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Abstract. Surface ozone (O3) is well known for posing significant threats to both human health and crop pro-
duction worldwide. However, a multidecadal assessment of the impacts of O3 on public health and crop yields
in China is lacking due to insufficient long-term continuous O3 observations. In this study, we used a machine
learning (ML) algorithm to correct the biases of O3 concentrations simulated by a chemical transport model
from 1981–2019 by integrating multi-source datasets. The ML-enabled bias correction offers improved perfor-
mance in reproducing observed O3 concentrations and thus further improves our estimates of the impacts of
O3 on human health and crop yields. The warm-season trends of increasing O3 in Beijing–Tianjin–Hebei and
its surroundings (BTHs) as well as in the Yangtze River Delta (YRD), Sichuan Basin (SCB), and Pearl River
Delta (PRD) regions are 0.32, 0.63, 0.84, and 0.81 µg m−3 yr−1 from 1981 to 2019, respectively. In more re-
cent years, O3 concentrations experienced more fluctuations in the four major regions. Our results show that
only BTHs have a perceptible increasing trend of 0.81 µg m−3 yr−1 during 2013–2019. Using accumulated O3
over a threshold of 40 ppb (AOT40-China) exposure–yield response relationships, the estimated relative yield
losses (RYLs) for wheat, rice, soybean, and maize are 17.6 %, 13.8 %, 11.3 %, and 7.3 % in 1981, increas-
ing to 24.2 %, 17.5 %, 16.3 %, and 9.8 % in 2019, with an increasing rate of +0.03 % yr−1, +0.04 % yr−1,
+0.27 % yr−1, and +0.13 % yr−1, respectively. The estimated annual all-cause premature deaths induced by
O3 increased from ∼ 55900 in 1981 to ∼ 162000 in 2019 with an increasing trend of ∼ 2980 deaths per year.
The annual premature deaths related to respiratory and cardiovascular disease are ∼ 34200 and ∼ 40300 in
1998 and ∼ 26500 and ∼ 79000 in 2019, having a rate of change of −546 and +1770 deaths per year during
1998–2019, respectively. Our study, for the first time, used ML to provide a robust dataset of O3 concentrations
over the past 4 decades in China, enabling a long-term evaluation of O3-induced crop losses and health impacts.
These findings are expected to fill the gap of the long-term O3 trend and impact assessment in China.
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1 Introduction

Surface ozone (O3), an important secondary air pollutant, is
mainly generated through photochemical reaction of volatile
organic compounds (VOCs), carbon monoxide (CO), and ni-
trogen oxides (NOx) in the presence of sunlight. As a strong
oxidant, O3 at the ground level is detrimental to human
health and vegetation. More recently, due to rapid urbaniza-
tion and industrialization, summertime O3 pollution has be-
come an emerging concern in China. Li et al. (2020) reported
that the mean summer 2013–2019 trend in maximum daily
8 h average surface O3 (MDA8 O3) was +1.9 ppb yr−1 in
China, with high values widely observed in the North China
Plain (NCP), Yangtze River Delta (YRD), and Pearl River
Delta (PRD) regions. On the regional scale, the exposure of
humans and vegetation to O3 is greater in China than in other
developed regions of the world (Lu et al., 2018). Several
studies have suggested that climate and land cover changes
play an important role in O3 pollution in addition to anthro-
pogenic emissions (Fu and Tai, 2015; Wang et al., 2020). It
has been suggested that global warming and the changing
land use may further increase surface O3 by the late 21st cen-
tury (Kawase et al., 2011; Wang et al., 2020), which can pose
greater threats to human health and food security.

Meteorological factors can modulate the temporal and spa-
tial patterns of O3 by affecting the physical and chemical pro-
cesses within the atmosphere (Liu et al., 2019; Mao et al.,
2020; Yin and Ma, 2020). High temperature, low relative hu-
midity, and low planetary boundary height are conducive to
photochemical production and O3 accumulation. Jacob and
Winner (2009) summarized that the enhanced O3 levels at
higher temperatures are primarily driven by increased bio-
genic VOC emissions from vegetation and reduced lifetimes
of peroxyacetyl nitrate (PAN) due to accelerated decomposi-
tion of PAN into NOx . Moreover, the changes in wind speed
and direction can affect O3 concentrations through transport.
Land cover and land use change affects O3 air quality by per-
turbing surface fluxes, hydrometeorology, and concentrations
of atmospheric chemical components (Tai et al., 2013; Fu and
Tai, 2015; Liu et al., 2020; Ma et al., 2021). For instance,
the terrestrial biosphere is a major source of isoprene, which
plays a significant role in modulating O3 concentrations. In
the Intergovernmental Panel on Climate Change (IPCC) A1B
scenario, Tai et al. (2013) found that widespread crop ex-
pansion could reduce isoprene emission by ∼ 10 % globally
compared with the present land use. Such a reduction could
decrease O3 by up to 4 ppb in the eastern US and increase O3
by up to 6 ppb in southern and southeastern Asia, whereby
the difference in the sign of responses is primarily deter-
mined by the different O3 production regimes.

