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Abstract. Despite significant advancements in improving the dataset for biomass burning (BB) emissions over
the past few decades, uncertainties persist in BB aerosol emissions, impeding the accurate assessment of simu-
lated aerosol optical properties (AOPs) and direct radiative forcing (DRF) during wildfire events in global and
regional models. This study assessed AOPs (including aerosol optical depth (AOD), aerosol absorption optical
depth (AAOD), and aerosol extinction coefficients (AECs)) and DRF using eight independent BB emission in-
ventories applied to the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) during
the BB period (March 2019) in peninsular Southeast Asia (PSEA), where the eight BB emission inventories were
the Global Fire Emissions Database version 4.1s (GFED), Fire INventory from NCAR version 1.5 (FINN1.5),
the Fire Inventory from NCAR version 2.5 MOS (MODIS fire detections; FINN2.5 MOS), the Fire Inventory
from NCAR version 2.5 MOSVIS (MODIS+VIIRS fire detections; FINN2.5 MOSVIS), Global Fire Assim-
ilation System version 1.2s (GFAS), Fire Energetics and Emissions Research version 1.0 (FEER), Quick Fire
Emissions Dataset version 2.5 release 1 (QFED), and Integrated Monitoring and Modelling System for Wildland
FIRES project version 2.0 (IS4FIRES), respectively. The results show that in the PSEA region, organic carbon
(OC) emissions in the eight BB emission inventories differ by a factor of about 9 (0.295–2.533 TgM−1), with
1.09± 0.83 TgM−1 and a coefficient of variation (CV) of 76 %. High-concentration OC emissions occurred pri-
marily in savanna and agricultural fires. The OC emissions from the GFED and GFAS are significantly lower
than the other inventories. The OC emissions in FINN2.5 MOSVIS are approximately twice as high as those
in FINN1.5. Sensitivity analysis of AOD simulated by WRF-Chem to different BB emission datasets indicated
that the FINN scenarios (v1.5 and 2.5) significantly overestimate AOD compared to observation (VIIRS), while
the other inventories underestimate AOD in the high-AOD (HAOD; AOD > 1) regions range from 15–22.5◦ N,
97–110◦ E. Among the eight schemes, IS4FIRES and FINN1.5 performed better in terms of AOD simulation
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consistency and bias in the HAOD region when compared to AERONET sites. The AAOD in WRF-Chem dur-
ing the PSEA wildfire period was assessed, using satellite observations (TROPOMI) and AERONET data, and
it was found that the AAOD simulated with different BB schemes did not perform as well as the AOD. The
significant overestimation of AAOD by FINN (v1.5 and 2.5), FEER, and IS4FIRES schemes in the HAOD re-
gion, with the largest overestimation for FINN2.5 MOSVIS. FINN1.5 schemes performed better in representing
AAOD at AERONET sites within the HAOD region. The simulated AOD and AAOD from FINN2.5 MOSVIS
always show the best correlation with the observations. AECs simulated by WRF-Chem with all the eight BB
schemes trends were consistent with CALIPSO in the vertical direction (0.5 to 4 km), demonstrating the effi-
cacy of the smoke plume rise model used in WRF-Chem to simulate smoke plume heights. However, the FINN
(v1.5 and 2.5) schemes overestimated AECs, while the other schemes underestimated it. In the HAOD region,
BB aerosols exhibited a daytime shortwave radiative forcing of −32.60± 24.50 Wm−2 at the surface, positive
forcing (1.70± 1.40 Wm−2) in the atmosphere, and negative forcing (−30.89± 23.6 Wm−2) at the top of the at-
mosphere. Based on the analysis, FINN1.5 and IS4FIRES are recommended for accurately assessing the impact
of BB on air quality and climate in the PSEA region.

1 Introduction

Peninsular Southeast Asia (PSEA), including Vietnam, Thai-
land, Myanmar, Cambodia, and Laos, is one of the major
biomass burning (BB) emission source areas in the world
(Yadav et al., 2017). Due to widespread forest fires and
agro-residue burning, extensive BB activities occur over
PSEA, especially during the dry season (BB usually peaks in
March) (Reddington et al., 2021) and release large amounts
of aerosols and trace gases (including organic carbon (OC),
black carbon (BC), particulate matter (PM), nitrogen oxides
(NOx), and volatile organic compounds (VOCs)) into the air,
thus leading to significant impacts on atmospheric composi-
tion, radiative budget, and human health (Reid et al., 2013).
Therefore, it is crucial to understand the BB emission inven-
tories, as well as the behavior of aerosols, and accurately
model their properties to assess their impact on air quality
and climate change in the PSEA region.

Numerous studies have been conducted to assess the ef-
fects of BB emissions on aerosol optical properties (AOPs),
such as aerosol optical depth (AOD), absorbing aerosol opti-
cal depth (AAOD), and aerosol extinction coefficient (AEC),
as well as direct radiative forcing (DRF) in the PSEA region
(Zhu et al., 2017; Lin et al., 2014; Dong and Fu, 2015b).
However, most of these studies have relied on only one sin-
gle BB emission inventory, without comparing different in-
ventories, leading to large uncertainties in assessing the im-
pact of BB aerosols. Due to the challenges in directly mea-
suring BB emissions, various global fire emission inventories
have been developed, based on satellite observations, in the
past decades (Ichoku and Ellison, 2014; Wiedinmyer et al.,
2023; Wiedinmyer et al., 2011). These inventories use differ-
ent empirical methods and underlying data to represent gas
and aerosol emissions from fires, resulting in inherent uncer-
tainties (Carter et al., 2020).

These uncertainties arising from different BB emissions
often manifest as regional variations and inconsistencies with

observations when integrated into models (Liu et al., 2020).
Addressing these uncertainties is crucial for refining climate
models and providing more accurate projections of future cli-
mate change. For example, Pan et al. (2020) compared six
BB aerosol emission datasets from 2008 globally, as well as
from 14 regions, and the total global emissions from these
BB emission datasets differed by a factor of 3.8. Sensitiv-
ity analysis of AOD simulated by Goddard Earth Observing
System with Chemistry (GEOS-Chem) to different BB emis-
sion datasets during the peak BB period in each region and at
most AERONET (AErosol RObotic NETwork) sites in each
region found that the Quick Fire Emissions Dataset version
2.4 (QFED2.4) produced the highest AOD values, closest to
observations, followed closely by Fire Energetics and Emis-
sions Research version 1.0 (FEER1.0). In the North Amer-
ican region, GEOS-Chem, incorporating four different BB
emission inventories and remote-sensing data analysis dur-
ing wildfire periods, indicated a 4–7-fold difference in BB
aerosol emissions. Simulations driven by Global Fire Emis-
sions Database version 4s (GFED4s) and Global Fire Assim-
ilation System version 1.2 (GFAS1.2) provide better agree-
ment with surface measurements of organic aerosol and BC
mass concentrations, BC observations at higher altitudes, and
Moderate Resolution Imaging Spectroradiometer (MODIS)
observations of AOD (Carter et al., 2020). To explore the
uncertainty of BB emissions in the tropics, GFED V3, Fire
INventory from NCAR version 1 (FINN1.0), and GFAS1
were used to evaluate Global Model of Aerosol Processes
(GLOMAP) model simulations of AOD in South America,
Africa, and Southeast Asia, showing that the model under-
estimates AOD for all emission datasets (Reddington et al.,
2016). In the northern sub-Saharan Africa BB region, Zhang
et al. (2014) found a 12-fold difference in estimates of to-
tal smoke emissions and an even larger difference (up to 33-
fold) in Weather Research and Forecasting model coupled
with Chemistry (WRF-Chem)-simulated smoke-related vari-
ables and radiative effects. Wiedinmyer et al. (2023) have
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shown that the seasonal cycle (averaged over 2012–2019)
of CO emissions from BB in various regions of the world
and the latest version of FINN v2.5 (MODIS+VIIRS) has
an emission peak in March, primarily driven by emissions
from the PSEA. However, this peak is absent in GFED and
is less pronounced in other emission inventories (FINN1.5,
FEER, GFAS, and QFED). Despite substantial research ef-
forts, accurately representing BB aerosols in models remains
a challenge. In summary, compared to the differences be-
tween global BB emission inventories, regional differences
may be larger, especially in the PSEA region, where the satel-
lite inversions of BB contain a large fraction of uncertainty
due to high-cloud cover (Dong and Fu, 2015a). Significant
differences exist in AOPs and radiative forcing simulated by
different emission inventories in the BB high-emission re-
gion within a single model (Carter et al., 2020; Zhang et al.,
2014). To reduce uncertainties, it is necessary to compare the
differences between commonly used BB emission invento-
ries and evaluate the model simulations of AOPs and radia-
tive effects for the PSEA region.

The World Meteorological Organization’s report high-
lights that the early part of 2019 corresponds to the El Niño
phase of the El Niño–Southern Oscillation (ENSO) cycle
(from April to May, the temperature of waters beneath the
surface of the tropical Pacific has notably declined) (World
Meteorological Organization, 2019), during which meteo-
rological conditions are more favorable for the occurrence
and propagation of BB (Cochrane, 2009). Additionally, Yin
(2020) discovered that over the past 18 years (2001–2018),
the PSEA region predominantly experienced the peak of BB
activity in March each year. Fan et al. (2023) and Duc et al.
(2021) confirmed that the PSEA suffered severe air qual-
ity impacts during the BB in March 2019. Therefore, cen-
tered on the period of March 2019, this study aims to ana-
lyze how emission uncertainties or differences from different
BB inventories affect the spatial and temporal distribution
of aerosols and their radiative effects in the PSEA region.
Section 2 describes the model configuration, experimental
design, and data sources. Section 3 presents a comparison
of eight emission inventories in March 2019 and the results
of simulating AOPs and DRF. A discussion is provided in
Sect. 4, and the study concludes with a summary in Sect. 5.

