



## Supplement of

## Measurement report: Assessing the impacts of emission uncertainty on aerosol optical properties and radiative forcing from biomass burning in peninsular Southeast Asia

Yinbao Jin et al.

Correspondence to: Yiming Liu (liuym88@mail.sysu.edu.cn) and Qi Fan (eesfq@mail.sysu.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

## Supplement



Figure S1. WRF-Chem uses land use classification data from 24 USGS classifications.



Figure S2. Time series of the observed (green lines) and simulated (red lines) daily average of PM<sub>2.5</sub> concentrations from WRF-Chem with FINN 1.5 in the 23 cities in Table S6 during March 2019.



Figure S3. Satellite-AERONET linear regression, where (a)-(h) denote MODIS combined, MODIS DB, MODIS DT, MYDIS combined, MYDIS DB, MYDIS DT, VIIRS DB, VIIRS DT different satellite inversion AOD (550 nm) products compared with AERONET, (i) is Himawari-8 AOD (500 nm) vs. AERONET. The number of samples (N), R<sup>2</sup> correlation coefficient squared, and linear regression function and RMSE are also labeled in the upper left corner of each figure, and the lower right corner characterizes the expected values.



Figure. S4. (a) The frequency distribution of six aerosol types within an 8 km altitude over the PSEA region in March 2019 (the different colors represent the six aerosol types). (b) 48-hour mean backward trajectory air mass (5500 m) at the Laos site (20.93,101.41) in March 2019, where the red boundary is the PSEA region.

| Species             | Sava  | Borf  | Temf  | Defo  | Peat  | Agri  |
|---------------------|-------|-------|-------|-------|-------|-------|
| СО                  | 63    | 127   | 88    | 93    | 210   | 102   |
| NO <sub>X</sub>     | 3.9   | 0.9   | 1.92  | 2.55  | 1     | 3.11  |
| SO2                 | 0.48  | 1.1   | 1.1   | 0.4   | 0.4   | 0.4   |
| BIGALK              | 0.055 | 0.349 | 0.225 | 0.072 | 0.072 | 0.34  |
| BIGENE              | 0.133 | 0.385 | 0.369 | 0.267 | 0.267 | 0.333 |
| C2H4                | 0.82  | 1.42  | 1.17  | 1.06  | 2.57  | 1.46  |
| С2Н5ОН              | 0.024 | 0.055 | 0.1   | 0.037 | 0.037 | 0.035 |
| C2H6                | 0.66  | 1.79  | 0.63  | 0.71  | 0.71  | 0.91  |
| C3H8                | 0.1   | 0.44  | 0.22  | 0.126 | 0.126 | 0.28  |
| C3H6                | 0.79  | 1.13  | 0.61  | 0.64  | 3.05  | 0.68  |
| CH2O                | 0.73  | 1.86  | 2.09  | 1.73  | 1.4   | 2.08  |
| СНЗСНО              | 0.84  | 0.81  | 1.21  | 2.26  | 1.16  | 1.8   |
| CH3COCH3(C3H6O)     | 0.47  | 1.59  | 0.76  | 0.63  | 0.91  | 0.71  |
| СНЗОН               | 1.18  | 2.82  | 1.74  | 2.43  | 8.46  | 3.29  |
| MEK                 | 0.181 | 0.22  | 0.13  | 0.5   | 0.5   | 0.9   |
| TOLUENE             | 0.27  | 1.626 | 0.54  | 0.697 | 4.36  | 0.451 |
| NH3                 | 0.52  | 2.72  | 0.84  | 1.33  | 1.33  | 2.17  |
| NO2                 | 2.92  | 0.67  | 1.44  | 1.91  | 0.75  | 2.33  |
| Open/BIGALD(C5H6O2) | 0.02  | 0.01  | 0.01  | 0.01  | 0     | 0.01  |
| C10H16              | 0.081 | 2.003 | 2.003 | 0.15  | 0.15  | 0.005 |
| СНЗСООН             | 3.55  | 4.41  | 2.13  | 3.05  | 8.97  | 5.59  |
| CRESOL              | 0.44  | 0.85  | 0.07  | 0.17  | 0     | 0.6   |
| GLYALD(HOCH2CHO)    | 0.25  | 0.86  | 0.86  | 0.74  | 0.74  | 0.71  |
| Mgly/CH3COCHO       | 0.73  | 0.73  | 0.73  | 0.73  | 0.73  | 0.73  |
| GLY                 | 0.33  | 0.59  | 0.54  | 0.5   | 1.3   | 0.24  |
| ACETOL/HYAC         | 1.01  | 0.77  | 8.03  | 0.55  | 0.64  | 0     |
| ISOP(C5H8)          | 0.039 | 0.15  | 0.099 | 0.13  | 1.38  | 0.38  |
| MACR                | 0     | 0     | 0     | 0.08  | 0     | 0     |
| MVK                 | 0     | 0     | 0     | 0.2   | 0     | 0     |
| OC                  | 2.62  | 9.6   | 9.6   | 4.71  | 6.02  | 2.3   |
| BC                  | 0.37  | 0.5   | 0.5   | 0.52  | 0.04  | 0.75  |
| $PM_{10}$           | 7.2   | 18.4  | 16.97 | 18.5  | 0     | 7.02  |
| PM <sub>2.5</sub>   | 7.17  | 15.3  | 12.9  | 9.1   | 9.1   | 6.26  |

