we characterized biomass burning emissions in 2014 and
identified two distinct regimes: (1) burning on the main-
land peaking in March and (2) burning in Indonesia peak-
ing in September. The first regime is primarily attributed to
deforestation with minor contributions from the burning of
peat and savanna, whereas peat becomes the dominant fuel
later in the year. The type and amount of vegetation burned
in each regime determine the composition of biomass burn-
ing emissions and ultimately the overall impact on regional
air quality and public health. This study focuses on PM2.5,
and the model and data used here are described in Sect. 2.
In Sect. 3, we evaluate the simulated aerosol burden over
Southeast Asia across March and September 2014. In Sect. 4,
we discuss uncertainties that limit the model representation
of biomass burning aerosols, and then we investigate model
sensitivity to certain uncertainties in Sect. 5. We report on
the public health implications of unresolved aerosol uncer-
tainties in Sect. 6 and highlight the advantages of satellite-
derived PM2.5 for public health calculations in Sect. 7. We
conclude this study in Sect. 8.

2 Model and data

Here, we describe the GEOS-Chem model of atmospheric
chemistry and transport, as well as the set of observations that
we use to evaluate simulated aerosols over Southeast Asia.

2.1 The GEOS-Chem model

We use version 12.5.0 of the 3-D GEOS-Chem model (The
International GEOS-Chem User Community, 2019b) to sim-
ulate atmospheric composition over Southeast Asia in 2014.
Following 1 year of model spin-up, we run the global model
at a horizontal resolution of 2°× 2.5° for all of 2014, from
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which we extract boundary conditions that we use to run the
nested model over a regional domain of −10 to 24° N and
90 to 140° E (Fig. 1) at a finer resolution of 0.25°× 0.3125°
for the months of March and September. All of our simu-
lations extend vertically through 47 terrain-following sigma
levels between the surface and 0.01 hPa.

Model inputs used in this work are replicated from Mar-
vin et al. (2021). For example, the model is driven by as-
similated meteorology from the GEOS Forward Process-
ing (GEOS-FP) product, except for the spin-up run, which
uses the Modern-Era Retrospective analysis for Research and
Applications version 2 (MERRA-2) due to the unavailability
of GEOS-FP before 2014. Both GEOS-FP and MERRA-2
are provided by the Global Modeling and Assimilation Of-
fice (GMAO) at NASA Goddard Space Flight Center. An-
thropogenic emissions are supplied on a global scale by the
Community Emissions Data System (CEDS) (Hoesly et al.,
2018) but are replaced by the regional MIX inventory over
Asia (Li et al., 2017). Biogenic emissions of volatile organic
compounds (VOCs) are calculated online using the Model
of Emissions of Gases and Aerosols from Nature (MEGAN)
version 2.1 (Guenther et al., 2012), and natural emissions
of nitrogen oxides (NOx =NO+NO2) are parameterized
(Hudman et al., 2012; Murray et al., 2012). As in Mar-
vin et al. (2021), we primarily use biomass burning emis-
sions from the Global Fire Emissions Database (GFED) ver-
sion 4.1s (van der Werf et al., 2017), though we also test
other inventories that are compatible with GEOS-Chem, in-
cluding the Fire INventory from NCAR (FINN) version 1.5
(Wiedinmyer et al., 2011), the Global Fire Assimilation Sys-
tem (GFAS) (Kaiser et al., 2012), and the Quick Fire Emis-
sions Dataset (QFED) version 2.5r1 (Darmenov and da Silva,
2015). The base GFED4.1s inventory has a spatial resolu-
tion of 0.25°×0.25°, and we configure GEOS-Chem to apply
fractional daily and 3-hourly scaling factors that are provided
with the cumulative monthly data so that we can achieve finer
temporal resolution in the nested simulation.

Atmospheric chemistry in all of our simulations is de-
scribed by the “complexSOA_SVPOA” GEOS-Chem mech-
anism, which is based on the full-chemistry “tropchem”
mechanism for gas-phase reactions (Eastham et al., 2014)
but also accounts for the photochemical production of sec-
ondary organic aerosol (SOA) and semi-volatile primary or-
ganic aerosol (SVPOA). A standard volatility basis set (VBS)
scheme is used to estimate the yield of SOA families from
their respective primary VOCs (Pye et al., 2010), and the for-
mation of isoprene SOA is additionally represented by aque-
ous uptake from its immediate gas-phase precursors (Marais
et al., 2016). The model generates 3-D fields of mass con-
centrations for organic aerosols, inorganic aerosols, sea salt
aerosols, black carbon, and dust. Model PM2.5 is calculated
as the total mass concentration of those aerosols that exist
in the fine mode. Type-specific hygroscopic growth factors
are applied at 35 % relative humidity, consistent with sam-
pling conditions for the corresponding observations. Model

aerosol optical depth (AOD) represents aerosol extinction
coefficients corresponding to each aerosol type, integrated
across each vertical layer, and is reported in our simula-
tions at 550 nm. We have updated the model calculations
for AOD and PM2.5 to account for oxidized primary organic
aerosol (OPOA) and to exclude VBS-derived isoprene SOA
in favor of the aqueous uptake estimate. For comparison with
observations, we sample model output at the time and loca-
tion of the measurements described below.