2 Data and methods

2.1 Model description and configuration

2.1.1 WRF-Chem

The simulations were conducted using version 3.9.1.1 of
the WRF-Chem online coupled meteorology and chemistry
model (Grell et al., 2005). Figure 1 depicts the simulation
domain, which is outlined in blue (Fig. 1a). It shows that the
MODIS active fire instances during March 2019 were pri-
marily consolidated in Laos, Cambodia, and northern Thai-

land, as well as in eastern and western Myanmar (Fig. 1b).
Importantly, with a total of 69 771 fire counts, March 2019
saw the highest monthly peak of fires for that year (Fig. 1c).
The simulation period is from 26 February to 31 March 2019,
where the initial 3 d of the model simulation were used as
a spin-up period. The model consisted of 27 vertical lay-
ers and one nested horizontal resolution of 27 km× 27 km.
The selected physical configurations included the Morri-
son double-moment microphysics scheme (Morrison et al.,
2005), the rapid radiation transfer model (RRTMG) long-
wave and shortwave radiation schemes (Iacono et al., 2008),
the Mellor–Yamada–Janjić (MYJ) planetary boundary layer
scheme (Mellor and Yamada, 1982; Janjiæ, 1990), the Eta-
similarity surface layer scheme (Monin and Obukhov, 1954),
the Noah land surface model land surface scheme (Niu et al.,
2011), and the Grell 3D cumulus parameterization scheme
(Grell and Dévényi, 2002). The Model for Ozone and Re-
lated chemical Tracers (MOZART) trace gas chemistry with
the Model for Simulating Aerosol Interactions and Chem-
istry (MOSAIC; with four bins) aerosol scheme with the ki-
netic preprocessor (KPP) library is used in the model (Em-
mons et al., 2010). In this study, MOSAIC uses a sectional
approach to represent aerosol size distributions with four dis-
crete size bins with glyoxal uptake into aqueous aerosols
to form secondary organic aerosol (SOA) in the PSEA re-
gion by WRF-Chem; this is capable of simulating all ma-
jor aerosol components, including nitrates (NO−3 ), sulfates
(SO−2

4 ), ammonium (NH+4 ), BC, primary organic aerosols,
and other inorganic aerosols through a thermodynamic ap-
proach, with high efficiency and accuracy for use in air qual-
ity and regional and/or global aerosol modeling (Zhang et al.,
2018). The aerosol–radiation interaction (ARI) scheme of
WRF-Chem includes the traditional aerosol direct and semi-
direct effects (Baró et al., 2016). Mallet et al. (2020) and
Palacios-Peña et al. (2018) found that model incorporation
of ARI can effectively replicate smoke aerosol simulations,
so the ARI scheme was selected for this paper. The Commu-
nity Atmosphere Model with Chemistry (CAM-chem) simu-
lation outputs (Emmons et al., 2020; Buchholz et al., 2019)
are used as chemical lateral boundary and initial conditions
for WRF-Chem (https://rda.ucar.edu/datasets/ds313.7/, last
access: 11 May 2023). The product simulated by CAM-chem
has a horizontal resolution of 0.9◦ by 1.25◦ and 56 verti-
cal levels in the vertical direction. Meteorological initial and
boundary conditions were obtained from the National Cen-
ters for Environmental Prediction (NCEP) final analysis data,
with a 1◦× 1◦ horizontal resolution.

WRF-Chem employs Mie theory to perform calculations
of AOPs, using MOSAIC size distributions and the complex
refractive indices associated with each MOSAIC chemical
constituent. Specifically, it simulates AOPs (such as AEC,
single-scattering albedo (SSA), and asymmetry factor for
scattering) distributed in the following four different bands:
300, 400, 600, and 1000 nm. This study used the Ångström
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Figure 1. (a) WRF-Chem simulation domain (D01; blue line), topography based on the digital elevation model (DEM), and observation
stations, where the red dots are AERONET stations, the black triangles are air quality stations, and the purple rectangles are meteorological
stations. (b) Spatial distribution characteristics of fire points in PSEA (red line; including Vietnam, Thailand, Myanmar, Cambodia, and
Laos) from MODIS satellite retrieval in March 2019. (c) Total fire counts in the PSEA region from January to December 2019 (MODIS).
Publisher’s remark: please note that Figs. 1a and b, 3, 5, 6, 9, 10, and 13 contain disputed territories.

power law (Ångström, 1929; Martýnez-Lozano et al., 1998)
to derive the model at 550 nm for AOD, and the detailed cal-
culation procedure follows Kumar et al. (2014) and Saide
et al. (2013). In addition, the aerosol direct radiative feed-
back was coupled with the RRTMG for both shortwave (SW)
and longwave (LW) radiation, as implemented by Zhao et al.
(2010). A detailed description of the computation of AOPs
and DRF in WRF-Chem has been given by Fast et al. (2006),
Zhao et al. (2011), and Lin et al. (2014).

2.1.2 Anthropogenic and biogenic emissions

The latest version of the global anthropogenic emission in-
ventory, the monthly Emissions Database for Global At-
mospheric Research (EDGAR) v5.0, was published on
17 February 2022 (Mogno and Marvin, 2022). It provides
global air pollutant emissions for the year 2015 at a res-

olution of 0.1◦× 0.1◦. These emissions were speciated for
the MOZART chemical mechanism and can be accessed
at https://zenodo.org/record/6130621 (last access: 11 May
2023). Biogenic emissions were calculated online within the
model, using the Model of Emissions of Gases and Aerosols
from Nature (MEGAN) inventory developed by Guenther
et al. (2012).

2.2 BB emission inventories

There are two primary approaches to estimating BB emis-
sion inventories, namely “bottom-up” and “top-down” meth-
ods (Archer-Nicholls et al., 2015). The bottom-up approach
involves estimating emissions per species by multiplying
emission factors (EFs) with estimates of the biomass burned
(Yevich and Logan, 2003). The latter, the top-down ap-
proach, bypasses the largely uncertain fuel consumption es-
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Table 1. Comprehensive comparison of eight BB emission inventories globally in terms of different methodological details and species,
where a bottom-up approach to construct emission inventories is found in GFED v4.1s, FINN v1.5, FINN v2.5 MOS, and FINN v2.5
MOSVIS, while others make use of a top-down approach.

BB dataset Temporal
resolution

Data source EF reference (s)a OVOCsb NMHCsc Gases Aerosols

GFED v4.1s 0.25◦× 0.25◦

3 h
Daily
Monthly
1997–2022

MODIS C5 Akagi et al.
(2011), Andreae
and Merlet
(2001),
with updates

CH3COCHO,
CH3COOH,
etc.

C2H4,
C2H6,
C3H8, etc.

CO, NOx ,
SO2, NH3

OC, BC,
PM2.5

FINN v1.5 1 km2

Daily
2002–present

MODIS C6 Akagi et al.
(2011), Andreae
and Merlet (2001)

CH3COCHO,
CH3COOH,
etc.

C2H4,
C2H6,
C3H8, etc.

CO, NOx ,
SO2, NH3

OC, BC,
PM2.5, PM10

FINN v2.5
MOS

1 km2

Daily
2002–2021

MODIS C6 Akagi et al.
(2011),
Wiedinmyer et al.
(2011)

CH3COCHO,
CH3COOH,
etc.

C2H4,
C2H6,
C3H8, etc.

CO, NOx ,
SO2, NH3

OC, BC,
PM2.5, PM10

FINN v2.5
MOSVIS

1 km2

Daily
2002–2021

MODIS
C6
VIIRS

Akagi et al.
(2011),
Wiedinmyer et al.
(2011)

CH3COCHO,
CH3COOH,
etc.

C2H4,
C2H6,
C3H8, etc.

CO, NOx ,
SO2, NH3

OC, BC,
PM2.5, PM10

GFAS v1.2 0.1◦× 0.1◦

Daily
2003–present

MODIS C6 Akagi et al.
(2011)

CH3COCHO,
CH3COOH,
etc.

C2H4,
C2H6,
C3H8, etc.

CO, NOx ,
SO2, NH3

OC, BC,
PM2.5

FEER
v1.0-G1.2

0.1◦× 0.1◦

Daily
2003–present

GFAS v1.2
FRP

Andreae and
Merlet (2001)

CH3COCHO,
CH3COOH,
etc.

C2H2,
C2H6,
C3H8, etc.

CO, NOx ,
SO2, NH3

OC, BC,
PM2.5

QFED v2.5r1 0.1◦× 0.1◦

Daily
2000–present

MODIS C6 Akagi et al.
(2011), Andreae
and Merlet
(2001)

CH3COCHO,
CH3COOH,
etc.

C2H6,
C3H6,
C3H8, etc.

CO, NOx ,
SO2, NH3

OC, BC,
PM2.5

IS4FIRES v2.0 0.1◦× 0.1◦

3 h
2000–present

MODIS C6 Akagi et al.
(2011), Sofiev
et al. (2009)

NA NA NA TPMd

a The main references for emission factors (EFs) used in the BB emission database. b Oxygenated volatile organic compounds (OVOCs) contain C, H, and O. Examples include
alcohols, aldehydes, ketones, and organic acids. c Non-methane hydrocarbons (NMHCs) are defined as organic compounds, excluding methane (CH4), that contain only C and H. d The
total particle matter (TPM) considers three different particle sizes (0.17, 1.1, and 3 µm). Note that OVOCs and NMHCs together account for nearly all the gas-phase non-methane
volatile organic compounds (NMVOCs) emitted by fires (Akagi et al., 2011). NA stands for not available.

timation step by estimating emission fluxes directly from fire
radiative power (FRP) (Ichoku and Ellison, 2014). The top-
down approach commonly utilizes AOD retrieved from satel-
lite remote sensing to constrain aerosol emissions from wild-
fires (Huneeus et al., 2012). This study evaluates the perfor-
mance of the WRF-Chem using eight different BB emission
inventories to simulate wildfires in the PSEA region during
March 2019. These emission inventories include the Global
Fire Emissions Database version 4.1s (GFED), Fire INven-
tory from NCAR version 1.5 (FINN1.5), the Fire Inven-
tory from NCAR version 2.5 MOS (MODIS fire detections;
FINN2.5 MOS), the Fire Inventory from NCAR version
2.5 MOSVIS (MODIS+VIIRS fire detections; FINN2.5

MOSVIS), Global Fire Assimilation System version 1.2s
(GFAS), Fire Energetics and Emissions Research version 1.0
(FEER), Quick Fire Emissions Dataset version 2.5 release
1 (QFED), and Integrated Monitoring and Modelling Sys-
tem for Wildland FIRES project version 2.0 (IS4FIRES).
Table 1 provides a detailed comparison of their spatial and
temporal resolution, the main references for the EFs, the
satellite data sources, non-methane hydrocarbons (NMHCs),
oxygen volatile organic compounds (OVOCs), gases (CO,
NOX, SO2, and NH3), and aerosols in the inventory. NMHCs
refer to organic compounds containing only C and H, be-
sides methane (CH4), such as alkanes, alkenes, and alkynes.
OVOCs contain C, H, and O compounds (e.g., alcohols, alde-

https://doi.org/10.5194/acp-24-367-2024 Atmos. Chem. Phys., 24, 367–395, 2024



372 Y. Jin et al.: Measurement report: Assessing the impacts of emission uncertainty on BB properties in PSEA

hydes, and ketones). NMHCs and OVOCs combined con-
stitute nearly all of the non-methane volatile organic com-
pounds (NMVOCs) emitted by wildfires (Akagi et al., 2011).