The increasing health burden due to air pollution has be-
come an important contributor to the global burden of dis-
ease. Some recent studies have demonstrated that short-
term O3 exposure negatively impacts human health, espe-
cially with respect to respiratory and cardiovascular mor-

tality (Shang et al., 2013; P. Yin et al., 2017; Feng et al.,
2019; Zhang et al., 2022a). In 2015–2018, the estimated
annual total premature mortality related to O3 pollution in
334 Chinese cities was 0.27 million for 2015, 0.28 mil-
lion for 2016, 0.39 million for 2017, and 0.32 million for
2018 (Zhang et al., 2021). Maji and Namdeo (2021) reported
that short-term all-cause, cardiovascular, and respiratory pre-
mature mortalities attributed to the ambient fourth-highest
MDA8 O3 exposure were 156 000, 73 500, and 28 600 in
2019, showing increases of 19.6 %, 19.8 %, and 21.2 %, re-
spectively, compared to 2015. Zhang et al. (2022b) reported
that each 10 µg m−3 increase in the MDA8 O3 can lead to a
rise of 0.41 % (95 % CI: 0.35 %–0.48 %) in all-cause mortal-
ity, 0.60 % (95 % CI: 0.51 %–0.68 %) in cardiovascular mor-
tality, and 0.45 % (95 % CI: 0.28 %–0.62 %) in respiratory
mortality.

The damage to plants induced by O3 is mainly caused
by the stomatal uptake of O3 into the leaf interior instead
of direct plant surface deposition (e.g., Clifton et al., 2020).
In previous studies, a variety of concentration-based metrics
have been widely used to assess the O3 risks to crop yield
and ecosystem functions. Initially, a 7 h (09:00–15:59 LT)
mean metric (M7) was proposed, which was later extended to
12 h (08:00–19:59 LT; referred to as M12) to include late-day
O3 concentrations. Cumulative metrics have also been devel-
oped to evaluate the impacts of O3 on crops. The accumu-
lated O3 over a threshold of 40 ppb (AOT40) is a widely used
metric to evaluate the phytotoxic effects of O3. Compared to
AOT40 using a linear function, another metric, W126, con-
siders the nonlinear response of yield loss to O3 exposure
whereby higher O3 concentrations will progressively induce
more severe yield losses. However, many studies have sug-
gested that the stomatal uptake of O3 is more related to vege-
tation damage than to O3 exposure per se (Feng et al., 2012,
2018; Pleijel et al., 2022). Therefore, in the past 2 decades,
the flux-based approach has been developed and has increas-
ingly been used to assess the relationships between the stom-
atal O3 uptake and crop yields. Tai et al. (2021) compared
the results of the estimated global crop yield losses using
three concentration-based and two flux-based O3-exposure
metrics and showed that the concentration-based metrics dif-
fer greatly among themselves, while the two flux-based met-
rics, which lie close to the middle of the range covered by all
metrics, are generally close to each other.

At present, a comprehensive long-term assessment of the
impacts of O3 is hindered by a lack of continuous O3 ob-
servations in China (Lu et al., 2018; Gong et al., 2021).
From both health and food perspectives, reliable long-term
estimates of O3 are critically needed to better understand
O3 damage over the past few decades since the beginning
of rapid industrial transformation in the 1980s. In previous
studies, various alternative approaches have been used to ad-
dress the problem of insufficient observations. The multiple
linear regression (MLR) model is often used for extrapola-
tion to construct spatiotemporal distributions of air pollutants
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(Moustris et al., 2012; Abdullah et al., 2017). However, these
linear statistical methods are generally limited by their in-
capability to capture the nonlinear relationships between air
pollutants and precursors as well as meteorological fields.
Chemical transport models (CTMs), based on mathemati-
cal representation of atmospheric physical and chemical pro-
cesses, are also a common tool to simulate air pollutant con-
centrations spatiotemporally (Fusco and Logan, 2003; Liu
and Wang, 2020a; H. Wang et al., 2022). Taking advantage
of the CTM, Fu and Tai (2015) investigated the impacts of
historical climate and land cover changes on tropospheric O3
in eastern Asia between 1980 and 2010. However, the util-
ity of CTMs is often limited by their high computational cost
when conducting long-term simulations at high spatiotempo-
ral resolutions. Large biases also exist due to uncertainties in
historical emission inventories, parameterization of physical
and chemical processes, and initial and/or boundary condi-
tions, and these errors tend to increase at finer spatiotemporal
scales.

In recent years, machine learning (ML) methods have
gained increasing popularity in air pollution studies (Liu et
al., 2020; Ma et al., 2021). In the early stage of applying ML
to atmospheric chemistry, ML methods were usually used as
an independent method from CTMs (Hu et al., 2017; Zhan
et al., 2017), for instance, to predict O3 concentrations by
mapping the nonlinear relationships between observed O3
concentrations and their possible shaping factors. These ap-
plications are usually purely data-driven, whereby the ML
algorithms do not involve any representation of the physical
mechanisms behind the relevant processes. With powerful al-
gorithms and user-friendly hyperparameter tuning processes,
some well-trained ML models, driven by data from multiple
sources including reanalysis and satellite data, have shown
even higher predictive capacity than process-based models.
The advantages of ML methods over CTMs include more
flexible choices for input data and spatiotemporal resolu-
tion as well as substantially lower computational costs (Bi
et al., 2022). However, purely data-driven ML methods are
known for suffering a lack of transparency and interpretabil-
ity, which renders it more difficult to offer adequate scien-
tific interpretation for the physical mechanisms behind the
relevant processes. Thus, a hybrid approach combining ML
algorithms and CTM-simulated results has increasingly been
used in recent years to predict air pollutants and understand
their trends. Integrating data from various sources, ML meth-
ods have been used as a tool to correct the biases in the lower-
resolution simulated results from CTMs (Di et al., 2017;
Ivatt and Evans, 2020; Ma et al., 2021). Based on process-
based CTMs integrating decades of accumulated knowledge
in Earth system science while taking advantage of ML to
address still-existing model errors, the hybrid approach has
great potential to tackle air quality problems (Irrgang et al.,
2021).