2.2 MODIS and AERONET AOD

We use satellite and ground-based observations of aerosols
to evaluate the model simulations. Spaceborne observations
of the total columnar AOD are obtained from the NASA
Moderate Resolution Imaging Spectroradiometer (MODIS)
instrument aboard the Aqua satellite (MYD04_L2), which
has a local equatorial overpass time of 13:30 LT. Although
MODIS AOD is also available at an overpass time of
10:30 LT from the Terra satellite (MOD04_L2), we do not
find a significant difference in AOD at the two overpass
times during the burning season in Southeast Asia, according
to a two-sample t test (March: p value= 0.57; September:
p value= 0.21), and choose to focus our study instead on
just the afternoon dataset, which coincides with potentially
useful satellite observations of aerosol precursors and
other related species (Levelt et al., 2006; Veefkind et al.,
2012). In particular, we use the MODIS Collection 6.1
Level 2 combined Dark Target and Deep Blue AOD product
(AOD_550_Dark_Target_Deep_Blue_Combined) at 550 nm
(Levy et al., 2015). This product is generated using a fixed
thresholding method based on the normalized difference
vegetation index (NDVI) and, on a global scale, has a
Pearson correlation coefficient of 0.91, a mean absolute error
of 0.067, and a root mean square error of 0.11 compared to
the ground-truth AErosol RObotic NETwork (AERONET)
AOD (described below) over land for the period from 2013
to 2017 (Wei et al., 2019). While studies suggest that it
is not always appropriate for the merging procedure to
only depend on the fixed thresholds of NDVI (Wei et al.,
2019), we use this product to take advantage of its enhanced
coverage in the absence of its improved versions. AOD
retrievals of varying quality assurance (QA) flags coexist in
the product, and we choose to use those of the best quality
(AOD_550_Dark_Target_Deep_Blue_Combined_QA_
Flag= 3). The retrievals are provided at a spatial res-
olution of 10 km, and we regrid them onto the coarser
0.25°× 0.3125° model grid to facilitate a consistent
comparison with our GEOS-Chem model simulations.

Ground-based observations of the total columnar AOD
are obtained from the NASA AErosol RObotic NET-
work (AERONET). In particular, we use the AERONET
Version 3 Level 2 AOD data product that has undergone
cloud screening and quality assurance (Giles et al., 2019;
https://aeronet.gsfc.nasa.gov, last access: 20 March 2024).
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Figure 1. Nested model domain over Southeast Asia. Panel (a) shows the locations of AERONET AOD (hot pink) and ground-based
PM monitoring sites (purple) that we use in our study. Panel (b) shows the regional population density (per grid cell) that we estimate for
the region, based on the 0.25°× 0.25° gridded population data for 2015 from NASA SEDAC and scaled to 2014 using bulk population data
from the World Bank as described in Sect. 3.1.

The AOD observations are reported at wavelengths rang-
ing from 340 to 1640 nm at a high temporal frequency of
up to 15 min. The estimated uncertainty in computed AOD,
due primarily to calibration uncertainty, is∼ 0.010–0.021 for
field instruments and is spectrally dependent with higher er-
rors in the UV (Eck et al., 1999). For each data record, we
build a quadratic fit of ln(AOD) and ln(wavelength) that re-
quires at least three valid data pairs encompassing 550 nm
(Eck et al., 1999), and we subsequently use the fitted re-
lationship to interpolate AERONET AOD to 550 nm. The
wavelength of 550 nm corresponds to particle sizes of 0.1–
2 µm and is comparable to the PM2.5 size range (Kahn et al.,
1998). For consistency with satellite observations of AOD,
we utilize AERONET data collected within ±30 min of the
13:30 LT Aqua MODIS overpass time from 18 ground sta-
tions operating across Southeast Asia in 2014 (Fig. 1a).

2.3 Ground-based PM mass concentrations

Measurements of surface PM mass concentrations are pro-
vided by the Air Quality Division, Department of Environ-
ment, Malaysia. These measurements are collected at ground
stations across Malaysia as part of a wider pollution moni-
toring network, as described by Latif et al. (2014). We use
data from 59 ground stations in this network that collected
measurements of PM in 2014 (Fig. 1a). At that time, beta
attenuation monitors (BAMs) (model 1020; Met One Instru-
ments Inc., USA) were used to measure aerosols but re-
ported only on PM10 (particulate matter≤ 10 µm), with no
direct measurements provided for the finer subset of PM2.5.
More recently, the BAM instruments have been replaced with
tapered-element oscillating microbalances (TEOMs) (1405-
DF FDMS; ThermoFisher Scientific Inc., USA) that mea-
sure and report on both PM size ranges (Ab. Rahman et al.,
2022; Ahmad Mohtar et al., 2022). For hourly data, the BAM
instruments have an accuracy of within ±10 %, precision
within±5 µg m−3, and a lower detection limit of 4.8 µg m−3.

The TEOM instruments have an accuracy of within±0.75%,
precision within ±1.5 µg m−3, and a lower detection limit of
0.06 µg m−3. Using TEOM measurements from 2018, we de-
rive site-specific PM2.5 : PM10 ratios, which we apply to the
BAM measurements of PM10 to infer monthly mean con-
centrations of PM2.5 for 2014. Where TEOM measurements
are not available (seven ground stations), we assume a ratio
of 2 : 3 based on the mean from the remaining active loca-
tions.

3 Aerosol burden over Southeast Asia during the
burning seasons

Here we report the regional model distribution of PM2.5 and
evaluate values against ground-based and satellite remote
sensing data.