2.2.1 GFED (v4.1s)

The GFED4.1s datasets provide the area burned, dry matter
(DM), and EFs from global fires. It has a spatial resolution of
0.25◦◦0.25◦ and can be accessed at https://daac.ornl.gov/get_
data/ (last access: 11 May 2023). This dataset includes frac-
tional contributions from different fire types and offers daily
or 3 h data to scale monthly emissions to a higher temporal
resolution. GFED4.1s is an enhanced version of the GFED4
dataset, incorporating small fire inputs to enhance the ac-
curacy and completeness of emission estimates (Randerson
et al., 2017). It covers the period from June 1997 to 2022
and includes a wide range of emission species such as car-
bon (C), DM, carbon dioxide (CO2), carbon monoxide (CO),
methane (CH4), hydrogen (H2), nitrous oxide (N2O), NOx ,
NMHCs, OVOCs, OC, BC, PM less than 2.5 µm in diame-
ter (PM2.5), total PM (TPM), and sulfur dioxide (SO2). The
raw GFED emission data (0.25◦× 0.25◦) were first regrid-
ded to the required spatial resolution for the WRF-Chem do-
mains using the Earth System Modeling Framework (EMSF)
program in Fig. 2, followed by supplementing the GFED
emission species (Table S1 in the Supplement) to meet the
MOZART–MOSAIC scheme, based on the study by Akagi
et al. (2011) and Heil and Bouarar (2020). The construc-
tion of the final emission inventory included incorporating
the mean fraction and fire size of the four vegetation types
(grassland, extratropical forest, savanna, and tropical forest)
from FINN1.5. This incorporation enables WRF-Chem to
calculate the smoke plume rise (Freitas et al., 2007, 2010).

2.2.2 FINN (v1.5 and v2.5 MOS and v2.5 MOSVIS)

The emissions estimation of FINN (v1.5 and 2.5) is based on
the framework described by Wiedinmyer et al. (2011, 2023),
which utilizes the following two types of satellite observa-
tions: (1) MODIS fire detections and (2) active fire detec-
tions from both MODIS and the Visible Infrared Imaging Ra-
diometer Suite (VIIRS). It provides global daily estimates of
BB emissions for important gases and aerosols, along with
comprehensive specifications of total VOC emissions for
three commonly used chemical mechanisms (MOZART-T1,
SAPRC99, and GEOS-Chem) in regional and global chem-
ical transport models (https://www.acom.ucar.edu/Data/fire/,
last access: 11 May 2023). Since its release, FINN has been
widely utilized by researchers to assess air quality during
wildfire events (Lin et al., 2014; Vongruang et al., 2017;
Pan et al., 2020). The latest version, FINN v2.5, was in-
troduced in 2022 and incorporates an updated algorithm
for determining fire size by aggregating adjacent fire detec-
tions. Compared to FINN1.5, FINN2.5 incorporates signif-
icant improvements in input data and processing methods

for detecting fire activity, characterizing annual land use/land
cover and vegetation density, estimating burned area, and
applying fuel loads across different global regions (Wied-
inmyer et al., 2023). In this study, FINN1.5 and FINN2.5
MOS (MODIS-only fire detections) and FINN2.5 MOSVIS
(MODIS+VIIRS fire detections) were used. Detailed infor-
mation on emission species and factors can be found in Ta-
bles S2 and S3.

2.2.3 GFAS (v1.2)

GFAS provides data outputs that encompass spa-
tially gridded FRP, DM burning, and BB emissions
for numerous chemical, greenhouse gas, and aerosol
species (Andela et al., 2013). These data are glob-
ally available from 2003 to the present, with a regular
latitude and longitude grid resolution of 0.1◦× 0.1◦

(https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-
global-fire-emissions-gfas, last access: 11 May 2023). The
latest version, GFAS 1.2, includes injection height daily
data (mean altitude of maximum injection and altitude of
plume top), which are obtained from the plume rise model
and IS4FIRES. To ensure BB data quality, quality control
procedures were applied to the MODIS data. In Fig. 2, it
is illustrated that GFAS 1.2 data put into the WRF-Chem
process, where the missing emission species (Table S4)
required for the MOZART–MOSAIC scheme are added
by the Jose et al. (2017), Andreae and Merlet (2001), and
Andreae (2019) methods. Additionally, the mean fraction
and fire size of the four vegetation types were obtained from
FINN1.5, and the 3 h time allocation from GFED4.1s was
utilized for the GFAS scheme.

2.2.4 FEER (v1.0-G1.2)

In 2005, a new algorithm was developed by Ichoku
and Kaufman (2005) to calculate BB emissions directly
from FRP measurements (https://feer.gsfc.nasa.gov/data/
emissions/, last access: 11 May 2023). This approach aimed
to overcome the delays and uncertainties associated with
other variables previously used. Subsequently, their work
resulted in the release of the FEER Ce v1.0 product, a
global BB inventory with a resolution of 0.1◦× 0.1◦. In this
study, the FEERv1.0-G1.2 product utilizes the GFASv1.2
FRP dataset to provide daily data from 2003 to the present at
a spatial resolution of 0.1◦× 0.1◦. It includes species such as
CO, SO2, NH3, NO2, OC, BC, PM2.5, and NMHCs, among
others. Notably, the GFASv1.2 dataset has also been incorpo-
rated to ensure compatibility with the MOZART–MOSAIC
scheme, as depicted in Table S5.

2.2.5 QFED (v2.5r1)

QFED emissions are estimated using the FRP method and
draw on the cloud correction technique developed in the
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Figure 2. The flowchart illustrates the three processes of pre-processing, reconstructing data, and model setup to put the eight BB emis-
sion inventories into the WRF-Chem simulation of AOPs and DRFs during the March 2019 wildfires in the PSEA region. Pre-processing
consisted of regridding and time allocation, where the FINN scenario was processed using the fire_emiss program from NCAR, while the
grids generated by the other scenarios based on the FINN 1.5 scenario were spatially allocated using the Earth System Modeling Frame-
work (EMSF) program. GFED, GFAS, FEER, and QFED have the same time allocations as GFED, and the remainder use self-contained
time allocations. The reconstructing data have three components, namely emissions (OVOCs, NMHCs, aerosol, and gas) composed by the
MOZART–MOSAIC mechanism, fire size, and vegetation proportions (extratropical forest, grassland, savanna, and tropical forest). Com-
pared to the FINN schemes, the missing compounds and aerosols from the other schemes were added based on the methodology of Jose et al.
(2017) and Andreae and Merlet (2001; 2019). Eight BB emission inventories used the fire sizes provided by the FINN 1.5 scheme, as well
as the vegetation proportions. The model setup turned on BB simulations including the smoke plume rise.

GFAS. However, QFED employs a more sophisticated ap-
proach for non-observed land areas, such as those obscured
by clouds (Koster et al., 2015). Fire locations and FRPs
are derived from MODIS Level 2 fire products (MOD14
and MYD14) and MODIS geolocation products (MOD03
and MYD03). QFEDv2.5r1, covering the period from 2000
to 2023, provides daily average emissions at a horizontal
spatial resolution of 0.1◦× 0.1◦, encompassing information
on OC, BC, SO2, CO, PM2.5, and other species. It can
be accessed from https://portal.nccs.nasa.gov/datashare/iesa/
aerosol/emissions/QFED/v2.5r1/ (last access: 11 May 2023).
Figure 2 shows the detailed process of QFEDv2.5r1 to ensure
consistency with the MOZART–MOSAIC program. Table S5
illustrates the addition of missing data.

2.2.6 IS4FIRES (v2.0)

IS4FIRES is based on a reanalysis of FRP data obtained from
MODIS on the Aqua and Terra satellites. The dataset cov-
ers the period from 2000 to the present (Sofiev et al., 2009).
IS4FIRESv2 emissions are global, with a spatial resolution
of 0.1◦× 0.1◦, provided every 3 h and represented in five

stacked vertical layers (http://silam.fmi.fi/thredds/catalog/
i4f20emis-arch/catalog.html, last access: 11 May 2023)
(Soares et al., 2015). It distinguishes between seven vege-
tation classes, including boreal, temperate, tropical forests,
residual crops, grasses, shrubs, and peat. The linear relation-
ship between FRP and PM is based on the IS4FIRESv1 EF
but scaled to vegetation class types using the BB EF de-
scribed in Akagi et al. (2011). Additional IS4FIRES emis-
sion species according to Jose et al. (2017), Andreae and
Merlet (2001), Andreae (2019), Baró et al. (2021), and
Wiedinmyer et al. (2011) meet the WRF-Chem-selected
MOZART–MOSAIC scheme (Table S5). It is noteworthy
that its time allocation is processed using the self-contained
3 h (Fig. 2).

2.3 Observations and reanalysis data

2.3.1 Satellite observations

Remote sensing satellite observation is widely utilized to
evaluate AOPs, as it offers several advantages (Palacios-Peña
et al., 2018), including non-interference with observed sam-
ples, sensitivity to various properties, particularly AOPs rele-
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vant to wildfires, and the ability to provide different types of
data products such as points, columns, or profiles (Reid et al.,
2013). To assess the AOD of European wildfires simulated
by WRF-Chem, Palacios-Peña et al. (2018) compared prod-
ucts from different satellite inversions of AOD and selected
the best product for model evaluation. Following a similar
research approach, we chose the following satellite products:
MODIS, VIIRS, and Himawari-8. In addition, satellites with
Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Obser-
vations (CALIPSO) were selected to evaluate AEC simulated
by WRF-Chem with BB emissions. Detailed descriptions of
various satellite parameters and algorithms can be found in a
previous study (Ma et al., 2021).

For a comprehensive understanding of absorbing aerosols
emitted by global and/or regional wildfires, the TROPO-
spheric Monitoring Instrument (TROPOMI) on the Sentinel-
5 Precursor (S5P) satellite, launched on 13 October 2017,
was employed to assess AAOD (Torres et al., 2020;
Filonchyk et al., 2022). TROPOMI is a high spectral res-
olution spectrometer that covers the ultraviolet (UV) to
shortwave infrared regions in eight spectral windows, of-
fering enhanced capabilities for atmospheric monitoring
compared to Ozone Monitoring Instrument (OMI) satellites
(Veefkind et al., 2012). Operating in a push-broom configu-
ration, TROPOMI provides a wide swath width of approx-
imately 2600 km over the Earth’s surface. The instrument
boasts higher spatial resolution, wider observation range, in-
creased sensitivity and accuracy, more measurement param-
eters, and higher temporal resolution, making it an advanced
tool for atmospheric monitoring. The TROPOMI aerosol al-
gorithm (TropOMAER), employed for atmospheric observa-
tions, uses observations at two near-UV wavelengths to cal-
culate the UV aerosol index (UVAI) and retrieve total col-
umn AAOD and SSA (Torres et al., 2020). The AOD re-
trieved using TropOMAER inversion on land exhibits a root
mean square error (RMSE) comparable to the OMI retrieval
(maximum 0.1 or 30 %). The RMSE of AOD over water
may be 2 times larger, while the RMSE of AAOD is esti-
mated to be approximately 0.01 (Torres et al., 2020). For this
study, the TropOMAER L2 product (https://search.earthdata.
nasa.gov/, last access: 11 May 2023) with a spatial resolu-
tion of 7.5 km× 3 km was selected. The WRF-Chem sim-
ulated AAOD at 500 nm was derived based on the method
proposed by Hu et al. (2016), utilizing SSA (500 nm) from
TROPOMI and Eq. (1), where λ represents the wavelength.
The uncertainty in SSA is approximately 0.03 (Dubovik and
King, 2000).