Table S1. Emission factors (g kg<sup>-1</sup>) for species emitted from different types of biomass burning in GFED.

Note: Sava: Savanna, grassland, and shrubland fires; Borf: Boreal forest fires; Temf: Temperate forest fires; Defo: Tropical deforestation & degradation; Peat: Peat fires; Agri: Agricultural waste burning. Compared to the FINNs scheme, the missing compounds and aerosols were added based on the methodology of Akagi et al. (2011) and Heil A. (2020).

| Species           | Savanna | Tropical | Temperate | Agriculture | Boreal | Shrublands |
|-------------------|---------|----------|-----------|-------------|--------|------------|
| СО                | 59      | 92       | 102       | 111         | 118    | 68         |
| NO                | 0.38    | 0.74     | 0.26      | 0.09        | 0.70   | 0.74       |
| SO2               | 0.48    | 0.45     | 1         | 0.4         | 1      | 0.68       |
| BIGALK            | 0.02    | 0.13     | 0.11      | 0.09        | 0.16   | 0.42       |
| BIGENE            | 0.45    | 0.52     | 0.22      | 0.37        | 0.35   | 0.63       |
| C2H4              | 2.27    | 1.38     | 1.11      | 1.08        | 1.62   | 2.30       |
| C2H5OH            | 0.02    | 0.01     | 0.01      | 0.01        | 0.01   | 0.02       |
| C2H6              | 0.82    | 0.82     | 0.29      | 0.43        | 1.63   | 1.01       |
| C3H8              | 0.18    | 0.10     | 0.10      | 0.08        | 0.13   | 0.37       |
| C3H6              | 0.43    | 0.56     | 0.26      | 0.38        | 0.76   | 0.77       |
| CH2O              | 2.12    | 2.08     | 1.33      | 1.84        | 1.46   | 2.23       |
| СНЗСНО            | 1.03    | 1.27     | 0.38      | 3.05        | 0.67   | 0.96       |
| CH3COCH3          | 0.22    | 0.39     | 0.20      | 0.83        | 0.20   | 0.71       |
| СНЗОН             | 1.92    | 2.60     | 1.51      | 2.11        | 2.50   | 2.49       |
| MEK               | 1.31    | 0.85     | 0.41      | 0.79        | 1.64   | 1.16       |
| TOLUENE           | 1.16    | 2.06     | 0.61      | 1.07        | 1.30   | 1.30       |
| NH3               | 0.49    | 0.76     | 1.5       | 2.3         | 3.5    | 1.2        |
| NO2               | 3.2     | 3.6      | 2.7       | 3.9         | 3      | 1.4        |
| Open/BIGALD       | 0.02    | 0.01     | 0.01      | 0.01        | 0.01   | 0.02       |
| C10H16            | 0.01    | 0.04     | 0.03      | 0.00        | 0.04   | 0.01       |
| СНЗСООН           | 2.08    | 1.87     | 0.53      | 2.19        | 1.80   | 1.24       |
| CRESOL            | 0.44    | 0.17     | 0.07      | 0.60        | 0.85   | 0.00       |
| GLYALD            | 0.5     | 0.79     | 0.28      | 1.68        | 0.25   | 1.39       |
| Mgly/CH3COCHO     | 0.81    | 0.37     | 0.17      | 0.19        | 0.28   | 0.86       |
| GLY               | 0.81    | 0.37     | 0.17      | 0.19        | 0.28   | 0.86       |
| ACETOL/HYAC       | 1.01    | 0.55     | 8.03      | 0.00        | 0.77   | 0.00       |
| ISOP              | 0.05    | 0.07     | 0.03      | 0.60        | 0.14   | 0.03       |
| MACR              | 0.0     | 0.08     | 0.0       | 0.0         | 0.0    | 0.0        |
| MVK               | 0.0     | 0.20     | 0.0       | 0.0         | 0.0    | 0.0        |
| OC                | 2.6     | 4.7      | 9.2       | 3.3         | 7.8    | 6.6        |
| BC                | 0.37    | 0.52     | 0.56      | 0.69        | 0.2    | 0.5        |
| PM <sub>2.5</sub> | 5.4     | 9.7      | 13        | 5.8         | 13     | 9.3        |