3.1 Regional PM2.5 distribution

Standard simulations with the GEOS-Chem model suggest
that ground-level mass concentrations of PM2.5 greatly ex-
ceed world health guidelines across Southeast Asia during
its burning seasons. Figure 2a and b show monthly mean
surface PM2.5 mass concentrations from the nested GEOS-
Chem model for March and September 2014. During both
months, mean mass concentrations often exceed 15 µg m−3,
the current 24 h WHO limit, especially over and immediately
downwind of burned areas (Fig. 2e and f), where peak values
approach 100 µg m−3. Prolonged exposure to such high lev-
els of PM2.5 puts regional populations at increased risk of
ill health effects, even during a moderate burning year such
as 2014. Assuming that each increment of 10 µg m−3 PM2.5
is associated with a 1.04 % increase in mortality (Atkinson
et al., 2014), we apply this rate to the total number of deaths
expected per month for the population of Southeast Asia as
given by the gridded UN-adjusted population count prod-
uct v4.11 for 2015 from the NASA Socioeconomic Data and
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Figure 2. Maps of monthly mean surface PM2.5 (µg m−3) from the nested GEOS-Chem simulation (a, b), monthly mean difference between
the nested GEOS-Chem simulation and MODIS AOD on the 0.25°× 0.3125° nested model grid (c, d), and monthly burned area (m2) from
GFED4.1s at its native resolution of 0.25°× 0.25° (e, f) over Southeast Asia in March (a, c, e) and September (b, d, f) 2014.

Applications Center (CIESIN, 2018), which is scaled to 2014
using national demographic data from the World Bank (https:
//data.worldbank.org, last access: 3 February 2023; shown in
Fig. 1b). Based on the surface values for PM2.5 simulated
with GEOS-Chem, we calculate that excessive exposure to
PM2.5 was responsible for nearly 10 000 premature deaths
across Southeast Asia in March 2014 and another 7000 in
September.

3.2 Model evaluation

Evaluation against observations suggests that the simulated
aerosol burden over Southeast Asia is underestimated by
GEOS-Chem, particularly during the burning seasons. Fig-
ure 3 compares the nested model to aerosol measurements
across Southeast Asia for March and September 2014. We
find that the control run underestimates monthly mean AOD
across the region, with a normalized mean bias (NMB), cal-
culated as the mean difference between the model and obser-
vations normalized by the mean of the observations, ranging
between −20 % and −52 %. The edges of this range are de-

fined by the comparison to AERONET AOD, whereas the
comparison to MODIS AOD varies slightly less (−31 % to
−39 %), possibly smoothed by the high data density of the
satellite observations (n= 4829 over land). In both cases,
however, model–measurement agreement is markedly worse
in March than September. These trends are generally sup-
ported by linear regression analysis, except that the Pearson
correlation coefficient (r) is weakest for MODIS AOD and
in September (r = 0.68). Similar results are also found to de-
scribe ground-based PM2.5 in Malaysia, which is underesti-
mated substantially by the model in March (NMB=−54 %
and slope= 0.61), and although it approaches observed val-
ues in September (NMB= 4 % and slope= 1.07), r is no-
tably worse (0.68 versus 0.89). Such poor agreement with
observations suggests that there are significant deficiencies
that must be addressed before proceeding with further model
analysis. Figure 2c and d show that the largest deviations tend
to occur over areas of fire activity, and we find that the total
regional model bias is minimized during the off season (e.g.,
for MODIS AOD in December: NMB=−10 %), suggesting
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Figure 3. Scatterplots of modeled versus measured monthly mean MODIS AOD (over land), AERONET AOD, and surface PM2.5 (µg m−3)
for the nested GEOS-Chem model over Southeast Asia in March and September 2014. For each month, results are shown from the control
model run as well as from the respective sensitivity simulation SS1 or SS2 as described in Sect. 5. Surface PM2.5 concentrations are inferred
from ground-based measurements of PM10 from Malaysia as described in Sect. 2.3. Each plot shows a line of best fit (solid) and associated
mean statistics (inset): the slope and y intercept of the best-fit line, Pearson correlation coefficient (r), and normalized mean bias (NMB) as
defined in the main text. The 1 : 1 line (dashed) is also shown for reference.
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that biomass burning is a major source of uncertainty in sim-
ulating aerosols over Southeast Asia. We investigate this un-
certainty below to better understand its impact on simulated
air quality and related mortality throughout the region.

4 Uncertainties of biomass burning aerosols

Here we examine the impact of uncertainties associated with
the emission and subsequent atmospheric transformations of
biomass burning aerosols.

4.1 Biomass burning emissions

Uncertainties in simulating emissions of aerosols from
biomass burning stem from the choice of inventory used, as
well as inventory-specific burned area and fuel consumption
estimates, emission factors, and injection heights.