AAOD(λ)= [1−SSA(λ)]×AOD(λ) (1)

2.3.2 In situ observations

To assess the effect of AOPs during wildfires, Baro et al.
(2017) and Lin et al. (2014) first validated the meteorolog-
ical field and pollutants simulated by WRF-Chem. There-

fore, in this study, the FINN 1.5 scheme (the most com-
mon scheme used by WRF-Chem) was selected for valida-
tion of the model output for meteorological parameters and
pollutants. The selected meteorological parameters include
2 m temperature (T2), 2 m relative humidity (RH2), and 10 m
wind speed (WS10). These data were obtained from a data-
sharing website (https://rp5.ru/, last access: 11 May 2023),
and their global weather station identifications can be found
in Table S6. The PM2.5 data used to assess the stability of
the model were collected from multiple publicly available
website datasets from China (https://quotsoft.net/air/, last
access: 11 May 2023), Thailand (http://air4thai.pcd.go.th/
webV3/#/History, last access: 11 May 2023), and global pub-
lic datasets (https://aqicn.org/data-platform/covid19/, last ac-
cess: 11 May 2023), and their locations are shown in Ta-
ble S7.

The AERONET (AErosol RObotic NETwork) project is a
collaboration between NASA and PHOTONS (PHOtométrie
pour le Traitement Opérationnel de Normalisation Satelli-
taire; Univ. of Lille 1, CNES, and CNRS-INSU), which es-
tablishes a collaborative network involving ground-based re-
motely sensed aerosol networks. This project has been in ex-
istence for over 25 years and provides a long-term, continu-
ous, and easily accessible public-domain database for aerosol
research, including the optical, microphysical, and radiomet-
ric properties of aerosols. AOD and AAOD measurements
from AERONET are based on multiple wavelength bands,
including visible and near-infrared spectra. Common band
ranges include 340, 380, 440, 500, 675, and 870 nm. AOD
and AAOD data are classified into the following three levels,
based on data quality: level 1.0 (unscreened), level 1.5 (cloud
shielding and quality control), and level 2.0 (quality assur-
ance). For this study, data at level 2.0 were used, indicating
that the data underwent cloud screening and quality assur-
ance following the detailed procedures outlined by Smirnov
et al. (2000). In the absence of cloud contamination, the un-
certainty in AOD was estimated to be 0.01 to 0.02, depending
on wavelength. AAOD was calculated using Eq. (1).

2.3.3 ERA5 reanalysis data

The European Centre for Medium-Range Weather Forecasts
(ECMWF) Reanalysis v5 (ERA5) dataset is a global mete-
orological reanalysis dataset developed and maintained by
the ECMWF (Hersbach et al., 2018). The ERA5 dataset is
based on global observational data, satellite remote sensing
data, and numerical model forecast data. It uses advanced
data assimilation techniques to fuse data from these different
sources to produce consistent and high-quality global me-
teorological reanalysis data. Hourly data are available from
1979 up to the current time, and ERA5 data have a spatial
resolution of 0.25◦× 0.25◦ (about 25 km) at the horizontal
level. In this paper, the effect of ERA5 950 hPa wind on
BB aerosols is analyzed.
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Figure 3. The spatial distribution of eight BB emission inventories of OC in the study region for (a–h) GFED, FINN1.5, FINN2.5 MOS,
FINN2.5 MOSVIS, GFAS, FEER, QFED, IS4FIRES, and the total OC emissions in the PSEA region during March 2019.

2.4 Methodology

In order to assess AOD, AAOD, AEC, and DRF using WRF-
Chem with different BB inventories, apart from the FINN
schemes, other emission inventories are regridded and time-
allocated, as shown in Fig. 2. Subsequently, species are sup-
plemented according to the gas-phase chemistry and aerosol
scheme (MOZART–MOSAIC) employed by WRF-Chem. It
is worth noting that all scenarios utilized fire size and vege-
tation type proportion data from FINN1.5 to calculate smoke
plume rise. The performance of WRF-Chem model simula-
tions against measurements is evaluated using statistical met-
rics (Wu et al., 2019) including the mean bias (MB), RMSE,
correlation coefficient (R), and the index of agreement (IOA)
in Table S8. This research further investigated DRF over
PSEA during the study period. Zhao et al. (2013) and Lin
et al. (2014) were referenced for the treatment of BB aerosol
radiative forcing, as shown in the following equations.

DRF=
(
F
↓

i −F
↑

i

)
−

(
F
↓

no-fire−F
↑

no-fire

)
, (2)

where F↑ and F↓ indicate the aerosol upward radiation flux
and the aerosol downward radiation flux, respectively. i indi-
cates that WRF-chem is added to the different BB emission
inventories, and “no-fire” denotes a scenario without BB in-
ventory applied.

3 Result

3.1 Intercomparison of eight BB inventories

Several studies have utilized OC as a measurable metric to
compare variations among multiple BB inventories (Red-

dington et al., 2016; Carter et al., 2020). This is because OC
is a major component in smoke particles from fresh BB, with
mass fractions ranging from 37 % to 67 %, depending on
the fuel type (Pan et al., 2020). Figure 3 presents the spatial
distribution characteristics of OC for the eight BB datasets
in the study region, along with the total OC emissions
in the PSEA region during March 2019. The highest OC
emissions across all datasets are observed in the northern
regions of Laos, Cambodia, and Thailand, as well as in
eastern and western Myanmar and southern Bangladesh.
Lower emissions are observed in the central regions of
Myanmar and Thailand, northern Vietnam, and southern
regions of China. Similar spatial distribution characteristics
of OC emissions in the PSEA region during March have
also been reported by Pan et al. (2020) and Reddington et al.
(2021). These emissions mainly originate from shrubland,
evergreen broadleaf, mixed shrubland/grassland, and dryland
cropland, as classified by the WRF-Chem land use data
in the PSEA (Fig. S1 in the Supplement). The eight BB
emissions, ranked based on their total OC emissions (PSEA)
in descending order, are FINN2.5 MOSVIS (2.533 TgM−1),
FINN2.5 MOS (2.002 TgM−1), QFED (1.303 TgM−1),
FINN1.5 (1.214 TgM−1), IS4FIRES (0.604 TgM−1),
FEER (0.462 TgM−1), GFAS (0.296 TgM−1), and GFED
(0.295 TgM−1). The highest OC emission in the dataset is
exhibited by FINN2.5 MOSVIS, which can be attributed
to the use of updated burned area data and the inclusion of
fire information from VIIRS and which captured a larger
number of small-scale fires (Wiedinmyer et al., 2023). The
lowest OC emissions are provided by GFED, which may
have underestimated DM and agricultural fire EF (OC;
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Figure 4. Total emissions and percentage composition of different substances in the eight BB emission inventories (after processing in
Fig. 2; i.e., the missing BB data have been supplemented) over PSEA in the WRF-Chem model, which indicates the proportion of BC and
OC, where “gas” represents the combination of SO2 and NH3. OVOCs contain C, H, and O compounds (ethanol (C2H5OH), formaldehyde
(CH2O), acetaldehyde (CH3CHO), acetone (CH3COCH3), methanol (CH3OH), methyl ethyl ketone (MEK), pentanedial (C5H6O2), acetic
acid (CH3COOH), cresol (C6H4(CH3)(OH)), glyceraldehyde (GLYALD), methylglyoxal (MGLY), glyoxal (GLY), acetol (CH3COCH2OH),
methacrolein (MACR), methyl vinyl ketone (MVK)). NMHCs refer to organic compounds containing only C and H, besides methane (CH4),
including pentane (C5H12), butadiene (C4H8), ethylene (C2H4), ethane (C2H6), propane (C3H8), propylene (C3H6), toluene (C6H5(CH3)),
lumped monoterpenes, such as α-pinene (C10H16), and isoprene (C5H8). NMHCs and OVOCs combined constitute nearly all of the non-
methane volatile organic compounds (NMVOCs) emitted by wildfires. PM2.5 is the PM2.5 fraction excluding OC and BC. PM10 is the
PM10–2.5 fraction.

EF= 2.3 gkg−1), and GFAS, which only underestimated
DM. The overall mean and standard deviation of OC for
different BB emission inventories in the PSEA region was
1.09± 0.83 TgM−1, with a coefficient of variation (CV) of
76 % (CV is defined as the ratio of the standard deviation to
the mean of all inventories).

Figure 4 illustrates the total emissions of the eight emis-
sion inventories in the PSEA region during March 2019
added to the WRF-Chem after processing (Fig. 2). It
also presents the percentage composition of CO, OVOCs,
NMHCs, NOX, gas (SO2 and NH3), PM2.5, PM10, BC,
and OC. The total BB emissions (aerosol and gas) are
ranked as FINN2.5 MOSVIS (105.7 TgM−1), FINN2.5
MOS (83.7 TgM−1), FINN1.5 (41.9 TgM−1), IS4FIRES
(19.4 TgM−1), FEER (15.4 TgM−1), QFED (11.1 TgM−1),
GFED (10.3 TgM−1), and GFAS (9.9 TgM−1). Although the
total QFED emissions are low, the aerosol emissions (OC,
BC, PM2.5, and PM10) are not; they are just smaller than the
FINN schemes. The PSEA aerosol emissions from FINN2.5

are higher than those predicted for FINN1.5 and approxi-
mately twice as high as the latter, consistent with the find-
ings of Wiedinmyer et al. (2023). Among them, the highest
and lowest emissions of OC+BC are observed in FINN2.5
MOSVIS (2.82 TgM−1) and GFAS (0.32 TgM−1), respec-
tively. Since the FINN schemes employ the EFs from Akagi
et al. (2011) and subsequent updates, the proportions of each
species are relatively similar. In summary, FINN schemes
(v1.5 and 2.5) have relatively high total aerosol emissions
compared to the other schemes, and the top-down scenario
(GFAS, FEER, QFED, and IS4FIRES) does not have high
total emissions, despite being constrained by the AOD. To
evaluate the spatiotemporal distribution characteristics of ab-
sorbing aerosols from BB emissions, particularly the BC to
OC ratio was also displayed in Fig. 4. Except for QFED,
which exhibits a lower ratio of approximately 0.08 (1/13),
the ratios for the other BB datasets are greater than or equal
to 0.1 (1/10). Ferrada et al. (2022) found that QFED emis-
sion inventories compared to other inventories (GFED4.1s,
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FINN1.5, and GFAS1.2) increased BC and OC emissions by
up to 5 times in different ecological regions. In addition, dif-
ferences in emission EFs in Southeast Asia may result in a
BC/OC equal to approximately 0.08.