Table S2. Emission factors (g kg<sup>-1</sup>) for species emitted from different types of biomass burning in FINN1.5.

| Species           |         | Savanna | Tropical | Temperate | Agriculture | Boreal | Shrublands |
|-------------------|---------|---------|----------|-----------|-------------|--------|------------|
| СО                |         | 63      | 93       | 122       | 91          | 111    | 67         |
| NO                |         | 2.16    | 0.9      | 0.95      | 1.18        | 0.83   | 0.77       |
| SO2               |         | 0.9     | 0.4      | 1.1       | 0.4         | 1      | 0.68       |
| BIGALK            |         | 0.156   | 0.219    | 0.415     | 0.246       | 1.821  | 0.644      |
| BIGENE            |         | 1.467   | 0.662    | 1.393     | 0.674       | 0.627  | 1.274      |
| C2H4              |         | 1.218   | 1.505    | 1.930     | 1.412       | 1.407  | 2.886      |
| C2H5OH            |         | 0.00    | 0.00     | 0.066     | 0.0         | 0.023  | 0.055      |
| C2H6              |         | 0.859   | 0.939    | 0.611     | 0.673       | 1.168  | 0.641      |
| C3H8              |         | 0.09    | 0.114    | 0.149     | 0.142       | 0.194  | 0.561      |
| C3H6              |         | 0.647   | 0.603    | 0.487     | 0.457       | 0.499  | 0.557      |
| CH2O              |         | 1.532   | 2.299    | 2.181     | 1.716       | 1.361  | 2.285      |
| CH3CHO            |         | 1.037   | 1.404    | 0.758     | 0.929       | 0.416  | 0.792      |
| CH3COCH           | 3       | 0.201   | 0.433    | 0.297     | 0.162       | 0.242  | 0.242      |
| СНЗОН             |         | 1.451   | 3.031    | 1.744     | 2.328       | 1.608  | 1.650      |
| MEK               |         | 0.37    | 0.666    | 0.274     | 0.387       | 0.104  | 0.286      |
| TOLUENE           |         | 0.457   | 0.769    | 0.605     | 0.375       | 1.327  | 0.531      |
| NH3               |         | 0.56    | 1.3      | 2.47      | 2.12        | 1.8    | 1.2        |
| NO2               |         | 3.22    | 3.6      | 2.34      | 2.99        | 0.63   | 2.58       |
| Open/BAZLD        |         | 0.791   | 0.12     | 0.298     | 0.325       | 0.166  | 0.272      |
| C101116           | APIN    | 0.009   | 0.0      | 0.261     | 0.01        | 0.259  | 0.053      |
| C10H10            | BPIN    | 0.0     | 0.0      | 0.008     | 0.0         | 0.209  | 0.004      |
| СН3СООН           | [       | 2.371   | 2.029    | 1.292     | 2.349       | 1.36   | 1.353      |
| CRESOL            |         | 0.059   | 0.0      | 0.059     | 0.074       | 0.04   | 0.058      |
| GLYALD            |         | 0.390   | 1.886    | 0.210     | 0.800       | 0.233  | 0.128      |
| MGLY(CH           | 3COCHO) | 0.347   | 0.0      | 0.135     | 0.171       | 0.09   | 0.094      |
| GLY               |         | 0.347   | 0.0      | 0.135     | 0.171       | 0.09   | 0.094      |
| ACETOL/           | HYAC    | 0.309   | 0.609    | 0.223     | 1.548       | 0.149  | 0.118      |
| ISOP              |         | 0.069   | 0.029    | 0.129     | 0.062       | 0.085  | 0.138      |
| MACR              |         | 0.0     | 0.222    | 0.113     | 0.0         | 0.024  | 0.147      |
| MVK               |         | 0.317   | 0.222    | 0.247     | 0.193       | 0.087  | 0.301      |
| OC                |         | 2.6     | 4.7      | 7.6       | 2.66        | 7.8    | 3.7        |
| BC                |         | 0.37    | 0.52     | 0.56      | 0.51        | 0.2    | 1.31       |
| $PM_{10}$         |         | 7.2     | 18.5     | 16.97     | 7.02        | 18.4   | 11.4       |
| PM <sub>2.5</sub> |         | 7.17    | 9.9      | 15        | 6.43        | 18.4   | 7.1        |