The choice of inventory can have a significant impact
on model aerosols, especially during the burning seasons in
Southeast Asia (Liu et al., 2020). The default GEOS-Chem
model supports four global inventories of biomass burning
emissions: GFED, FINN, GFAS, and QFED. The GFED and
FINN inventories directly apply MODIS fire data to esti-
mate biomass burning emissions, whereas GFAS and QFED
are based on MODIS-derived fire radiative power. To test
variability between these inventories, we conduct simula-
tions implementing currently supported versions GFED4.1s,
FINN1.5, GFAS, and QFED2.5r1 separately into the global
GEOS-Chem model. Figure 4 shows scatterplots of model
versus measured AOD at the mean afternoon MODIS over-
pass time on the base 2°× 2.5° model grid across Southeast
Asia for March and September 2014. We find that all four
inventories are associated with substantial model underesti-
mation of AOD during both months. The NMB of the model
ranges between about −30 % and −60 %. We have chosen
to use GFED4.1s as the basis for the remainder of our study
because it consistently results in the best linear correlation
between modeled and measured AOD (as defined by r), and
although it does not differ much from the other inventories
in March, it leads to much better agreement with measured
AOD in September (slope= 0.94; NMB=−36%) when peat
becomes a dominant fuel for biomass burning.

4.1.1 Estimates for burned area and fuel consumption

The GFED4.1s inventory estimates total dry matter emis-
sions as the product of burned area and fuel consumption
(van der Werf et al., 2017). Figure 2e and f show burned area
from GFED4.1s for Southeast Asia in March and Septem-
ber 2014. For the MODIS era (2000–present), burned area is
supplied by the MODIS Collection 5.1 MCD64A1 product
(Giglio et al., 2013), which is also combined with MODIS
active fire detections (MCD14ML) to derive additional con-
tributions from small fires (< 21 ha or 500 m2) (Randerson
et al., 2012). Small fires are very important in Southeast

Asia, as they are thought to account for about 25 %–50 %
of the total regional burned area annually, but this estimate
is highly uncertain (van der Werf et al., 2017). Furthermore,
MODIS active fire products were recently updated to Col-
lection 6 (Giglio et al., 2018), and in a subsequent study
Vetrita et al. (2021) found that, compared to Collection 6,
the Collection 5.1 MCD64A1 product overestimated burned
area by about 35 % over peatlands on Borneo in Septem-
ber 2014. For that month, they found good agreement (within
about 15 %) between Collection 6 MCD64A1 and another
burned-area product called FireCCI, which is derived from
Collection 6 active fire detections (MCD14ML) and like
GFED4.1s is also sensitive to small fires (Lizundia-Loiola
et al., 2020). To evaluate uncertainties in GFED4.1s burned
area, we compare to FireCCI across all of Southeast Asia
in 2014. We find that the total regional burned area estimated
by GFED4.1s in March (5.2×1010 m2) agrees within 16 % of
FireCCI (4.5× 1010 m2). In September, however, GFED4.1s
(9.9×109 m2) estimates nearly a factor of 2 more burned area
than FireCCI (5.6× 109 m2), consistent with the high bias
reported by Vetrita et al. (2021). Based on this analysis, we
consider a factor of 2 to be an upper limit on uncertainty in
GFED4.1s burned area for Southeast Asia during our study
period.

Fuel consumption in GFED4.1s is parameterized based on
output from the GFED modeling system and optimized us-
ing ensemble measurements from over 120 unique locations
around the world (Scholes et al., 2011; van Leeuwen et al.,
2014). Indonesia is relatively well represented in this proce-
dure, with fuel consumption measurements assimilated from
four studies at three different locations between the islands
of Sumatra and Borneo. However, no measurements are in-
cluded from anywhere else in Southeast Asia. Because rel-
evant measurements in this region still remain scarce today,
we are not currently pursuing further evaluation, but we note
here that fuel consumption may be a significant source of
uncertainty in GFED4.1s biomass burning emissions, espe-
cially over mainland Southeast Asia.

4.1.2 Emission factors

The final stage of preparing biomass burning emissions
is completed in GEOS-Chem, where global emission fac-
tors (EFs) primarily from Akagi et al. (2011) are applied
to convert the total dry matter emissions from GFED4.1s
into speciated emissions of gases and aerosols (in units
of g emitted per kg dry matter burned). Recent studies
have revealed significant discrepancies between aerosol EFs
measured in Southeast Asia and the global EFs applied
in GFED4.1s/GEOS-Chem. For example, aircraft measure-
ments from Wooster et al. (2018) collected over Indonesia
in 2015 indicate that the EF for PM2.5 from peat burning is
22.25±8.63 g kg−1 (with CO as the reference species), 99 %
of which is attributed to OC. However, the EF for OC in the
model is only 6.02 g kg−1, about 3–4 times too low. Labora-
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Figure 4. Scatterplots of modeled versus measured monthly mean MODIS AOD (over land) across Southeast Asia for March and Septem-
ber 2014. For each month, model AOD is computed in GEOS-Chem on the base 2°× 2.5° grid using four different biomass burning in-
ventories: GFED4.1s, FINN1.5, GFAS, and QFED2.5r1. Each plot shows a line of best fit (solid) and associated mean statistics (inset): the
slope and y intercept of the best-fit line, Pearson correlation (r), and normalized mean bias (NMB) as defined in the main text. The 1 : 1 line
(dashed) is also shown for reference.
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tory analysis of plume samples from the same fire season
produced mean EFs for OC in the range of 12–16 g kg−1

(Stockwell et al., 2016; Jayarathne et al., 2018), which are
somewhat more conservative than the aircraft measurements
but still notably higher than the model. In a comprehensive
study of 2015 Indonesian peat fires, Kiely et al. (2019) devel-
oped an improved estimate for particulate emissions using an
average of observed EFs, resulting in a value of 22.30 g kg−1,
similar to Wooster et al. (2018).