3.2 Model validation

To assess the AOPs and DRF simulated by the WRF-Chem
adding different BB emissions, the stability of the model is
verified by comparing the simulated meteorological fields
and PM2.5 concentrations with observations at monitoring
stations using the WRF-Chem with the FINN1.5 scheme.
The statistical results in Table S6 demonstrate good agree-
ment (IOA≥ 0.6) between the simulated T2, RH2, and WS10
and the data from 13 stations. However, at some stations, the
wind speed RMSE exceeds 2 ms−1, which may be attributed
to unresolved topographic features in the surface drag param-
eterization (Saide et al., 2016). The bias between observa-
tions and simulations for RH2 can be partially explained by
the influence of different surface and boundary layer param-
eterizations on the simulated near-surface water vapor fluxes
(Chen et al., 2019). During the wildfire period of March
2019, the daily average observed PM2.5 concentrations of
23 cities at the surface were compared with the model results
for the FINN1.5 case in Fig. S2, where the statistical indi-
cators are shown in Table S7. WRF-Chem was able to sim-
ulate PM2.5 concentrations in urban sites located in the BB
high-emission region of northern Laos (Mueang Chiang Rai
in northern Thailand and Jinghong in China), consistent with
to the observed data (R of 0.64 and 0.75, respectively), where
the model was able to reproduce the pollution peaks (IOA of
0.74 and 0.82, respectively). In a previous study by Vongru-
ang et al. (2017), the WRF-CMAQ (Community Multiscale
Air Quality Model) model was used to simulate PM2.5 in the
PSEA region by incorporating BB emissions (GFAS v1.1 or
FINN1.5) and comparing them with observed stations. The
average IOA value was 0.51 (with the optimal IOA being
0.69). In this study, all 23 stations had IOA values greater
than 0.51 (with over 52 % exceeding 0.69), indicating that
the model can consistently reproduce the spatial and tem-
poral distribution characteristics of pollutants in the PSEA
region. Although the WRF-Chem model could reasonably
capture the spatiotemporal characteristics of PM2.5 concen-
trations observed in most cities (IOA > 0.54), the influence
of anthropogenic emission inventories and BB vertical trans-
port may lead to biases in some areas (e.g., Hong Kong).

3.3 AOD

3.3.1 Satellites vs. AERONET AOD

The linear regression results between AOD daily averages
from different satellite sensors and AERONET data are
shown in Fig. S3. Overall, during the wildfire event in the
PSEA region, the DB algorithm of VIIRS demonstrated the
best skill, as indicated by optimal R2 and RMSE values. Su

et al. (2022) found that VIIRS DB also exhibited the high-
est accuracy and stability when analyzing long-term mul-
tiple satellite inversions of AOD aerosol datasets in Asia.
This is because the VIIRS DB incorporates upgraded sur-
face and aerosol models specifically designed for Asian re-
gions, which have not been applied to the MODIS DB (Sayer
et al., 2019). Therefore, to evaluate the representation of
AOD in the WRF-Chem experiments for the PSEA wildfires
in March 2019, the AOD at 550 nm provided by VIIRS DB
(along with AERONET observations) was chosen to deter-
mine biases and errors in the conducted experiments.

3.3.2 WRF-Chem vs. VIIRS AOD

To assess the agreement between the simulated AOD from
WRF-Chem and the observed AOD, we utilized the ex-
tracted data (WRF-Chem) based on VIIRS satellite transit
time and compared the daily average values with AERONET
observations. Figure 5 illustrates the daily average AOD at
550 nm from the VIIRS and wind (scaled in 10 ms−1) at
900 hPa (Fig. 5a), along with the corresponding AOD from
the WRF-Chem simulation over the PSEA region during
March 2019, considering different BB scenarios (Fig. 5b-i).
The high AOD (HAOD; AOD> 1.0) derived from VIIRS re-
trievals is primarily concentrated in Laos, Thailand, and Viet-
nam (15–22.5◦ N, 97–110◦ E). Additionally, the Beibu Gulf
and coastal cities in southern China also exhibit high-AOD
values (AOD > 0.6), which may be attributed to the long-
range BB transport of tropical westerly and southwesterly
winds depicted in Fig. 5a. The FINN (v1.5 and 2.5), FEER,
QFED, and IS4FIRES schemes demonstrate the ability to re-
produce high-aerosol concentrations in areas with elevated
AOD values, as observed by VIIRS satellites. These simu-
lations align with the spatial distribution of monthly mean
AOD during the wildfire period in the PSEA simulations con-
ducted by Dong and Fu (2015a). However, the GFED and
GFAS schemes fail to capture the high-AOD areas in the
PSEA region, likely due to the BB low-emission inventories
of the input model (Pan et al., 2020).

Figure 6a-1–8 displays the estimated MB between the
model, with eight BB scenarios and VIIRS daily mean AOD.
The FINN schemes (v1.5 and 2.5) noticeably overestimate
AOD in the HAOD region, while the GFED, GFAS, FEER,
and IS4FIRES schemes underestimate AOD. Moreover, the
FINN schemes also exhibit AOD overestimation in the Beibu
Gulf, South China Sea, Bay of Bengal, and Andaman Sea. As
the FINN schemes have the largest aerosol emissions com-
pared to other BB emissions (Fig. 4), it may lead to an over-
estimation of AOD in the HAOD region. All schemes exhibit
varying degrees of overestimation for a significant portion
of southern China. Table 2 provides statistics on the MB of
AOD between satellite-retrieved and WRF-Chem AOD in the
HAOD region. The AOD simulated by FINN schemes is sig-
nificantly overestimated, whereas the rest of the schemes ex-
hibit underestimation. Although FEER (−0.12) and IS4FIRE
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Figure 5. The daily mean AOD retrieved by the VIIRS satellite (a) transiting the PSEA region and the AOD simulated by WRF-Chem
with eight corresponding BB emission inventories (b–i: GFED, FINN1.5, FINN2.5 MOS, FINN2.5 MOSVIS, GFAS, FEER, QFED, and
IS4FIRES) in the PSEA region during March 2019, with 950 hPa wind (vectors; ms−1) based on ERA5 data from March 2019.

Table 2. Evaluation of WRF-Chem AOD and AAOD vs. satellites in the HAOD (15–22.5◦ N, 97–110◦ E) region during March 2019.

BB Inventories WRF-Chem vs. VIIRS WRF-Chem vs. TROPOMI

MB RMSE R MB RMSE R

GFED −0.26 0.48 0.22 0.009 0.018 0.191
FINN1.5 0.39 0.71 0.27 0.056 0.071 0.190
FINN2.5 MOS 0.63 0.98 0.27 0.073 0.094 0.205
FINN2.5 MOSVIS 0.78 1.01 0.28 0.080 0.102 0.232
GFAS −0.34 0.52 0.21 0.004 0.013 0.185
FEER −0.12 0.44 0.25 0.020 0.029 0.213
QFED −0.24 0.46 0.23 0.011 0.020 0.187
IS4FIRES −0.14 0.43 0.27 0.018 0.028 0.208

(−0.14) underestimate the simulated AOD, their perfor-
mance is considerably better than other BB emission inven-
tories. As highlighted by Palacios-Pena et al. (2017) and
Crippa et al. (2019), the MB between simulated and observed
AOD can be attributed to estimation errors in BB uncertainty
and aerosol dry mass and are specifically related to the cer-
tain mass of small particles or too much moisture associated
with the aerosol. The RMSE estimation (Fig. 6b-1–8) reveals
noticeable uncertainty in the FINN schemes when compared
to other schemes in the HAOD and southern China, while the

performance of the remaining schemes in simulating AOD
in Laos and northern Thailand is unsatisfactory. The RMSE
statistics in Table 2 show that the AOD simulated by the
FINN2.5 schemes (MOS and MOSVIS) has greater uncer-
tainty in the HAOD region compared to FINN1.5, and the
RMSE of the other schemes is generally comparable. Fig-
ure 6c-1–8 depicts the temporal R between simulated AOD
and observations, with high values of R (> 0.6) concentrated
in Laos and northern Thailand, Myanmar, the Bay of Bengal,
the Andaman Sea, and the South China Sea. The FINN2.5
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Figure 6. Spatial distribution of MB, RMSE, andR between AOD from the VIIRS satellite vs. AOD simulated by WRF-Chem with eight BB
emission inventories (GFED, FINN1.5, FINN2.5 MOS, FINN2.5 MOSVIS, GFAS, FEER, QFED, and IS4FIRES) in PSEA during March
2019, where panels (a-1–8) are the MB for the comparison of the eight BB scenarios, panels (b-1–8) are the RMSE for the comparison of
the eight BB scenarios, and panels (c-1–8) are the R for the comparison of the eight BB scenarios.
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MOSVIS scheme exhibits the highest R compared to other
schemes in the HAOD region (Table 2), potentially due to
the updated acquisition time (local time) and increased VI-
IRS data, leading to improved R with the observed data.

3.3.3 WRF-Chem vs. AERONET AOD

Figure 7 illustrates the time series of AOD at 550 nm, mea-
sured at the 16 AERONET sites marked in Fig. 1, in com-
parison to simulated AOD from WRF-Chem with different
BB emissions. These 16 sites are categorized into three ma-
jor classes, namely the satellite inversion of HAOD regions
(15–22.5◦ N, 97–110◦ E; Fig. 7a–g), the adjacent HAOD area
(AHAOD; Fig. 7h–l), and the downwind area (DA; Fig. 7m–
p), allowing for further analysis of AOD variations during
wildfire events. In the HAOD stations (Laos, Chiang Mai,
Fang, Nong Khai, Son La, and Ubon Ratchathani), high
aerosol loading was captured by all schemes and AERONET
sites on 15, 23, and 30 March, respectively. Among the
sites, the Laos station performed the best in terms of simu-
lated and observed AOD mean R and IOA for all BB sce-
narios, with R and IOA values of 0.82 and 0.80, respec-
tively (Table 3). To compare the performance of the multi-
BB emission scenario model for the AOD simulation, a Tay-
lor diagram was constructed (Fig. 8). The Taylor diagram
demonstrates that, in the HAOD regions, the FINN schemes
(v1.5 and 2.5) exhibit a higher overall R when compared
to other schemes when simulating AOD against observa-
tions. Furthermore, the FINN2.5 schemes show a slightly
better correlation than FINN1.5. Among the eight schemes,
the IS4FIRES and FINN1.5 schemes simulated AOD per-
formed better in terms of consistency and deviation from the
observed comparison in the HAOD region (Fig. 8a). In the
AHAOD stations, peaks of AOD simulated by WRF-Chem
were also found on three dates (15, 23, and 30 March), but
these peaks were lower than the HAOD in Fig. 7. Despite the
FINN2.5 MOSVIS scheme showing the best correlation be-
tween simulated AOD and observations in the HAOD regions
compared to other schemes, its performance in AHAOD re-
gions was unsatisfactory (Table 3). Poorly performing sta-
tions in the AHAOD regions included Bangkok, Silpakorn,
and Songkhla, which are located between 0◦ and 22.5◦ N
(Fig. 7). This discrepancy may be attributed to the assump-
tions made by the FINN2.5 MOSVIS scheme for fire detec-
tion in the equatorial region to achieve daily global coverage
(Wiedinmyer et al., 2023) and the overestimation of AOD
values by WRF-Chem, which can be explained by the pres-
ence of excess aerosol dry mass (Chapman et al., 2009). In
the DA regions, such as Hong Kong and Taiwan, high con-
centrations of aerosols were simulated and observed after 23
March in Fig. 7. Previously, others studied the same event
using models and ground measurements and reported a con-
tribution of BB of about 56 % to local AOD and 26 %–62 %
to DA.