In this work, we incorporated the O3 concentrations di-
rectly simulated by the Goddard Earth Observing System

coupled with Chemistry (GEOS-Chem) model at a lower res-
olution into a bias-corrected, finer-resolution dataset by inte-
grating them with O3 observations from 2016 to 2018 (for
validation purposes), high-resolution meteorological fields,
land use data, and other geographical information from mul-
tiple sources using a tree-based ML algorithm called Light-
GBM. The final high-resolution hourly O3 dataset with a res-
olution of 0.25◦× 0.25◦ from 1981 to 2019 was further used
to assess the impacts of O3 on human health and crop yields
over the past 4 decades. The simultaneous analysis of the
combined impacts of O3 on agriculture and human health can
offer more comprehensive policy implications for the mitiga-
tion of O3-related impacts across China.

2 Data and methods

2.1 Air quality, meteorological, land, and crop data

Hourly surface O3 observations (µg m−3) from 2016 to 2018
were obtained from the China National Environmental Mon-
itoring Center Network (https://air.cnemc.cn:18007/, last ac-
cess: 24 December 2023) established by the Ministry of
Ecology and Environment of China. The MDA8 O3 of each
site was calculated with at least 14 valid hourly values from
08:00 to 00:00 LT. A total of 1016 sites were selected after
deleting the missing and abnormal data (Fig. 1).

The surface meteorological fields used in this study in-
clude sea surface pressure, horizontal wind at 10 m, air tem-
perature at 2 m, downward solar radiation, surface albedo,
and total precipitation. The variables selected at 850 and
100 hPa include relative humidity as well as horizontal and
vertical velocity. These meteorological variables have been
shown by many previous studies to correlate strongly with
surface O3 concentrations as discussed above. Hourly reanal-
ysis data for meteorological variables were obtained from
the fifth-generation European Centre for Medium-Range
Weather Forecasts (ECMWF) reanalysis dataset (ERA5)
with a spatial resolution of 0.25◦× 0.25◦ from 1981 to 2019
(https://cds.climate.copernicus.eu/, last access: 24 Decem-
ber 2023). This spatial resolution sets the highest limit of
resolution for our hybrid O3 product.

The national land use data with a spatial resolution of
1 km× 1 km for 2013 were obtained from the Resource and
Environment Science data center of the Chinese Academy of
Sciences (RESDC) (http://www.resdc.cn, last access: 24 De-
cember 2023). Six primary types of land use are consid-
ered: cultivated land, forestland, grassland, water bodies,
construction land, and unused land. Nationwide elevation
data were also provided by the RESDC (https://www.resdc.
cn/data.aspx?DATAID=123, last access: 24 December 2023),
which are resampled based on the latest Shuttle Radar Topog-
raphy Mission (SRTM) v4.1 data developed in 2000.

The spatial distribution of the harvested areas for four
staple crops (wheat, rice, maize, soybean) in China was
obtained from the Global Agro-Ecological Zones 2015
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Figure 1. Study domain and locations of the selected monitoring sites. The pink, blue, purple, and green rectangles indicate Beijing–Tianjin–
Hebei and its surroundings (BTHs) as well as the Sichuan Basin (SCB), Yangtze River Delta (YRD), and Pearl River Delta (PRD) regions,
respectively.

dataset (https://doi.org/10.7910/DVN/KJFUO1). Crop har-
vesting dates with a resolution of 0.5◦× 0.5◦ were provided
by the Center for Sustainability and the Global Environment
(Sacks et al., 2010). For crops having more than one grow-
ing season in a year, only the primary growing period was
considered.

2.2 GEOS-Chem model

We used the GEOS-Chem global 3-D chemical trans-
port model version 12.2.0 (https://geoschem.github.io/, last
access: 24 December 2023), driven by assimilated me-
teorological data from Modern-Era Retrospective analy-
sis for Research and Applications, version 2 (MERRA2)
(https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/, last ac-
cess: 24 December 2023) with a horizontal resolution of 2.0◦

latitude by 2.5◦ longitude and reduced vertical resolution of
47 levels. GEOS-Chem incorporates meteorological condi-
tions, emissions, chemical information, and surface condi-
tions to simulate the formation, transport, mixing, and depo-
sition of ambient O3. It performs fully coupled simulations of
O3–NOx–VOC–aerosol chemistry (Bey et al., 2001). Previ-
ous studies have demonstrated the ability of GEOS-Chem to
reasonably reproduce the magnitudes and seasonal variations
of surface O3 in eastern Asia (Wang et al., 2011; He et al.,
2012). To provide long-term simulated O3 fields for incorpo-
ration into the ML model (see below), we conducted GEOS-
Chem simulations at a resolution of 2.0◦×2.5◦; higher reso-
lutions of GEOS-Chem in nested grids are available but com-
putationally prohibitive for multidecadal simulations. The
original unit of GEOS-Chem-simulated O3 is parts per bil-
lion (ppb), which was converted to micrograms per cubic me-

ter (µg m−3) assuming a constant temperature of 25 ◦C and
pressure of 1013.25 hPa (1 µg m−3 is approximately 0.5 ppb)
when compared with observations (P. Yin et al., 2017; Gong
and Liao, 2019).