We attribute negative model bias to the omission of an
important source of organic aerosol: the model EFs, in the
default setup for GFED4.1s/GEOS-Chem, represent partic-
ulate OC but do not account for gas-phase VOCs that are
of intermediate or semi-volatility (I/SVOCs) and may subse-
quently partition into aerosols. Based on laboratory studies,
these I/SVOCs are thought to comprise 35 %–64 % of the
mass of non-methane organic compounds (NMOCs) emit-
ted from biomass burning (Yokelson et al., 2013), with EFs
roughly one-third of the total value for all NMOCs that have
so far been identified across several different types of vege-
tation burned (Stockwell et al., 2015). Although Akagi et al.
(2011) do not explicitly provide EFs for I/SVOCs, they do
provide the total EFs for identified NMOC, which we scale
by 1/3 for consistency with Stockwell et al. (2015). Then,
we add these values to the existing EFs for particulate OC to
calculate the EFs for total OC as follows:

EFOC = EFpOC+
1
3

EFidentified NMOC. (1)

By accounting for the emission of I/SVOCs, we find that
for peat our new estimate of EFOC is 22.25 g kg−1, which
agrees very well with Wooster et al. (2018) and Kiely et al.
(2019). During the burning seasons in Southeast Asia, the
combined impact across all vegetation types is equivalent
to an increase in total emissions of biomass burning OC by
about a factor of 3. Although the limited availability of rel-
evant measurements currently precludes further evaluation,
this correction reflects a systematic problem with the model
representation of OC that we expect applies to all vegetation
types from GFED4.1s/GEOS-Chem. We note, however, that
the global EFs we use here are inherently limited by mea-
surement uncertainties, knowledge gaps, and inconsistencies
between laboratory and field data (Akagi et al., 2011). More
measurements are needed to evaluate existing EFs and de-
velop improved values that better describe aerosol emissions
from biomass burning in Southeast Asia.

4.1.3 Vertical emission distribution

A recent study showed that the underestimation of model
fire tracers relative to surface observations could be largely
attributed to the injection height scheme in GEOS-Chem
(Wizenberg et al., 2023), which suggests that the vertical
distribution of emissions could be an important source of
model uncertainty. In recent versions of GEOS-Chem includ-

ing 12.5.0, the default treatment of biomass burning emis-
sions from GFED is to inject all emissions into the surface
layer of the model. This is very likely not an accurate rep-
resentation of all fires in Southeast Asia but may be appro-
priate in particular for peat fires, which occur close to the
ground and tend to produce plumes confined to altitudes be-
low 1000 m (Tosca et al., 2011). Furthermore, partial injec-
tion of emissions above the surface layer would likely result
in worse agreement with ground-based PM2.5 observations
(Fig. 3). Although we do not perform simulations specifi-
cally designed to test different injection schemes, our sim-
ulations with different biomass burning inventories (Fig. 4)
provide some constraint on this issue. As with GFED, emis-
sions from FINN are injected into the surface layer of the
model, whereas emissions from GFAS and QFED are dis-
tributed across injection heights. Emissions from GFAS are
injected evenly into each model layer between the surface
and a mean altitude of maximum injection, while 65 % of
emissions from QFED are injected between the surface and
the top of the planetary boundary layer (PBL), and the
remaining 35 % are injected between the top of the PBL
and an altitude of 5500 m. As shown in Fig. 4, distribut-
ing emissions above the surface layer does not have a clear
impact on model AOD across Southeast Asia in March,
with QFED (NMB=−29 %) performing somewhat better
than GFED (NMB=−40 %) and GFAS somewhat worse
(NMB=−52 %). Both inventories, however, perform no-
tably worse (NMB≤−57 %) than GFED (NMB=−36 %)
in September, when biomass burning is dominated by peat
and might reasonably be described by emissions closer to
the surface. We recognize that the vertical emission distribu-
tion is an important source of uncertainty in the model but do
not necessarily recommend changing the injection scheme as
implemented in GFED for simulations of Southeast Asia.

4.2 Organic aerosol chemistry

Once emitted, organic aerosols and their precursors may
undergo secondary chemistry that affects the composition
and atmospheric loading of OC. In the GEOS-Chem “com-
plexSOA_SVPOA” mechanism, biomass burning emissions
of OC are attributed to gas-phase semi-volatile precursors
of POA. These species may then undergo oxidation by
OH to form OPOA, with a rate constant (kOH) of 2.0×
10−11 cm3 molec.−1 s−1, and the overall rate of this reaction
controls the ratio of POA to OPOA. In contrast, the contribu-
tion of SOA is derived from the emission of primary VOCs
such as terpenes and aromatics, and neither OPOA nor SOA
undergo further oxidation. Budisulistiorini et al. (2018) mea-
sured individual OA components at a surface site in Singa-
pore during the Indonesian burning season of 2015 and found
that the fraction of POA during that time was 40 %–50 %.
We find, however, that the model POA fraction in Septem-
ber 2014 over Singapore is much lower at only 9 %. This sug-
gests that POA reactivity is too high in the model for at least
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Figure 5. Mean model surface OA distribution in terms of (a) absolute aerosol mass (µg m−3) and (b) fraction of total OA (%), separated
into components POA, OPOA, and SOA across Southeast Asia in September 2014. The left bar shows results from the control run and the
right bar shows the adjusted distribution when the rate constant kOH controlling the oxidation of POA to OPOA is reduced by 1 order of
magnitude (Mod. 2).