3.4 AAOD

3.4.1 WRF-Chem vs. TROPOMI AAOD

Wildfire releases significant amounts of absorbing aerosols
such as OC and BC, which can absorb solar radiation and in-
crease the radiation absorption capacity of the atmosphere,
thereby affecting the Earth’s radiation balance. Therefore,
it is crucial to evaluate the model’s ability to simulate ab-
sorbing aerosols using AAOD results obtained from satellite
observations. To reduce the discrepancies caused by miss-
ing data in the inversion of different observations, the WRF-
Chem simulations are matched with the observed data. Fig-
ure 9 shows the spatial distribution of daily mean AAOD
at 500 nm retrieved by TROPOMI (Fig. 9a) and simulated
by WRF-Chem with eight BB emissions (Fig. 9b–j) dur-
ing March 2019 in the PSEA region. The high AAOD
(AAOD > 0.03) from TROPOMI is mainly concentrated in
northern Laos, northern Vietnam, northern Thailand, and
eastern Vietnam, which is similar to the spatial distribu-
tion characteristics of HAOD provided by VIIRS. Kang
et al. (2017) also found similar AAOD distribution pat-
terns when studying the spatial and temporal characteris-
tics of absorbing aerosols in Southeast Asia from 2005 to
2016. The WRF-Chem simulations with different BB emis-
sions exhibit high-AAOD values not only in the aforemen-
tioned regions but also in southern China and the South
China Sea (Fig. 9). Figure 10 shows the spatial distribution
characteristics of MB (Fig. 10a), RMSE (Fig. 10b), and R
(Fig. 10c) for the comparison of TROPOMI-inverted AAOD
with WRF-Chem-simulated AAOD using different BB sce-
narios. The FINN, FEER, and IS4FIRES schemes all overes-
timate AAOD in the HAOD region (15–22.5◦ N, 97–110◦ E),
when compared to the TROPOMI inversion, with FINN2.5
showing the most significant overestimation (Fig. 10a-1–8).
Table 2 further confirms these overestimations with statis-
tics of 0.056, 0.073, 0.08, 0.02, and 0.018, respectively. The
overestimation may arise from underestimating AAOD in
TROPOMI, as well as overestimating absorbing aerosols in
the BB inventory and uncertainties in the representation of
absorbing aerosols by WRF-Chem, including aerosol size
distribution, chemical composition, aging processes, verti-
cal and horizontal transport (including injection heights for
fire emissions), and errors in dry/wet removal from the at-
mosphere. Figure 10b-1–8 and Table 2 demonstrate that the
FINN schemes exhibit greater uncertainties in simulating
AAOD in the HAOD region compared to other schemes.
Comparing theR between satellite-retrieved AAOD and sim-
ulated AAOD, values of R > 0.6 are primarily concentrated
in northern Laos, northern Thailand, and Myanmar. Partic-
ularly, the FINN2.5 MOSVIS scheme, due to the incorpo-
ration of improved local time and inclusion of small fires
from VIIRS, exhibits the best correlation with the simulated
AAOD relative to satellite retrievals (Table 2).
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Figure 7. Time series of daily average AOD (550 nm) simulated by WRF-Chem including eight BB emissions in March 2019 compared to
16 AERONET sites (a–p). These stations are divided into three categories, where the first category of stations is located within the HAOD
range of satellite inversion (15–22.5◦ N, 97–110◦ E; a–g). The second type consists of observational sites located in adjacent high-AOD
regions (AHAOD; h–l). The third type encompasses observational sites situated within the downwind areas (DAs; m–p). The legend line
characterizes different BB simulation scenarios.

Figure 8. Taylor diagrams of (a) AERONET vs. WRF-Chem AOD at 550 nm and (b) AERONET vs. WRF-Chem AAOD at 500 nm in the
HAOD region (15–22.5◦ N, 97–110◦ E) during the wildfire period.
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Table 3. WRF-Chem AOD at 550 nm vs. AERONET in HAOD, AHAOD, and DA during the wildfire period, where HAOD includes Laos,
Chiang Mai, Doi Ang Khang, Fang, Nong Khai, Son La, and Ubon Ratchathani stations.

Stations Variables BB emission inventories

GFED FINN1.5 FINN2.5MOS FINN2.5MOSVIS GFAS FEER QFED IS4FIRES

Laos R 0.74 0.9 0.9 0.81 0.7 0.84 0.79 0.85
IOA 0.78 0.83 0.75 0.75 0.76 0.84 0.8 0.86

Chiang Mai R 0.46 0.61 0.53 0.77 0.48 0.54 0.45 0.55
IOA 0.75 0.79 0.74 0.82 0.73 0.77 0.76 0.78

Doi Ang Khang R 0.48 0.66 0.66 0.8 0.49 0.64 0.52 0.63
IOA 0.78 0.75 0.68 0.69 0.77 0.81 0.79 0.81

Fang R 0.42 0.71 0.7 0.85 0.42 0.68 0.5 0.63
IOA 0.71 0.81 0.77 0.82 0.7 0.73 0.71 0.75

Nong Khai R 0.25 0.39 0.59 0.51 0.28 0.27 0.31 0.37
IOA 0.73 0.71 0.69 0.65 0.71 0.72 0.73 0.74

Son La R 0.5 0.75 0.76 0.64 0.43 0.81 0.64 0.64
IOA 0.72 0.72 0.65 0.65 0.71 0.84 0.75 0.79

Ubon Ratchathani R 0.23 0.6 0.54 0.3 0.41 0.35 0.36 0.37
IOA 0.68 0.64 0.61 0.58 0.64 0.69 0.66 0.69

AHAOD R 0.44 0.51 0.48 0.24 0.53 0.52 0.55 0.52
IOA 0.73 0.69 0.66 0.63 0.72 0.76 0.75 0.74

DA R 0.43 0.41 0.39 0.48 0.44 0.44 0.46 0.39
IOA 0.69 0.71 0.69 0.71 0.69 0.71 0.70 0.70

Note: AHAOD and DA only contain the corresponding site mean R and IOA.

3.4.2 WRF-Chem vs. AERONET AAOD

To reduce the uncertainty caused by missing AERONET
data, quality control has been applied to the AERONET site
data (samples > 10 d). In the HAOD region within the range
of 15–22.5◦ N, 97–110◦ E, where both the satellite-retrieved
AOD and AAOD exceed the thresholds of 1 and 0.03 (BB
high-emission area), respectively. Figure 11 presents a com-
parison of the time series between AAOD measurements
from four AERONET sites within the HAOD region and
AAOD simulated by the nearest corresponding AERONET
site using WRF-Chem with different BB inventories. Simi-
lar to peaks of AOD, AAOD from the Doi Ang Khang site
also exhibits peaks on 15, 23, and 30 March. Although most
schemes can capture the high-AAOD loading, the perfor-
mances of the GFED, GFAS, and QFED schemes are unsat-
isfactory (Table S9). This could be attributed to lower con-
centrations of absorbing aerosols or inaccurate spatial dis-
tribution in the BB emission inventories (Reddington et al.,
2016). The Fang site shows the best mean R and IOA among
the eight BB scenarios simulating AAOD compared with
AERONET, with R and IOA values of 0.69 (Table S9).
The Taylor diagram indicates that the FINN schemes per-
form better than others in representing AAOD in Fig. 8b,
which may be the FINN schemes for unique calculating the

biomass burned area and EFs that are more suitable for the
HAOD region (Wiedinmyer et al., 2011, 2023). When com-
paring simulated AAOD with observations for the FINN2.5
MOSVIS scheme, both the R and IOA perform better than
other schemes at all sites. The improved performance of
the FINN2.5 MOSVIS scheme in simulating AAOD during
wildfires in the PSEA region can be attributed to the follow-
ing two factors: the inclusion of smaller fires using VIIRS
375 m fire detection data and updated information on time
and burned area.

3.5 AEC

Although AOD and AAOD provide useful information about
atmospheric aerosol loading, there is limited information
available regarding the vertical distribution of aerosols.
Palacios-Peña et al. (2018) found that the uncertainty in the
vertical distribution of aerosols during wildfires in Europe af-
fects AOPs. The CALIPSO, with its unique capability to ac-
tively retrieve vertical aerosol spatial distribution, offers an
opportunity to assess the simulation of aerosol vertical op-
tical properties by WRF-Chem during wildfire events. Fig-
ure 12 displays the aerosol vertical extinction profiles at
532 nm retrieved by CALIPSO in the HAOD region dur-
ing March 2019, along with the aerosol extinction profiles
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Figure 9. Spatial distribution of AAOD between Sentinel-5 TROPOMI satellite (a) vs. AAOD simulated by WRF-Chem with eight BB
emission inventories (b–i) during wildfire period in PSEA.

(550 nm) simulated by various BB schemes, where model
data are matched with CALIPSO overpass times. AEC re-
trieval by CALIPSO is greater than 0.2 within the range of
0.5 km to 4 km above ground level, possibly due to the up-
lifted aerosols from wildfires. WRF-Chem utilizes the smoke
plume rise model, with the upper and lower limits of heat flux
determined for each land type, to calculate the minimum and
maximum plume heights, and the emitted pollutants are dis-
tributed across each vertical layer within the injection height
(Grell et al., 2011). From 0.5 to 4 km, the trends of the
AEC changes in the eight BB schemes are consistent with
CALIPSO, indicating that the employed smoke plume rise
model in WRF-Chem can reproduce the minimum and max-
imum plume heights. However, all the FINN schemes overes-
timate AEC compared to CALIPSO from 0.5 to 4 km, while
the other schemes underestimate it. The aerosol concentra-
tion in the BB emission inventories may play a decisive role,
leading to differences in the AEC (Reddington et al., 2019).
Figure S4 illustrates the frequency distribution of six aerosol
types at an altitude of 8 km over the PSEA region in March
2019. Within the higher altitudes of 5–7 km, the presence of
dust, polluted dust, and smoke aerosols is evident, with the
dust aerosols originating from the upper-level westerlies in
the Indian subcontinent region. Within this altitude range, the
simulated AEC gradually approaches zero with increasing al-
titude. However, the AEC retrieved by CALIPSO exhibits

three peaks, which may be attributed to uncertainties in the
calculation model for BB injection heights and the influence
of external dust transport.