Table S3. Emission factors (g kg<sup>-1</sup>) for species emitted from different types of biomass burning in FINN2.5.

| Species           | Savanna | Tropical | Temperate | Agriculture |
|-------------------|---------|----------|-----------|-------------|
| СО                | 61      | 101      | 106       | 92          |
| NO <sub>X</sub>   | 2.1     | 2.3      | 3.4       | 2.3         |
| SO <sub>2</sub>   | 0.37    | 0.71     | 1.0       | 0.37        |
| BIGALK            | 0.13    | 0.17     | 0.29      | 0.41        |
| BIGENE            | 0.32    | 0.51     | 0.47      | 0.28        |
| C2H4              | 0.84    | 1.5      | 1.2       | 1.3         |
| С2Н5ОН            | 0.018   | 0.018    | 0.018     | 0.018       |
| C2H6              | 0.32    | 1.1      | 0.72      | 1.2         |
| С3Н8              | 0.087   | 0.54     | 0.27      | 0.16        |
| C3H6              | 0.34    | 0.76     | 0.57      | 0.57        |
| CH2O              | 1.06    | 2.2      | 2.2       | 2.1         |
| CH3CHO(C2H4O)     | 0.5     | 2.3      | 0.98      | 2.8         |
| CH3COCH3(C3H6O)   | 0.48    | 0.63     | 0.67      | 1.1         |
| СНЗОН             | 1.5     | 3.0      | 1.9       | 3.7         |
| MEK               | 0.37    | 0.666    | 0.274     | 0.387       |
| TOLUENE(C7H8)     | 0.18    | 0.24     | 0.40      | 0.18        |
| NH <sub>3</sub>   | 0.90    | 0.93     | 1.6       | 1.6         |
| NO <sub>2</sub>   | 1.575   | 1.725    | 2.55      | 1.725       |
| Open/BAZLD        | 0.791   | 0.12     | 0.298     | 0.325       |
| C10H16            | 0.009   | 0.0      | 0.269     | 0.01        |
| СНЗСООН           | 2.371   | 2.029    | 1.292     | 2.349       |
| CRESOL            | 0.059   | 0.0      | 0.059     | 0.074       |
| GLYALD            | 0.390   | 1.886    | 0.210     | 0.800       |
| MGLY(CH3COCHO)    | 0.347   | 0.0      | 0.135     | 0.171       |
| GLY(CH3COCHO)     | 0.347   | 0.0      | 0.135     | 0.171       |
| ACETOL/ HYAC      | 0.309   | 0.609    | 0.223     | 1.548       |
| ISOP(C5H8)        | 0.026   | 0.22     | 0.11      | 0.40        |
| MACR              | 0.0     | 0.222    | 0.113     | 0.0         |
| MVK               | 0.317   | 0.222    | 0.247     | 0.193       |
| OC                | 3.2     | 4.3      | 9.1       | 4.2         |
| BC                | 0.46    | 0.57     | 0.56      | 0.42        |
| $PM_{10}$         | 7.2     | 18.5     | 16.97     | 7.02        |
| PM <sub>2.5</sub> | 4.9     | 9.1      | 13.8      | 8.3         |