Global anthropogenic emissions of CO, NOx , SO2, and
VOCs are from the Community Emissions Data Sys-
tem (CEDS), which has coverage over the simulation years
of 1950–2014 (Hoesly et al., 2018). Biomass burning emis-
sions are from the Global Fire Emissions Database (GFED4)
inventory (van der Werf et al., 2017). Biogenic VOC emis-
sions are computed by the Model of Emissions of Gases
and Aerosols from Nature (MEGAN) v2.1 (Guenther et al.,
2012), which is embedded in GEOS-Chem. Emissions of
biogenic VOC species in each grid cell, including isoprene,
monoterpenes, methyl butanol, sesquiterpenes, acetone, and
various alkenes, are simulated as a function of canopy-scale
emission factors modulated by environmental activity factors
to account for changing temperature, light, leaf age, leaf area
index (LAI), soil moisture, and CO2 concentrations (Sinde-
larova et al., 2014).

Dry deposition follows the resistance-in-series scheme of
Wesely (1989), which depends on species properties, land
cover types, and meteorological conditions, and uses the Ol-
son land cover classes with 76 land types reclassified into
11 land types. Although transpiration is a potential mecha-
nism via which the land cover affects ozone, we do not ad-
dress it in this study because water vapor concentration in
GEOS-Chem is prescribed from assimilated relative humid-
ity (i.e., not computed online from evapotranspiration).
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2.3 LightGBM machine learning model

The primary purpose of utilizing ML here was to mini-
mize the biases of model output as compared with observa-
tions, whereby the biases could arise from incomplete model
physics, input and parameter errors, numerical errors, cod-
ing errors, and representation errors (i.e., mismatch in spa-
tial scales between model grid cells and site observations),
so that the output of the hybrid model could have the closest
values to the observations and enable more accurate impact
evaluation. In this study, we used the LightGBM ML algo-
rithm to integrate GEOS-Chem-simulated O3 at a lower res-
olution with higher-resolution multi-source data to produce
higher-resolution hourly O3 and MDA8 O3 fields.

LightGBM is a ML algorithm based on the gradient-
boosting decision tree (Chen and Guestrin, 2016), which has
a high training efficiency and lower memory footprint and is
thus suitable for processing massive high-dimensional data
(Zhang et al., 2019). The general steps to build a ML model
can be summarized as follows: (1) choose an algorithm that
is appropriate for the problem (e.g., regression or classifica-
tion), (2) clean the data and split them into training and test
data, (3) train and tune the model with training data to capture
prediction patterns well, (4) evaluate the model performance
on test data, and (5) return to step (3) and (4) until an optimal
predictive ability is reached. The training and evaluation pro-
cesses are both performed at the site level in accordance with
the observations, whereby the predictor variables and model
responses were first sampled at the same locations using the
bilinear interpolation approach (Accadia et al., 2003). This
approach of handling spatial-scale mismatch between model
grid cells and site observations has been commonly used in
previous studies (e.g., Li et al., 2021). When predicting the
gridded O3 concentrations with the trained model, predictor
variables at different spatial resolutions were all regridded
to the same resolution of 0.25◦× 0.25◦, consistent with the
ERA5 meteorological fields. By taking advantage of these
higher-resolution datasets, the hybrid approach can not only
correct the biases of the GEOS-Chem-simulated O3, but also
refine them into a finer resolution. To evaluate if the hybrid
approach truly benefits from using higher-resolution meteo-
rological fields, we also repeated the whole training exercise
with the input meteorology of GEOS-Chem (MERRA2 at
2.0◦× 2.5◦) instead of ERA5.

During the model training process, the model was evalu-
ated with 10-fold cross-validation to ensure the robustness
and reliability of the model, whereby the training data were
randomly partitioned into 10 subsets of approximately the
same size, with 90 % of the data used to train individual
models and the ensemble model and the remaining 10 % of
data used to examine model performance (Xiao et al., 2018).
This process was repeated 10 times so that each data record
was left for testing once. The tuning of the hyperparameters
was optimized using grid search optimization to improve de-
tection performance and diagnostic accuracy (Wang et al.,

2019). Statistical indicators, including the coefficient of de-
termination (R2) and root mean square error (RMSE), were
used in a subsequent assessment of model performance for
GEOS-Chem alone and for the hybrid approach.

Our analysis revealed that training the model with 1 year
or more of data results in only marginal reductions in RMSE
and enhancements in R2 (Fig. S1 in the Supplement); thus
a timescale of 2 years appears to strike a good balance be-
tween computational burden and model accuracy. These re-
sults align with the findings of Ivatt and Evans (2020), who
suggested that much of the variability in the power spectrum
of surface O3 can be captured by timescales of a year or less.
Therefore, here we utilized observations from the 2016–2017
period as the training data, which offered a more economical
computing cost and improved training time efficiency, and
observations in 2018 as the independent test data to evaluate
model performance.