one site during the late burning season, and we find much
better agreement with Budisulistiorini et al. (2018) when we
reduce kOH by 1 order of magnitude (POA fraction over Sin-
gapore becomes ∼ 40 %). Figure 5 shows the regional mean
distribution of the model surface OA mass concentration be-
tween its components POA, OPOA, and SOA across South-
east Asia in September 2014. In the control run, this distri-
bution is dominated by OPOA (57 %), with smaller contri-
butions from SOA (20 %) and POA (23 %). When we apply
an order of magnitude reduction to kOH, the regional POA
fraction increases to 41 % and, due to the shorter lifetime of
POA, results in an overall 26 % reduction in the total sur-
face OA mass concentration. Because we are limited by the
availability of other relevant measurements, we have derived
this adjustment with the assumption that the OA distribution
is constant between fire seasons from different years and for
all burning sites across the region. Although we do not ex-
pect significant variations in POA reactivity for a given burn-
ing regime, more measurements of aerosol composition are
needed to evaluate this metric across the region for both burn-
ing seasons and to explore other complicating factors such as
the prevalence of SOA under different conditions in South-
east Asia.

Gas–aerosol partitioning is often explicitly represented in
models to describe the formation of SOA, but previous per-
turbation experiments have been unsuccessful in tuning re-
lated parameters to match satellite AOD and in situ OA ob-
servations simultaneously over Southeast Asia (Trivitayanu-
rak et al., 2012). Furthermore, the SOA formation mech-
anism in GEOS-Chem was updated substantially in recent
years (Marais et al., 2016), but multiple studies have shown
that this representation of SOA does not vary significantly
from more simple model configurations (Schroder et al.,
2018; Jo et al., 2019; Pai et al., 2020). This suggests that
the bulk model aerosol abundances are not very sensitive to

the partitioning details and that it is not likely to be a major
source of uncertainty in our simulations.

4.3 Physical aerosol processes

Aerosol abundance is also affected by physical aerosol pro-
cesses such as water solubility, hygroscopic growth, depo-
sition, transport, and lifetime. The GEOS-Chem model as-
sumes that POA is neither water-soluble nor hygroscopic,
which is largely consistent with recent laboratory studies of
total emitted aerosol from the burning of Southeast Asian
vegetation, especially peat (Chen et al., 2017, 2019; Chow
et al., 2019). In contrast, OPOA and SOA are both water-
soluble and hygroscopic, meaning that they are subject to
water uptake from clouds and precipitation. These aerosols
are lost mainly to wet deposition, which controls their life-
times over Southeast Asia (Trivitayanurak et al., 2012). How-
ever, evaluation of recent model improvements suggests that
total OC is robust against uncertainties in the GEOS-Chem
wet deposition scheme globally (Luo et al., 2020). We there-
fore consider the model treatment of these physical pro-
cesses generally appropriate for biomass burning aerosols
from Southeast Asia.

4.4 Calculation of aerosol metrics

In addition to the uncertainties described above, estimates of
AOD and PM2.5 are also affected by assumptions made in the
calculation of those metrics. Throughout Sect. 4, we explore
aerosol composition in the model, which not only impacts
the overall aerosol burden but also determines how optical
properties and growth factors are assigned in the model cal-
culations. Our discussion is primarily focused on OC from
biomass burning, but we estimate that OC accounts for only
up to about 50 % of fine surface aerosol mass over land dur-
ing the burning seasons. Other aerosols are emitted from ad-
ditional sources, and their analysis is beyond the scope of
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this work, but their uncertainties could impact the model es-
timates of AOD and PM2.5 reported here. Furthermore, the
model calculations are limited by assumptions about the op-
tical and hygroscopic properties themselves. We run GEOS-
Chem with the default values for these properties, which are
interpolated from look-up tables generated by a Mie algo-
rithm (Martin et al., 2003). The default values are broadly
applied across lumped aerosol species and may not be ac-
curate, depending on aerosol composition and how well it
is simulated by the model. For example, global simulations
suggest that underestimation of biomass burning aerosols by
GEOS-Chem could potentially be explained by the absorp-
tion of brown carbon (Hammer et al., 2016; Jo et al., 2016),
which is not represented in the standard model. More mea-
surements are needed to apply this theory across Southeast
Asia (Pani et al., 2021), but it is an exciting topic for future
research.

Uncertainties related to the calculation of AOD in satel-
lite and ground-based retrieval algorithms are expected to be
relatively small. AERONET AOD is generally accepted as
ground truth, and MODIS Collection 5 typically compares
to AERONET data within an expected error envelope of
± (0.05+ 15 %) (Levy et al., 2010). Sources of uncertainty
in the satellite retrievals include radiometric calibration, es-
timated surface reflectance, model-derived aerosol composi-
tion, and cloud interference (Wei et al., 2019). To minimize
these issues, we use the combined Dark Target and Deep
Blue retrieval product, and we select only the highest-quality
cloud-screened data, but we acknowledge that some uncer-
tainty will likely persist in the satellite observations.

5 Sensitivity simulations

Considering the uncertainties of biomass burning aerosols
described above, we have applied the corresponding modi-
fications to the nested GEOS-Chem model simulations for
Southeast Asia for March and September 2014 (Table 1).
Sensitivity simulations for both March (SS1) and Septem-
ber (SS2) include the adjustment from Eq. (1) to account for
pyrogenic emission of I/SVOCs (Mod. 1). The September
simulation (SS2) additionally includes a 1 order of magni-
tude reduction in the kOH of POA (Mod. 2) and a 50 % re-
duction in dry matter emissions (Mod. 3) compared to the
control model run.