Table S4. Emission factors (g kg<sup>-1</sup>) for species emitted from different types of biomass burning in GFAS.

Note: Compared to the FINNs scheme, the missing compounds and aerosols were added based on the methodology of Andreae and Merlet (2001;2019).

| Species           | FEER                  | QFED   | IS4FIRES |
|-------------------|-----------------------|--------|----------|
| СО                | NM                    | NM     | 9.18     |
| NO <sub>X</sub>   | NM                    | NM     | 0.29     |
| SO <sub>2</sub>   | NM                    | NM     | 0.05     |
| BIGALK            | 0.001                 | 0.001  | 0.001    |
| BIGENE            | 0.0041                | 0.0041 | 0.0041   |
| C2H4              | 0.0109                | 0.0109 | 0.093    |
| С2Н5ОН            | 0.0001                | 0.0001 | 0.0001   |
| C2H6              | NM                    | NM     | 0.2520   |
| C3H8              | NM                    | NM     | 0.0270   |
| C3H6              | NM                    | NM     | 0.059    |
| CH2O              | NM                    | NM     | 0.18     |
| СНЗСНО            | 0.01                  | NM     | 0.14     |
| CH3COCH3          | NM                    | NM     | 0.07     |
| СНЗОН             | NM                    | 0.0206 | 0.27     |
| MEK               | NM                    | NM     | 0.0067   |
| TOLUENE           | 0.0163                | 0.0163 | 0.0163   |
| NH <sub>3</sub>   | NM                    | NM     | 0.1      |
| $NO_2$            | 0.75*NO <sub>X</sub>  | NM     | 0.08     |
| Open              | 0.0001                | 0.0001 | 0.0001   |
| C10H16            | 0.0003                | 0.0003 | 0.0003   |
| СНЗСООН           | 0.0148                | 0.0148 | 0.0148   |
| CRESOL            | 0.0013                | 0.0013 | 0.0013   |
| GLYALD            | 0.0062                | 0.0062 | 0.0062   |
| MGLY              | 0.0029                | 0.0029 | 0.0029   |
| GLY               | 0.0029                | 0.0029 | 0.0029   |
| ACETOL            | 0.0044                | 0.0044 | 0.0044   |
| ISOP              | 0.0006                | 0.0006 | 0.03     |
| MACR              | 0.0006                | 0.0006 | 0.0006   |
| MVK               | 0.0016                | 0.0016 | 0.0016   |
| OC                | NM                    | NM     | 0.373    |
| BC                | NM                    | NM     | 0.054    |
| $PM_{10}$         | 0.3*PM <sub>2.5</sub> | NM     | 0.3      |
| PM <sub>2.5</sub> | NM                    | NM     | NM       |

Table S5. Missing data supplementation of FEER, QFED and IS4FIRES emission inventories based on the proportionality approach when WRF-Chem uses the MOZART-MOSAIC chemical mechanism.