2.4 Ozone-exposure metric and exposure–yield
response functions

Among O3-exposure indices, AOT40 has been widely used
during the last 2 decades as it has been found to have a strong
relationship with the relative yield of many crop species
(Mills et al., 2007) and was thus used to quantify the im-
pacts of surface O3 on crop yields in this study. The flux-
based metrics, which require long-term simulations using a
process-based stomatal uptake model, were beyond the scope
of this study. The AOT40 (ppm-h) is defined as follows:

AOT40=
n∑
i=1

([O3]i − 0.04) , (1)

where [O3]i is the hourly mean O3 concentration (ppm) dur-
ing the 12 h of local daytime (08:00–19:59 LT), and n is the
number of hours in the growing season defined as the 90 d
prior to the start of the harvesting period according to the
crop calendar.

The exposure–yield response functions based on exten-
sive field experimental studies have been established to re-
late a quantifiable O3-exposure metric to crop yields. It has
been suggested that responses of crop yields were found
to be greater in Asian experiments than in the American
and European counterparts, indicating possibly higher O3
sensitivity of Asian crop varieties (Emberson et al., 2009;
Feng et al., 2022). To better understand O3-induced risks to
crops in China, the AOT40 exposure–yield functions devel-
oped based on field experiments in China are used in this
study, which are named AOT40-China. The exposure–yield
response functions for soybean are from Zhang et al. (2017),
and those of the other three crops are from Feng et al. (2022).
The statistical exposure–yield relationships used in this study
are summarized in Table S1 in the Supplement.
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2.5 Analysis of health impacts

All-cause mortality, cardiovascular disease mortality, and
respiratory disease mortality are selected as the health out-
comes of our study due to the high correlation between these
endpoints and short-term O3 exposure found in previous
studies. A log-linear exposure–response function is widely
adopted and recommended by the World Health Organiza-
tion (WHO) for health impact assessment in areas with se-
vere air pollution. In particular, the log-linear model is the
most widely applied exposure–response model at present in
China (Lelieveld et al., 2015; H. Yin et al., 2017; Zhang et
al., 2022b). The premature mortality is calculated following

1M = δc ·

[
(RR− 1)

RR

]
·P, (2)

where 1M is the excess mortality attributable to O3 expo-
sure, δc is the baseline mortality rate for a particular health
endpoint (P. Yin et al., 2017; Madaniyazi et al., 2016), P is
the exposed population, and RR is the relative risk defined as

RR= exp((X−X0) ·β) . (3)

Here, β is the exposure–response coefficient derived from
epidemiological cohort studies (Shang et al., 2013), X repre-
sents the model-calculated O3 concentration, and the value of
X0 is the threshold concentration below which no additional
risk is assumed. Consistent with previous studies (Lelieveld
et al., 2015; Liu et al., 2018), we used X0 = 75.2 µg m−3.

In this study, the mean MDA8 O3 concentrations in warm
seasons (May–September) were used to estimate the disease-
specific health impacts of short-term exposure to O3. The
province-level population and national baseline mortality
rate for particular diseases were provided by the National Bu-
reau of Statistics (https://www.stats.gov.cn/english/, last ac-
cess: 24 December 2023). The spatial differences of baseline
mortality in China were not considered without provincial-
level data, which means that we assume the baseline mortal-
ity is evenly distributed across China (Dedoussi et al., 2020).
The exposure–response coefficients were obtained from ex-
isting epidemiological studies in China (Table S2). If the cor-
responding coefficient of a province could not be found in
published epidemiological studies, the datum closest to that
province would be selected as a substitute. If there were no
neighboring provinces, the results of national meta-analysis
was used (Zhang et al., 2021).

3 Results

3.1 Model development and validation

The final selected features and their importance estimated by
the LightGBM algorithm based on 10-fold cross-validation
are shown in Fig. 2. GEOS-Chem-simulated O3 is the top
predictor of surface O3 concentrations, accounting for 61 %

and 58 % of all relative importance in the ML algorithm pre-
dicting hourly O3 and daily MD8A-O3, respectively. The re-
sult indicates that process-based GEOS-Chem simulations
have high utility for O3 predictions under the hybrid ap-
proach (Ma et al., 2021). The meteorological variables with a
high contribution to both the daily and the hourly models are
downward surface solar radiation (SSRD), relative humidity
at 1000 hPa (RH_1000hpa), and 10 m horizontal wind (U10
and V10). Other special features, including location (latitude
and longitude), elevation, and diurnal and monthly patterns
of O3, also contribute to ambient O3 estimations. The spa-
tial distributions of bias-corrected O3 are consistent with ob-
servations for both training and test datasets (Fig. S2), indi-
cating that there is no obvious overfitting; i.e., the model is
able to generalize from the training set to the test set. The
good generalization ability of the model gives us confidence
in its ability to make accurate predictions based on new data.
In general, the hybrid approach can yield good O3 estimates
in the data-intensive regions, including eastern and central
China, which are the hotspot areas of O3 pollution.