3.6 DRF

Considering the significant impact of BB aerosols on radia-
tion, this study investigates the radiative perturbation of SW
radiation caused by BB aerosols under clear-sky conditions
at the top of the atmosphere (TOA), surface (SFC), and in the
atmosphere (ATM). The focus is on the DRF of BB aerosols
during the daytime, as Ge et al. (2014) found that local con-
vergence in the smoke source region caused by smoke dur-
ing the daytime transmits more smoke particles on the above
surface. Figure 13 illustrates the spatial distribution of the
daytime average SW radiative perturbation caused by BB
aerosols during March 2019 in the PSEA region at the TOA,
ATM, and SFC. It is evident that BB aerosol DRF exists not
only in the PSEA region but also in other regions such as
southern China, Hong Kong, and Taiwan. The spatial distri-
bution of SW radiative perturbation by BB aerosols aligns
with the simulated distribution of AOD, with the highest val-
ues observed in the HAOD region (15–22.5◦ N, 97–110◦ E).
Lin et al. (2014) have confirmed that BB aerosols, mainly
BC and OC, play significant roles in the radiative budget. On
one hand, the solar absorption by BC in the atmosphere in-
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Figure 10. Spatial distribution of MB, RMSE, and R between AAOD from TROPOMI satellite vs. AAOD simulated by WRF-Chem with
eight BB emission inventories (GFED, FINN1.5, FINN2.5 MOS, FINN2.5 MOSVIS, GFAS, FEER, QFED, and IS4FIRES) in PSEA during
March 2019, where panels (a-1–8) are the MB for the comparison of the eight BB scenarios, panels (b-1–8) are the RMSE for the comparison
of the eight BB scenarios, and panels (c-1–8) are the R for the comparison of the eight BB scenarios.
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Figure 11. Comparisons of time series between daily mean AAOD at 500 nm measurements provided by four AERONET sites within the
HAOD range and AAOD simulated by the nearest corresponding AERONET site using WRF-Chem and adding different BB inventories,
where the satellite inversions of both AOD > 1 and AAOD > 0.03 (range 15–22.5◦ N, 97–110◦ E) are called HAOD. The legend line is the
same as in Fig. 7.

Figure 12. Vertical distributions of monthly mean aerosol extinc-
tion (550 nm) from WRF-Chem with different BB inventories and
the corresponding CALIPSO retrieval (532 nm) in HAOD (15–
22.5◦ N, 97–110◦ E). The dotted black line indicates CALIPSO, and
the remaining lines are the same as in Fig. 7.

creases the rate of radiative heating, leading to a significant
decrease in solar radiation reaching the surface. On the other
hand, OC enhances the reflected solar radiation at the TOA,
resulting in a cooling effect due to reduced incidental solar
radiation in the atmosphere and surface. The SW radiative
perturbation of BB in TOA is negative, with a cooling effect
in the model domain for eight scenarios, except for areas with
high surface albedo such as Himalayan glaciers. Figure 14

shows that during the wildfire period in the HAOD region,
the eight schemes exhibit DRF of −30.89± 23.6 Wm−2 at
TOA. The SW radiative perturbation of BB aerosol at TOA
depends largely on the SW absorption rate of BB aerosol.
The FINN schemes (v1.5 and 2.5) exhibit a significantly
stronger cooling effect compared to other schemes, possi-
bly due to higher BC concentrations in BB emissions com-
pared to other inventories. At the ATM, the absorption by
BB aerosols leads to a positive radiative forcing, causing
atmospheric warming, particularly in the HAOD region. In
the HAOD region, the eight schemes exhibit a BB aerosol
SW DRF of 1.70± 1.40 Wm−2 in the ATM (Fig. 14). WRF-
Chem can simulate the heating effect of BB aerosols in the
ATM regardless of the BC/OC ratio used in the emission
inventory (1 : 8, 1 : 9, or 1 : 13). At the SFC, the cooling ef-
fect is due to the scattering of non-absorbing atmospheric
aerosols and absorbing aerosols that increase the radiative
heating rate, resulting in a significant reduction in the solar
radiation reaching the surface. The eight schemes simulate
the DRF of −32.60± 24.50 Wm−2 at SFC in the daytime,
with FINN2.5 MOSVIS reaching a maximum of approxi-
mately 70 Wm−2 (Fig. 10), which is comparable to the level
of the PSEA region studied previously by Lin et al. (2014)
and Ge et al. (2014).

4 Discussion

Biases in the simulated AOPs (AOD, AAOD, and AEC) over
tropical BB have been attributed to a variety of factors (Red-
dington et al., 2016), including (1) uncertainties in BB emis-
sion fluxes and (2) errors in modeling the atmospheric dis-

https://doi.org/10.5194/acp-24-367-2024 Atmos. Chem. Phys., 24, 367–395, 2024



386 Y. Jin et al.: Measurement report: Assessing the impacts of emission uncertainty on BB properties in PSEA

Figure 13. The average difference in clear-sky SW radiation fluxes (daytime) simulated with and without BB emissions (GFED, FINN1.5,
FINN2.5 MOS, FINN2.5 MOSVIS, GFAS, FEER, QFED, IS4FIRES) over the PSEA in March 2019 at the top of the atmosphere (TOA),
ground surface (SFC), and in the atmosphere (ATM), where panels (a–h) represent eight emission inventories.
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Figure 14. The average difference in clear-sky SW radiation fluxes (daytime) simulated with and without BB emissions in the HAOD
(15–22.5◦ N, 97–110◦ E) region during March 2019.

tribution and properties of BB aerosols. These deviations in
optical properties further affect the DRF, leading to uncer-
tainties in the assessment of climate change.

4.1 BB emission fluxes

Uncertainties associated with the derivation of emission
fluxes arise from errors in the satellite detection of active
fire or burned areas (e.g., cloud and smoke obscuration of
the surface, satellite spatial resolution and detection limi-
tations, and satellite exceedance times), as well as uncer-
tainties in EF and fuel consumption estimates (Carter et al.,
2020; Wiedinmyer et al., 2023). Eight BB inventories were
inverted from MODIS data, but there were significant gaps
between the bandwidths of MODIS in the equatorial re-
gion, as well as difficulties in detecting fires located un-
der thick clouds, and a reduction in fire detection sensitiv-
ity at the scan edge sensitivity, leading to an underestima-
tion of total regional BB emissions (Wang et al., 2018). In
this paper, the FINN2.5 dataset (BB emission fluxes and
AOPs) is consistently higher than the other datasets, with
FINN2.5 MOSVIS being the highest overall. FINN2.5 in-
cludes improved burned-area calculations, uses year-specific
land cover and vegetation datasets, updates fuel loads and
EFs, and can use multiple fire detection satellite inputs (e.g.,
MODIS and VIIRS), which may account for the improved
BB emission fluxes. In the PSEA region, during wildfire
events, the BB emissions from FINNv2.5 are consistently
higher than the emissions provided by FINNv1.5, approxi-
mately twice as much as the latter, even when considering
only MODIS fire detections. The increase in emissions is pri-
marily attributed to the new treatment of burned areas (Wied-
inmyer et al., 2023). Despite updates to input data, param-
eters, and processing methods, the FINN2.5 scheme tends
to overestimate AOPs compared to observations. This over-
estimation may arise from inaccurate ecosystem identifica-
tion (e.g., tropical forests instead of shrublands or areas with

fewer trees) and fuel load allocation (Pan et al., 2020). Fur-
thermore, in tropical regions, the FINN scheme employs the
smoothing of fire detection to mitigate the impact of clouds,
which could lead to an overestimate of BB emissions (Wied-
inmyer et al., 2011, 2023). QFED provides relatively higher
OC concentrations but lower total BB emissions, and the
primary driving factors behind these differences are the as-
sumed fuel types and related EFs. Therefore, it is inappro-
priate to consider OC as the sole criterion for evaluating BB
emission fluxes when comparing multiple BB emission in-
ventories. Although the aerosol concentrations provided by
QFED are larger than those of IS4FIRES and FEER, the sim-
ulated AOPs and DRF of this scheme are lower than those of
the latter, which may be due to the influence of secondary
pollutant emission precursors (NO2, NH3, etc.). Previous
studies have often used an expansion of aerosols (BC+OC)
in the BB emission inventories by a factor of 3–6 to assess
the AOPs (Reddington et al., 2016; Marlier et al., 2013), and
the simulation results from the QFED scheme above reveal
that there may be significant uncertainties in this expanded
aerosol (BC+OC) approach. Although GFED4.1s improves
the detection of small fires, the agricultural EF= 2.3 gkg−1

is lower than in other emission inventories, which could
result in an underestimation of AOPs simulated by WRF-
Chem with the GFED scheme. Yin (2020) found that BB
in the PSEA region from 2001 to 2018 was predominantly
driven by agro-residue burning and shrubland fires, while
the GFED4.1s underestimation of DM for both fires and the
mismatch in vegetation types may have contributed to the
underestimation of BB emission fluxes (Reddington et al.,
2016). In general, FRP-based estimation methods, such as
GFAS, FEER, QFED, and IS4FIRES, allow for a more di-
rect estimation of fuel consumption from fire-release energy
without the uncertainty associated with the estimation. How-
ever, in the PSEA region, when the FRP from MODIS inver-
sion is observed at a nominal spatial resolution of 1 km at its
nadir, it risks missing a large number of smaller fires, as well
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as missing fires that are obscured by clouds (Dong and Fu,
2015a), which may lead to an underestimation of the sim-
ulated AOPs. Furthermore, the representation of aerosols in
the BB emission inventories is insufficient, including chemi-
cal components, the size distribution of aerosols, aging pro-
cesses, hygroscopic growth, vertical and horizontal transport
(including the injection height of fire emissions), and the ox-
idation state (Reddington et al., 2016), which can all lead to
modeling biases in AOPs. Importantly, these attributes also
have an impact on aerosols in cloud and radiative forcing.