Notes: FEER, QFED emission inventories compared to the MOZART-MOSAIC mechanism missing data were supplemented through a combination of methodology of Jose et al. (2017), Andreae and Merlet (2001;2019) and the actual FINN data (March 2019 over PESA), where CO was used as as a scaling factor. The IS4FIRES was supplemented with other substances through a combination of methodology of Jose et al. (2017), Andreae and Merlet (2001;2019), Baró et al. (2021), and Wiedinmyer et al. (2011) using PM<sub>2.5</sub> and CO as scaling factors. NO<sub>2</sub> using 0.75\*NO<sub>X</sub>. PM<sub>10</sub> using 0.3\*PM<sub>2.5</sub>. NM: No missing data.

| Stations | Latitude(°N) | Longitude(°E) | variables | MB     | RMSE  | IOA  | R    |
|----------|--------------|---------------|-----------|--------|-------|------|------|
|          |              |               | T(°C)     | -0.85  | 2.56  | 0.91 | 0.91 |
| 56964    | 22.47        | 100.58        | RH (%)    | 5.17   | 17.67 | 0.83 | 0.7  |
|          |              |               | WS(m/s)   | 1.76   | 2.35  | 0.64 | 0.51 |
|          |              |               | T(°C)     | -0.95  | 2.33  | 0.91 | 0.95 |
| 56969    | 21.28        | 101.35        | RH (%)    | -13.58 | 20.69 | 0.82 | 0.82 |
|          |              |               | WS(m/s)   | 2.69   | 3.08  | 0.61 | 0.52 |
|          |              |               | T(°C)     | 0.97   | 3.71  | 0.79 | 0.65 |
| 59431    | 22.38        | 108.13        | RH (%)    | 0.78   | 9.51  | 0.8  | 0.62 |
|          |              |               | WS(m/s)   | 1.85   | 2.71  | 0.66 | 0.31 |
|          |              |               | T(°C)     | 1.29   | 3.87  | 0.71 | 0.54 |
| 59644    | 21.27        | 109.08        | RH (%)    | 7.62   | 11.2  | 0.72 | 0.4  |
|          |              |               | WS(m/s)   | 2.91   | 3.78  | 0.6  | 0.30 |
|          |              |               | T(°C)     | -2.47  | 3.55  | 0.72 | 0.65 |
| 59758    | 20           | 110.15        | RH (%)    | 11.33  | 15.09 | 0.74 | 0.66 |
|          |              |               | WS(m/s)   | 1.72   | 2.59  | 0.65 | 0.33 |
|          |              |               | T(°C)     | 1.0    | 2.75  | 0.83 | 0.79 |
| 59287    | 23.13        | 113.29        | RH (%)    | -8.01  | 15.03 | 0.77 | 0.65 |
|          |              |               | WS(m/s)   | 0.74   | 1.69  | 0.69 | 0.32 |
|          |              |               | T(°C)     | -0.43  | 2.33  | 0.82 | 0.73 |
| 59663    | 21.86        | 111.96        | RH (%)    | -0.18  | 8.16  | 0.81 | 0.65 |
|          |              |               | WS(m/s)   | 0.55   | 1.82  | 0.71 | 0.33 |
|          |              |               | T(°C)     | 0.35   | 2.13  | 0.78 | 0.65 |
| 45011    | 22.15        | 113.59        | RH (%)    | 0.82   | 7.64  | 0.79 | 0.65 |
|          |              |               | WS(m/s)   | 1.36   | 2.27  | 0.67 | 0.31 |
|          |              |               | T(°C)     | -1.37  | 2.63  | 0.78 | 0.68 |
| 45007    | 22.3         | 113.91        | RH (%)    | 7.66   | 12.62 | 0.74 | 0.66 |
|          |              |               | WS(m/s)   | -2.09  | 3.16  | 0.71 | 0.40 |
|          |              |               | T(°C)     | -2.76  | 3.35  | 0.72 | 0.83 |
| 48855    | 16.04        | 108.19        | RH (%)    | 2.4    | 9.67  | 0.81 | 0.74 |
|          |              |               | WS(m/s)   | 1.62   | 2.12  | 0.66 | 0.62 |
|          |              |               | T(°C)     | -3.42  | 4.61  | 0.82 | 0.85 |
| 48930    | 19.87        | 102.16        | RH (%)    | -7.51  | 18.09 | 0.82 | 0.72 |
|          |              |               | WS(m/s)   | 2.43   | 3.01  | 0.60 | 0.30 |
|          |              |               | T(°C)     | -3.45  | 4.29  | 0.83 | 0.91 |
| 48327    | 18.76        | 98.96         | RH (%)    | -2.45  | 13.63 | 0.82 | 0.74 |
|          |              |               | WS(m/s)   | 1.86   | 2.54  | 0.6  | 0.30 |
|          |              |               | T(°C)     | -1.71  | 2.56  | 0.82 | 0.85 |
| 58968    | 25.03        | 121.51        | RH (%)    | 8.06   | 13.95 | 0.76 | 0.61 |
|          |              |               | WS(m/s)   | 1.61   | 2.48  | 0.71 | 0.45 |