Figure 3 shows the density scatterplots between O3 mea-
surements and GEOS-Chem simulations, as well as the hy-
brid approach predictions for 2018. The R2 values of the hy-
brid approach and GEOS-Chem model are 0.66 and 0.27 at
the hourly level and 0.72 and 0.53 at the MDA8 O3 level, re-
spectively. Bias-corrected O3 concentrations have lower RM-
SEs in comparison with GEOS-Chem-simulated O3 concen-
trations, reduced from 31.1 to 23.8 µg m−3 for MDA8 O3
predictions and from 38.5 to 26.3 µg m−3 for hourly pre-
dictions. The MDA8 O3 model performance is better than
that of the hourly model, indicating reduced errors upon
temporal averaging. To test if using the higher-resolution
meteorological data offers better prediction accuracy com-
pared with the original input meteorology of GEOS-Chem,
the MERRA2 dataset driving GEOS-Chem was also used to
train the model. We found that the higher-resolution ERA5
dataset performed better in reproducing observed O3 con-
centrations with moderately smaller RMSEs and larger R2

values (Fig. S3), demonstrating the extent to which a higher-
resolution meteorological dataset, despite not being strictly
consistent with the input meteorology for the CTM, can help
enhance the performance of the hybrid approach and help re-
solve finer spatial details within the original CTM grid cells.
In summary, the result suggests that the CTM-simulated re-
sults can be substantially improved by applying ML with
multi-source datasets, and the bias-corrected data can im-
prove our understanding of long-term O3 trends and its fur-
ther implications on crop and human health over China, as
discussed in the following sections.

In comparison with previous studies, Liu et al. (2020) used
XGBoost to predict O3 in major urban areas of China at a
resolution of 0.1◦× 0.1◦, and the R2 value and RMSE for
MDA8 O3 were 0.74 and 23.8 µg m−3, respectively. Their
result indicates that higher-resolution predictions may help
enhance model accuracy but represent a trade-off between

Atmos. Chem. Phys., 24, 345–366, 2024 https://doi.org/10.5194/acp-24-345-2024

https://www.stats.gov.cn/english/


J. Mao et al.: Multidecadal ozone trends in China and implications for human health and crop yields 351

Figure 2. The feature importance plot for (a) MDA8 O3 and (b) hourly O3. The full list of candidate variables with their symbols, units,
descriptions, and data sources are shown in Table S3.

model accuracy and time efficiency, depending on the pur-
pose. Instead of directly predicting O3 concentrations, Ivatt
and Evans (2020) predicted biases in GEOS-Chem-simulated
O3 concentrations and then corrected them with XGBoost.
They also suggested that the corrected model performs con-
siderably better than the uncorrected model, with RMSE
reduced from 32.4 to 15.0 µg m−3 and Pearson’s R raised
from 0.48 to 0.84. Their greater improvement with larger re-
duced RMSE than our result is mainly because they selected
fewer sites for training, with all the urban and mountain sites
(observations made at a pressure< 850 hPa) removed. The
removal of these sites can improve the overall apparent per-
formance of the model because O3 formation could have dif-
ferent characteristics in these areas. In general, ML methods
have been proven to be a promising tool to improve air pol-
lutant forecasts when a process-level understanding is still
incomplete.

3.2 Spatiotemporal distribution and trends in O3
predictions

Figure 4 demonstrates the spatial patterns of averaged annual
and warm-season (May–September) MDA8 O3 from 1981
to 2019. When compared to the high concentrations in the

warm season, MDA8 O3 concentrations are relatively lower
at an annual level. The annual and warm-season MDA8 O3
concentrations have similar spatial distributions, and both
present an increasing trend over the past few decades, with
more substantial increases observed between 1981 and 2010.
The O3 levels in southern China are lower than those in
northern China, but they are still relatively high in the PRD
region, which is consistent with findings in previous stud-
ies (e.g., Liu and Wang, 2020a). During the first decade of
1981–1990, high-O3-concentration areas are mainly concen-
trated in the BTHs and northern Shandong. In the next 2
decades, O3 pollution expands extensively to most of east-
ern and northern China, spreading northward to Jilin and
Liaoning; westward to Shanxi and Ningxia; and southward to
northern Hunan, Shanxi, and Zhejiang. Moreover, the SCB
and PRD regions also experience aggravated O3 pollution
during this period. In the last decade of the study period,
O3 concentrations remain at high levels in BTHs and SCB
without obvious changes. Next we analyze the interannual
variability to understand the detailed changes and trends in
O3.

Figure 5 shows that the annual averaged MDA8 O3 con-
centrations increased from 87 µg m−3 in 1981 to 98 µg m−3

in 2019, with a growth rate of +0.26 µg m−3 yr−1, while the

https://doi.org/10.5194/acp-24-345-2024 Atmos. Chem. Phys., 24, 345–366, 2024



352 J. Mao et al.: Multidecadal ozone trends in China and implications for human health and crop yields

Figure 3. Density scatterplots and linear regression statistics of O3 predictions vs. observations for 2018: (a) bias-corrected MDA8 O3
vs. observations, (b) GEOS-Chem MDA8 O3 vs. observations, (c) bias-corrected hourly O3 vs. observations, and (d) GEOS-Chem hourly
O3 vs. observations. The model results are sampled at the same locations. The dashed red line indicates the 1 : 1 line, and the solid blue line
indicates the line of best fit using orthogonal regression. R2 is the coefficient of determination, RMSE is the root mean square error, and N is
the number of data points. The x and y axes represent the O3 observations and predictions, respectively.

warm-season averaged MDA8 O3 concentrations increased
from 100 µg m−3 in 1981 to 117 µg m−3 in 2019, having a
growth rate of+0.51 µg m−3 yr−1. Moreover, the average an-
nual and warm-season O3 concentrations have a more obvi-
ous upward trend before the 2000s, with a growth rate of
0.38 and 0.71 µg m−3 yr−1, compared to that after the 2000s,
when O3 concentrations appear to fluctuate within a certain
range. GEOS-Chem-simulated O3 has a similar trend to the
bias-corrected O3, but it generally overestimates O3 concen-
trations on a national scale (Fig. S4). The annual and warm-
season averaged MDA8 O3 concentrations in BTHs as well
as the YRD, SCB, and PRD regions are shown in Figs. S5
and S6. The warm-season increasing trends for BTHs as well
as the YRD, SCB, and PRD regions are 0.32, 0.63, 0.84, and
0.81 µg m−3 yr−1 from the years 1981 to 2019.