We find that, compared to the control run, sensitivity sim-
ulation SS1 significantly improves model agreement with
PM observations across Southeast Asia in March. Fig-
ure 3 shows that the normalized mean bias of GEOS-Chem
AOD in SS1 is improved by about 30 % against monthly
mean observations from both MODIS (NMB=−6 %) and
AERONET (NMB=−20 %). Furthermore, the slopes from
the linear regression of GEOS-Chem AOD against MODIS
(slope= 0.99) and AERONET (slope= 0.95) are increased
by about a factor of 2 and now approach unity. The re-

sponse in model PM2.5 is slightly weaker, as the slope of
the regression against ground-based observations increases
to 1.04, but the NMB only improves by 23 % and remains
quite low at −31 %. For all three datasets, the upward shift
of scatter points is greatest at high PM loadings, suggesting
that the modifications applied in SS1 have the largest impact
on conditions where PM over land is already elevated, for
example by local biomass burning activity. Low PM mass
concentrations and r values do not appear to be sensitive
to the same modifications, which may indicate remaining
model deficiencies in environments where PM is dominated
by other sources. Although model PM2.5 at many sites was
generally below the WHO limit of 15 µg m−3, the observed
values were higher (min= 16 µg m−3), suggesting that while
biomass burning may account for the highest PM values in
Southeast Asia, investigation of other sources may also be
needed to achieve healthy living conditions at certain loca-
tions.

In contrast, model PM does not deviate much from the
control run with respect to the modifications applied to SS2
in September. When each modification is applied separately
(not shown), we find a strong increase in model PM val-
ues with Mod. 1 (slope versus MODIS AOD= 2.04) and
opposing reductions with Mod. 2 and Mod. 3. When ap-
plied together, however, the balancing effects of these mod-
ifications result in relatively small net changes to model PM
and how well it agrees with regional observations. Figure 3
shows, for example, that the maximum change in normalized
mean bias between the control run and SS2 is about 5 %, im-
proving slightly against AERONET AOD (NMB=−16 %)
and ground-based PM2.5 (NMB=−1 %). This suggests that,
although the control run appears to perform quite well in
September, it may in fact be due to canceling errors, resulting
in the right values for the wrong reasons. We find that with
SS2, model–measurement agreement for surface PM remains
very good, but there are discrepancies in regional AOD that
remain to be elucidated. As with SS1, the upward shift of
AERONET AOD scatter points at high PM values suggests
that our fire-based modifications have the biggest impact
near biomass burning sources, leaving less polluted environ-
ments relatively undisturbed. Also considering that burned
area is smaller in September than in March (Fig. 2e and f),
the statistics related to MODIS AOD (e.g., NMB=−33 %)
are likely to be more representative of non-pyrogenic, low-
PM conditions as well. Therefore, further investigation of
other sources or even assumed optical properties may be re-
quired to achieve meaningful improvements to model AOD
in Southeast Asia where fire activity is low.

We note here that the modifications listed in Table 1 are
applied only to the nested grid simulations and not dur-
ing model spin-up, which may introduce some inconsisten-
cies with initial and boundary conditions. Because Mod. 1
addresses fundamental assumptions in the calculation of
OC EFs, that particular modification may also apply to
biomass burning in other regions of the world. Mods. 2 and 3,
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Table 1. Modifications as applied in sensitivity simulations of the nested GEOS-Chem model for Southeast Asia in March (SS1) and
September (SS2) 2014.

Mod. Description SS1 SS2 Reference

1 Account for EFSVOC according to Eq. (1) x x Akagi et al. (2011), Stockwell et al. (2015)
2 Reduce kOH of POA by 1 order of magnitude – x Budisulistiorini et al. (2018)
3 Reduce dry matter emissions by 50 % – x Lizundia-Loiola et al. (2020)

Figure 6. Impact of modifications from sensitivity simulation SS1 on surface PM2.5 (µg m−3) across Southeast Asia for March 2014 where
PM2.5 is (a) simulated directly with GEOS-Chem and (b) derived from MODIS AOD.

however, are specific to Southeast Asia in September 2014,
and other regions may similarly require further analysis in or-
der to understand which uncertainties dominate locally and
how they might impact our simulations through long-range
transport.

6 Implications for public health

As discussed in Sect. 5, our sensitivity simulations indicate
that uncertainties in biomass burning aerosols had the largest
impact on regional aerosol loading over Southeast Asia
in 2014 during the early burning season. Figure 6a shows
the difference in monthly mean surface PM2.5 between the
improved simulation SS1 and the control run across South-
east Asia for March 2014. We find that the modifications im-
plemented in SS1 significantly increase PM2.5 across South-
east Asia. Peak values exceeding 40 µg m−3 overlap with
burned area and are sustained over wide expanses of land
downwind. More moderate enhancements occur elsewhere,
with a regional mean increase and 1σ standard deviation of
18± 54 µg m−3 over land. This difference exceeds the cur-
rent 24 h mean WHO limit of 15 µg m−3, indicating that un-
certainties in biomass burning aerosols alone can determine
whether air quality conditions in Southeast Asia meet global
public health guidelines.