Table S6. Comparison statistics of meteorological variables simulated by WRF-Chem with FINN1.5 scheme and observation stations

| Cites             | latitude(°N) | longitude(°E) | MB     | RMSE  | IOA  | R    |
|-------------------|--------------|---------------|--------|-------|------|------|
| Jing Hong         | 22           | 100.79        | -11.2  | 38.44 | 0.82 | 0.75 |
| Pu ER             | 22.76        | 100.98        | 11.92  | 26.32 | 0.8  | 0.84 |
| Wen Shan          | 23.35        | 104.25        | -2.77  | 24.97 | 0.7  | 0.41 |
| Hong He Zhou      | 23.36        | 103.37        | -13.24 | 23.04 | 0.77 | 0.62 |
| Mao Ming          | 21.46        | 111.02        | -6.69  | 12.35 | 0.72 | 0.51 |
| Yang Jiang        | 21.85        | 111.95        | -12.09 | 18.47 | 0.71 | 0.40 |
| Guang Zhou        | 23.55        | 113.58        | 9.65   | 16.06 | 0.67 | 0.50 |
| Hai Kou           | 20.05        | 110.32        | 6.53   | 11.34 | 0.66 | 0.45 |
| San Ya            | 18.24        | 109.5         | -5.55  | 10.62 | 0.67 | 0.69 |
| Zhu Hai           | 22.42        | 113.62        | 13.6   | 24.72 | 0.69 | 0.51 |
| Hongkong          | 22.32        | 114.25        | 82.21  | 88.43 | 0.54 | 0.43 |
| Macao             | 22.15        | 113.56        | -17.77 | 25.36 | 0.7  | 0.48 |
| TaiWan            | 25.013       | 121.511       | -30.37 | 35.23 | 0.66 | 0.38 |
| Saraburi          | 14.68        | 100.87        | 38.57  | 44.28 | 0.6  | 0.44 |
| Ratchaburi        | 13.52        | 99.81         | 40.18  | 52.03 | 0.54 | 0.57 |
| Chiang Mai        | 18.79        | 98.99         | 9.54   | 34.37 | 0.71 | 0.45 |
| Lampang           | 18.25        | 99.76         | 24.0   | 37.95 | 0.63 | 0.35 |
| Nakhon Sawan      | 15.68        | 100.11        | -2.5   | 26.31 | 0.73 | 0.45 |
| Chiang Rai Mueang | 19.9         | 99.82         | -33.81 | 56.82 | 0.74 | 0.64 |
| Sa Kaeo           | 13.69        | 102.51        | -43.66 | 56.3  | 0.68 | 0.36 |
| Kanchanaburi      | 14.02        | 99.53         | 26.98  | 43.48 | 0.58 | 0.47 |
| Nan               | 18.78        | 100.77        | 30.32  | 46.74 | 0.64 | 0.36 |
| Hochi             | 10.78        | 106.7         | -15.6  | 21.47 | 0.75 | 0.68 |

Table S7. Comparison statistics of PM2.5 simulated by WRF-Chem with FINN1.5 and air quality stations