In recent years, the worsening O3 pollution has fueled nu-
merous studies on ground-level O3 spatial distribution and
changes in China, which have been conducted on local, re-
gional, and national scales using different O3 fields from
observations, CTMs, and ML estimates. In this study, we

mainly focus on the regional and national O3 characteristics,
and the O3 trends reported in recent studies are listed in Ta-
ble 1. By comparing the results of existing works, we find
that source-varied O3 fields can induce great uncertainty in
the O3 trends. Moreover, the O3 trends are found to be very
sensitive to the study period even with the same O3 fields
(Wei et al., 2022), which indicates large interannual variabil-
ity, mostly reflecting the changing anthropogenic emissions
and meteorology (Lu et al., 2019; Li et al., 2020). In contrast
to the perceptible O3 trends, Liu et al. (2020) suggested that
O3 pollution in most parts of China undergoes only modest
changes between 2005 and 2017, and their trends were not
spatially continuous. T. Wang et al. (2022) also reported that
O3 has small positive increase rates for 2013–2021 in many
cities, and the O3 increase rates greatly differ from site to site
even within the same region.

In comparison, our results indicate no obvious increasing
trends in national MDA8 O3 within the same study period.
On a regional scale, only BTHs have a perceptible increasing
trend in more recent years, while no such trends are found
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Figure 4. Spatial distribution of the annual mean MDA8 O3 concentrations (µg m−3) during (a) 1981–1990, (b) 1991–2000, (c) 2001–
2010, and (d) 2011–2019. Spatial distribution of the warm-season (May–September) mean MDA8 O3 concentrations of (e) 1981–1990,
(f) 1991–2000, (g) 2001–2010, and (h) 2011–2019.

Figure 5. The bias-corrected MDA8 O3 predictions (black line;
upper y axis) and corresponding anomalies (colored bar; lower
y axis) from 1981 to 2019: (a) annual mean and (b) warm-season
mean (May–September). The trends (growth rates) are obtained
through ordinary linear regression on mean values of MDA8 O3.
The anomalies are defined as the annual mean minus the multi-
decadal average over 1981–2019.

over the YRD, SCB, and PRD regions during the same pe-
riod. The summertime MDA8 O3 in BTHs has a change rate
of +0.81 µg m−3 yr−1, which is much lower than the results
using O3 observations (Li et al., 2020). One possible rea-
son is that most observational sites are in urban regions,
which usually suffer more serious O3 pollution, while the
O3 concentrations from model simulations and ML methods

are calculated on the scale of a grid cell with lower domain-
averaged values. Moreover, gridded data at a relatively coarse
resolution may fail to capture larger site differences, leading
to the larger discrepancy between O3 observations and grid-
ded O3 estimates.

3.3 Seasonal characteristics of O3 predictions

Differences in averaged annual and warm-season O3 con-
centrations indicate that O3 has distinctive seasonal charac-
teristics. Figure 6 shows the seasonal variations in O3 con-
centrations from 2011–2019, and results for the other past
3 decades are shown in Figs. S7–S9. In winter, pollution is
mainly concentrated in the coastal areas of southern China.
In spring, O3 pollution primarily occurs in eastern China and
the southern part of Yunnan Province. O3 pollution contin-
ues to worsen over eastern China in summer, particularly in
BTHs, and further extends to SCB. The air quality in east-
ern and central China is greatly improved in autumn, while
southern China experiences the most pollution in this pe-
riod. In general, the peak and trough values of O3 concen-
trations appear in summer and winter, respectively. How-
ever, O3 concentrations are found to be minimum in sum-
mer and maximum in autumn over PRD, which is largely
determined by the summer monsoon (Zhou et al., 2013;
H. Wang et al., 2018). Figure S10 shows the seasonal av-
eraged MDA8 O3 concentrations in different regions from
1981 to 2019. In winter, O3 concentrations do not experi-
ence much change across the four regions over the past few
decades, staying mostly between 70–80µg m−3. Moreover,
wintertime O3 concentrations after the 2000s are generally
lower than those before the 2000s in BTHs, YRD, and SCB.
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Table 1. Summary of reported regional and national MDA8 O3 trends (µg m−3 yr−1).