Differences in the simulation of surface PM2.5 also affect
derived public health statistics, including the number of pre-
mature deaths due to PM2.5 exposure. Following the proce-
dure described in Sect. 3.1, we estimate the difference in this
metric between the control run and simulation SS1 for South-

east Asia for March 2014. We find that the applied modifica-
tions lead to 4500 additional premature deaths across the re-
gion, nearly one-third of the 14 500 total deaths due to PM2.5
that are estimated for SS1. Although we do not expect such
drastic discrepancies for September 2014, dry matter emis-
sions (Mod. 3) vary substantially on an annual basis (van der
Werf et al., 2017), and it is possible that related uncertainties
may cause larger deviations in derived public health statis-
tics during the late burning season in other years. Continued
efforts to resolve aerosol uncertainties are therefore needed
across both burning seasons to ensure that model improve-
ments remain robust over time.

7 Advantages of satellite-derived PM2.5 for public
health calculations

As an alternative to direct simulation, surface PM2.5 can
also be derived from satellite AOD. A common method for
translating columnar AOD into ground-level PM2.5 is to use
a chemical transport model such as GEOS-Chem to deter-
mine a simple ratio between the two quantities that varies
in space and time (van Donkelaar et al., 2010, 2015; Boys
et al., 2014; Hammer et al., 2020). We apply daily gridded
PM2.5 : AOD ratios from GEOS-Chem to AOD from MODIS
to infer surface PM2.5 mass concentrations across Southeast
Asia. In March, when the control run otherwise fails to re-
produce the regional aerosol burden by direct simulation,
we find that satellite-derived PM2.5 (monthly mean= 22–
23 µg m−3) is comparable to PM2.5 simulated directly with
SS1 (monthly mean= 20 µg m−3), no matter which simu-
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lation is used to determine PM2.5 : AOD. Substituting SS1
for the control run has very little impact on satellite-derived
PM2.5 (Fig. 6b), resulting in an absolute difference of only
82 deaths across Southeast Asia in March 2014, which is
greatly reduced from the error of 4500 deaths attributed to
the direct simulation method (Sect. 6). We highlight that the
calculated premature deaths reported here should not be over-
interpreted due to the simplistic nature of the method we used
to calculate them. However, the considerable difference in
results between the two methods does strongly suggest that
satellite-derived PM2.5 is not as sensitive to model uncer-
tainties as simulated PM2.5 and is instead perhaps limited
by uncertainties in observed AOD, which are expected to
be smaller, as described in Sect. 4.4. Satellite-derived PM2.5
based on model PM2.5 : AOD ratios may therefore be pre-
ferred when accuracy is needed for public health calcula-
tions in the short term, but it must be noted that the model
in that case would not be fully representative of results and
should not be used for further analysis unless the underlying
aerosol uncertainties have been adequately addressed. Ad-
dressing these uncertainties will also benefit satellite-derived
PM2.5 products from statistical and machine learning models
by providing more accurate information on the vertical dis-
tribution of aerosols, which significantly impacts their per-
formance (Yao and Palmer, 2021).

8 Conclusions

We used the GEOS-Chem model to simulate air quality over
Southeast Asia during its two regional burning seasons, fo-
cusing on the peak months of March and September in the
moderate burning year of 2014. We found that the standard
model simulations indicated widespread exposure to PM2.5
at levels exceeding the current 24 h WHO limit of 15 µg m−3,
resulting in up to 10 000 premature deaths across the region
in a single month. However, substantial underestimation of
the model compared to observed AOD (20 %–52 %) and PM
(up to 54 %) suggests that public health statistics may be even
worse than indicated by GEOS-Chem, especially in March
during the early burning season.

Through a comprehensive model analysis and synthesis
of the related literature, we have investigated the potential
uncertainties in simulating aerosols from biomass burning
and identified several model deficiencies. The most relevant
and impactful of these were the fundamental omission of
emitted SVOCs affecting all burning scenarios in March and
September, as well as the additional overestimation of burned
area and POA oxidation related to peat burning in Septem-
ber. Sensitivity simulations correcting these deficiencies sig-
nificantly improved model underestimation in March (6 %–
31 %), and the corresponding modifications increased the es-
timated number of premature deaths that month by almost
half. Model–measurement agreement in September was gen-
erally much better to begin with (e.g., PM2.5 matched within

4 %), and the cumulative effect of the modifications applied
in the subsequent sensitivity simulation was nearly negligi-
ble. However, the model was in fact very sensitive to the indi-
vidual modifications, suggesting that canceling errors within
the model have produced results that are right for the wrong
reasons.

In both cases, more measurements are needed to fully
characterize biomass burning aerosols across Southeast Asia.
More in situ measurements relating to the emission and com-
position of biomass burning aerosols are needed to constrain
the uncertainties investigated in this study. More measure-
ments of aerosols from additional sources are needed to ad-
dress the remaining model bias. And more ground-based
measurements of surface PM2.5 are needed to ensure that
the corresponding model analysis and public health applica-
tions are representative of the entire region. In the meantime
satellite-derived PM2.5, which our results suggest is robust
against model uncertainties, can be used to achieve accuracy
in public health calculations. However, continued efforts to
reduce those uncertainties are still needed so that models like
GEOS-Chem can be applied effectively to mitigate the pub-
lic health effects of widespread fire activity across Southeast
Asia in the future.
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