Table S8. Statistical metrics for observation-model comparisons

| Mathematical formulas                         | Number |
|-----------------------------------------------|--------|
| $MB = \frac{1}{N} \sum_{i=1}^{N} (P_i - O_i)$ | (1)    |

$$RMSE = \left[\frac{1}{N} \sum_{i=1}^{N} (P_i - O_i)^2\right]^{\frac{1}{2}}$$
(2)

$$IOA = 1 - \frac{\sum_{i=1}^{N} (P_i - O_i)^2}{\sum_{i=1}^{N} (|P_i - \bar{O}| + |O_i - \bar{O}|)^2}$$
(3)

Note: Where  $P_i$  and  $O_i$  are the predicted and observed T<sub>2</sub>, RH<sub>2</sub>, WS<sub>10</sub>, and PM<sub>2.5</sub>, respectively. N is the total number of the predictions used for comparisons, and  $\overline{P}$  and  $\overline{O}$  represents the average of the prediction and observation, respectively.

|                  |           | BB emission inventories |         |            |                   |      |      |      |          |
|------------------|-----------|-------------------------|---------|------------|-------------------|------|------|------|----------|
| Stations         | Variables | GFED                    | FINN1.5 | FINN2.5MOS | FINN2.5<br>MOSVIS | GFAS | FEER | QFED | IS4FIRES |
| Laos             | R         | 0.77                    | 0.64    | 0.59       | 0.65              | 0.58 | 0.69 | 0.65 | 0.71     |
|                  | IOA       | 0.63                    | 0.67    | 0.71       | 0.71              | 0.63 | 0.65 | 0.63 | 0.64     |
| Doi Ang<br>Khang | R         | 0.07                    | 0.37    | 0.31       | 0.64              | NA   | 0.24 | NA   | 0.14     |
|                  | IOA       | 0.64                    | 0.7     | 0.69       | 0.75              | 0.64 | 0.65 | 0.64 | 0.63     |
| Fang             | R         | 0.59                    | 0.77    | 0.77       | 0.79              | 0.55 | 0.7  | 0.64 | 0.67     |
|                  | IOA       | 0.66                    | 0.7     | 0.76       | 0.74              | 0.65 | 0.66 | 0.66 | 0.67     |
| Nong Khai        | R         | 0.35                    | 0.37    | 0.52       | 0.74              | 0.31 | 0.35 | 0.34 | 0.43     |
|                  | IOA       | 0.7                     | 0.72    | 0.76       | 0.78              | 0.68 | 0.73 | 0.7  | 0.73     |

Table S9. WRF-Chem AAOD at 500 nm vs. AERONET in HAAOD (97-110°E, 15-22.5°N) during the wildfire period, where HAAOD includes Laos, Doi Ang Khang, Fang, Nong Khai (all statistical days in 4 stations are greater than 10 days).

Notes: The blank data in the table are not counted because the statistical correlation coefficient is negative and the value is particularly small, which we consider an error. NA: Not available.

## Reference

Andreae, M. O.: Emission of trace gases and aerosols from biomass burning – an updated assessment, Atmos. Chem. Phys., 19, 8523-8546, 10.5194/acp-19-8523-2019, 2019.

Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, 15, 955-966, https://doi.org/10.1029/2000GB001382, 2001.

Baró, R., Maurer, C., Brioude, J., Arnold, D., and Hirtl, M.: The Environmental Effects of the April 2020 Wildfires and the Cs-137 Re-Suspension in the Chernobyl Exclusion Zone: A Multi-Hazard Threat, 12, 467, 2021.

Heil A., B. I.: ESA CCI ECV Fire Disturbance: D5.1 Product Validation and Intercomparison Report, version 2.1, 2020.

Jose, R. S., Pérez, J. L., González, R. M., Pecci, J., and Palacios, M.: Improving air quality modelling systems by using on-line wild land fire forecasting tools coupled into WRF/Chem simulations over Europe, Urban Climate, 22, 2-18, https://doi.org/10.1016/j.uclim.2016.09.001, 2017.

Wiedinmyer, C., Akagi, S. K., Yokelson, R. J., Emmons, L. K., Al-Saadi, J. A., Orlando, J. J., and Soja, A. J.: The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning, Geosci. Model Dev., 4, 625-641, 10.5194/gmd-4-625-2011, 2011.