4.2 Modeling uncertainty and calculation bias

There may be uncertainties in the gas-phase chemistry and
aerosol scheme selected to characterize BB aerosols in the
model (e.g., growth of aerosol hygroscopicity, scale distribu-
tions, aging processes, and wet and dry deposition), which
may lead to inaccurate simulation results (Palacios-Peña
et al., 2018; Reddington et al., 2016). Sensitivity experiments
using the global aerosol model reveal that calculations of hy-
groscopicity growth are most sensitive in simulating AOD
(Reddington et al., 2016). The contribution of SOA formed
through the oxidation of VOCs in BB plumes is also a signif-
icant source of uncertainty (Jathar et al., 2014). In this study,
we employed the meteorological chemistry and aerosol
scheme, namely MOZART-MOSAIC_4bin_aqueous, which
includes aqueous-phase chemistry and SOA, but this mech-
anism may lead to an overestimation/underestimation of
AOPs in the model. The smoke plume rise model developed
by Freitas et al. (2010) was used to vertically represent smoke
plumes. Although all schemes capture the vertical profiles of
BB aerosol extinction from 0.5 to 4 km altitude, some de-
viations still exist. Previous research has indicated that as-
suming all fire emissions injected at the top of the plume
could be a worse assumption than prescribing surface-based
emissions, which may lead to deviations in simulated AOPs
(Mallia et al., 2018). The AEC is not characterized in all BB
scenario simulations for 4–8 km, which may also lead to an
underestimation of AOD or AAOD, and this high-level per-
turbation of AEC may come from the influence of external
dust aerosols; so, the model emission inventory should con-
sider the effect of dust emissions. Despite the influence of sea
salt aerosols in the near-surface region of PSEA (Fig. S4),
the contribution of sea salt aerosol to AOD is notably small,
approximately 2 % (Zeng et al., 2023). Additionally, Dong
and Fu (2015b) observed that the model, during the period
from 2006 to 2010, accurately simulated BB AOD without
incorporating sea salt emissions over the PSEA region. Con-
sequently, our model does not consider sea salt emission in-
ventories. Other studies have also found that uncertainties in
anthropogenic emission inventories can also lead to simula-
tion errors in AOPs and DRF during wildfires in the PSEA re-
gion (Dong and Fu, 2015b). Although we used the latest ver-
sion of the EDGAR 2015 data, there may be some underesti-
mation of such emission inventories due to a large number of

incoming factories in the PSEA region (Yang, 2016). Addi-
tionally, the inclusion of ARI and aerosol–cloud interactions
(ACIs) in the WRF-Chem model has been found to effec-
tively improve the simulation of AOPs in European wildfire
simulations (Palacios-Peña et al., 2019), whereas this study
only incorporates ARI. ACIs are concerned with aerosols al-
tering the albedo and lifetime of clouds (Baró et al., 2016).
Failure to account for ACIs may result in models that do not
accurately simulate cloud droplet numbers and sizes, life-
times, and radiative balances, with implications for climate
and atmospheric AOPs (Gao et al., 2022). There is some un-
certainty in the AOD from the VIIRS satellite inversion and
in the SSA and AAOD from the TROPOMI inversion due
to cloud cover effects in the PSEA region, which may also
lead to biased assessments. In addition, the closest proximity
method used in the gridding process of BB emission inven-
tories can also lead to some calculation errors.

5 Summary and conclusion

This study conducted sensitivity analyses to simulate AOPs
and DRF in the PSEA region using eight commonly global
BB emission inventories (GFED, FINN1.5, FINN2.5 MOS,
FINN2.5 MOSVIS, GFAS, FEER, QFED, and IS4FIRES)
and the WRF-Chem model. The main findings can be sum-
marized below.

Regarding BB emissions in the PSEA region, high OC
emissions in all datasets (BB) are mainly concentrated in the
northern parts of Laos, Cambodia, Thailand, and in eastern
Myanmar, with a difference in emissions of about a factor
of 9 (0.295–2.533 TgM−1), an overall mean and standard
deviation of 1.09± 0.83 TgM−1, and a CV of 76 %, respec-
tively. Those high BB emissions are primarily from savanna
and agricultural fires. OC emissions in GFED and GFAS are
significantly lower than in the other inventories. This is at-
tributed to lower DM and agricultural fire EFs in GFED,
while DM is underestimated in GFAS. The OC in FINN2.5
MOSVIS is about twice as high as that in FINN1.5, which
is explained by the difference in DM rather than EFs. Total
aerosol emissions are relatively high in the FINN scenarios
(v1.5 and 2.5) compared to the other scenarios. Although the
top-down’ emission inventories (GFAS, FEER, QFED, and
IS4FIRES) are constrained by the AOD from MODIS, the
total aerosol emission flux is still insufficient.

The AOD from VIIRS (DB algorithm) demonstrates the
best ability to retrieve the AOD compared to AERONET
data. An evaluation of the AOPs in the PSEA region during
March 2019 reveals different performances between observa-
tions (VIIRS, TROPOMI, and AERONET) and BB emission
inventories. When comparing the AOD simulated by WRF-
Chem with the observed AOD from VIIRS, the FINN1.5,
FEER, QFED, and IS4FIRES schemes show a better abil-
ity to reproduce high-aerosol concentrations in the HAOD
region, while the GFED and GFAS schemes show limita-
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tions in characterizing these regions. The FINN (v1.5 and
2.5) schemes tend to overestimate AOD in the region, while
other schemes underestimate AOD. The comparison with
AERONET data further highlights the performance of differ-
ent BB emission scenarios, with the FINN1.5 and IS4FIRES
scenarios generally showing better agreement with obser-
vations. For an AAOD comparison, it was found that the
WRF-Chem simulations with different BB scenarios were
less capable of simulating AAOD than AOD. The unsatisfac-
tory performance of the GFED, GFAS, and QFED schemes
may be due to low concentrations of absorbing aerosols
or inaccuracies in the spatial distribution of BB emissions.
Among the evaluated BB scenarios, the FINN1.5 schemes
generally performed better in representing AAOD. In par-
ticular, the FINN2.5 MOSVIS scheme, due to the incorpo-
ration of improved local time and inclusion of small fires
from VIIRS, exhibits the best R with the simulated AOD and
AAOD relative to observations. CALIPSO observations ver-
sus AEC simulated by WRF-Chem suggest that the smoke
plume rise model can reproduce the minimum and maxi-
mum smoke plume heights of wildfire aerosols. However,
the FINN (v1.5 and 2.5) schemes tend to overestimate the
AEC compared to CALIPSO, while the other scenarios un-
derestimate it. Regarding the DRF, the spatial distribution of
the SW radiative disturbances due to BB aerosols closely
follows the pattern of the AOD. The FINN (v1.5 and 2.5)
schemes exhibit a stronger cooling effect at TOA, which may
be due to the higher BC concentration in its emissions. In the
HAOD region, BB aerosols exhibited a daytime SW radia-
tive forcing of −32.60± 24.50 Wm−2 at the SFC, positive
forcing (1.70± 1.40 Wm−2) in the ATM, and negative forc-
ing (−30.89± 23.6 Wm−2) at the TOA. Overall, the FINN
scenarios (especially FINN2.5) result in an overestimation
of the AOPs in the PSEA region due to an overestimation of
DM rather than EFs, which in turn may lead to an overes-
timation of the DRF. Although the FINN2.5 MOSVIS sce-
nario presents an overestimation of AOPs, the R is the best.
Although the top-down emission inventory (GFAS, FEER,
QFED, and IS4FIRES) is constrained by the AOD from
MODIS, the total aerosol emission flux is still insufficient,
which leads to an underestimation of the AOPs modeled by
WRF-Chem in the PSEA region. In addition, uncertainties in
anthropogenic emissions, dust emissions, and vertical distri-
bution of aerosol concentrations may be attributed to differ-
ences from simulations versus observations during the wild-
fire period in the PSEA region.

Additional evaluations of satellite-based fire emission in-
ventories, particularly in large BB source regions (PSEA),
would contribute to a deeper understanding of the uncer-
tainties associated with fire emissions. In the PSEA region,
greater attention should be given to the impacts of small fires,
cloud cover, different ecosystem types, and EFs during var-
ious burning stages and ecosystem types on the inversion of
BB emission inventories. To further explore the subsequent
effects of BB emissions (e.g., AOPs and radiative forcing),

additional investigation of fire aerosol aging and treatment
uncertainties (e.g., injection height, mixing state, and SOA
formation) is needed. Our study demonstrates that the uncer-
tainty in BB emission inventories is an important factor influ-
encing the WRF-Chem simulation of air quality and climate
during wildfires, although the limitations of the model itself
should not be overlooked. In the future, we will conduct addi-
tional sensitivity experiments and utilize more observational
data to further validate the aforementioned uncertainties.
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Appendix A: Abbreviations and acronyms

AAOD Absorbing aerosol optical depth
AEC Aerosol extinction coefficient
AHAOD Adjacent HAOD area
AOD Aerosol optical depth
AOPs Aerosol optical properties
ATM In the atmosphere
BB Biomass burning
BC Black carbon
CALIPSO Cloud-Aerosol Lidar and Infrared

Pathfinder Satellite Observations
CAM-chem Community Atmosphere Model with

Chemistry
DA Downwind area
DRF Direct radiative forcing
DM Dry matter
EDGAR Emissions Database for Global

Atmospheric Research
EFs Emission factors
FEER Fire Energetics and Emissions Research
FINN Fire INventory from NCAR
FRP Fire radiative power
GEOS-Chem Goddard Earth Observing System

with Chemistry
GFAS Global Fire Assimilation System
GFED Global Fire Emissions Database
HAOD High AOD
IS4FIRES Integrated Monitoring and Modelling

System for Wildland FIRES project
LW Longwave
MEGAN Model of Emissions of Gases and

Aerosols from Nature
MODIS Moderate Resolution Imaging

Spectroradiometer
MOSAIC Model for Simulating Aerosol

Interactions and Chemistry
MOZART Model for Ozone and Related

chemical Tracers
NMHCs Non-methane hydrocarbons
NMVOCs Non-methane volatile organic

compounds
OC Organic carbon
OVOCs Oxygenated volatile organic

compounds
PSEA Peninsular Southeast Asia
PM Particulate matter
QFED Quick Fire Emissions Dataset
RH2 2 m relative humidity
SFC At the surface

SOA Secondary organic aerosol
SSA Single scattering albedo
SW Shortwave
T2 2 m temperature
TOA The top of the atmosphere
TPM Total particle matter
VIIRS Visible Infrared Imaging Radiometer

Suite
WS10 10 m wind speed

Data availability. The Global Fire Emissions
Database, version 4.1 (GFEDv4.1), is available at
https://doi.org/10.3334/ORNLDAAC/1293 (Randerson et al.,
2017). The Fire INventory from NCAR (FINN, includ-
ing version 1.5 and 2.5) data files can be downloaded from
https://www.acom.ucar.edu/Data/fire/ (Wiedinmyer et al., 2011).
CAMS global biomass burning emissions based on fire radiative
power (GFAS v1.2) data are available at https://ads.atmosphere.
copernicus.eu/cdsapp#!/dataset/cams-global-fire-emissions-gfas
(ECWMF, 2022; Rémy et al., 2017). Fire Energetics and Emis-
sions Research version 1.0 (FEER) data files can be downloaded
from https://feer.gsfc.nasa.gov/data/emissions/ (Ichoku and El-
lison, 2014). The Quick Fire Emissions Dataset version 2.5
release 1 (QFED) data can be accessed from https://portal.
nccs.nasa.gov/datashare/iesa/aerosol/emissions/QFED/v2.5r1/
(Darmenov et al., 2022; Koster et al., 2015). The Integrated
Monitoring and Modelling System for Wildland FIRES project
version 2.0 (IS4FIRES) data files can be downloaded from
http://silam.fmi.fi/thredds/catalog/i4f20emis-arch/catalog.html
(Soares et al., 2015).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/acp-24-367-2024-supplement.
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