Region Period Increase Data source and/or References
rate method

National 2013–2017 (annual) 0.35 ML (XGBoost) Liu et al. (2020)
2013–2017 (annual) 0.92 WRF-CMAQ Liu and Wang (2020b)
2013–2017 (annual) 1.33 ML (ERT) Wei et al. (2022)
2015–2019 (annual) 4.40 ML (ERT) Wei et al. (2022)
2015–2019 (annual) 1.90 Observations Maji and Namdeo (2021)
2013–2019 (summer) 3.80 Observations Li et al. (2020)
1981–2019 (annual) 0.26 ML (LightGBM) This study
1981–2000 (annual) 0.38 ML (LightGBM) This study
1981–2019 (warm season) 0.51 ML (LightGBM) This study
1981–2000 (warm season) 0.71 ML (LightGBM) This study

BTH 2010–2017 (annual) 0.60 ML (random forest) Ma et al. (2021)
2013–2017 (annual) 1.33 ML (XGBoost) Liu et al. (2020)
2013–2017 (annual) 4.78 ML (ERT) Wei et al. (2022)
2012–2017 (summer) 1.16 GEOS-Chem Dang et al. (2021)
2013–2019 (summer) 6.60 Observations Li et al. (2020)
1981–2019 (summer) 0.46 ML (LightGBM) This study
2013–2019 (summer) 0.81 ML (LightGBM) This study

YRD 2013–2017 (annual) 2.94 ML (ERT) Wei et al. (2022)
2015–2019 (annual) 5.60 ML (ERT) Wei et al. (2022)
2012–2017 (summer) 3.48 GEOS-Chem Dang et al. (2021)
2013–2019 (summer) 3.20 Observations Li et al. (2020)
1981–2019 (annual) 0.24 ML (LightGBM) This study
1981–2019 (summer) 0.73 ML (LightGBM) This study

SCB 2013–2017 (annual) 2.37 ML (ERT) Wei et al. (2022)
2013–2019 (summer) 1.40 Observations Li et al. (2020)
1981–2019 (annual) 0.48 ML (LightGBM) This study
1981–2019 (summer) 0.98 ML (LightGBM) This study

PRD 2007–2017 (annual) 1.20 Observations Yang et al. (2019)
2013–2017 (annual) −0.72 ML (ERT) Wei et al. (2022)
2015–2019 (annual) 4.38 ML (ERT) Wei et al. (2022)
2013–2019 (summer) 2.20 Observations Li et al. (2020)
1981–2019 (annual) 0.56 ML (LightGBM) This study
1981–2019 (autumn) 0.69 ML (LightGBM) This study

In contrast, summertime O3 concentrations increase dramat-
ically over the four regions. In spring and autumn, O3 con-
centrations have an increasing trend in PRD, while it mostly
fluctuates within a certain range in the other three regions.
The results show that O3 in non-winter seasons has a more
pronounced increase during 1981–2019 albeit with regional
differences. The regional characteristics of O3 and its influ-
encing factors are further discussed in Sect. 3.4. BTHs as
well as the SCB, YRD, and PRD regions have been iden-
tified as hotspots of O3 pollution in China. These regions
are characterized by high population density (L. Wang et al.,
2018) and are also major agricultural areas (Monfreda et al.,
2008), which may face greater burdens of crop yield and hu-
man health losses with high O3 concentrations. Therefore,

here we provide more detailed analysis and investigation of
these regions.

3.4 Regional characteristics of O3 predictions

Figure 7 shows the bar plots of the seasonal MDA8 O3
concentrations in each region from 1981–2019 for bias-
corrected and GEOS-Chem-simulated O3. For the bias-
corrected O3, the averaged summertime MDA8 O3 concen-
trations in BTHs, YRD, and SCB and autumn-time MDA8
O3 concentrations in PRD are 137±8, 119±10, 113±12, and
98± 10 µg m−3, with the increasing rate being 0.46, 0.73,
0.98, and 0.69 µg m−3 yr−1 from 1981 to 2019, respectively
(Fig. S11). For GEOS-Chem-simulated O3, the averaged
summertime MDA8 O3 concentrations in BTHs, YRD, and
SCB and autumn-time MDA8 O3 concentrations in PRD are
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Figure 6. Spatial distribution of the bias-corrected MDA8 O3 predictions (µg m−3) from 2011–2019: (a) winter, (b) spring, (c) summer, and
(d) autumn.

141± 7, 125± 11, 120± 14, and 100± 12 µg m−3, respec-
tively. This shows that O3 concentrations of the four regions
have a consistent upward trend in the summer over the past
few decades, but there are regional differences in other sea-
sons. Compared to BTHs and YRD, PRD and SCB have
more distinctive O3 increases in spring and autumn. Among
these four regions, the O3 concentrations have the biggest
seasonal differences in BTHs and the smallest seasonal dif-
ferences in PRD.

The spatiotemporal patterns of O3 in China have been
proven to largely depend on both emissions and meteorol-
ogy. The regional O3 pollution is usually found to be trig-
gered by specific circulation patterns as local meteorologi-
cal factors are modulated by synoptic-scale circulation pat-
terns. China has a large territory and is affected by differ-
ent weather systems. The continental high-pressure systems,
components of the eastern Asian summer monsoon (EASM)
and tropical cyclones, among others, are critical synoptic
conditions leading to O3 formation and transport in China
(T. Wang et al., 2022; Han et al., 2020). For instance, regional
O3 pollution in northern China usually occurs under a typi-
cal weather pattern of an anomalous high-pressure system
at 500 hPa (Gong and Liao, 2019), which creates favorable
meteorological conditions for high O3 levels with high tem-

perature, low relative humidity, anomalous southerlies, and
divergence in the lower troposphere. As one of the most im-
portant components of EASM, the western Pacific subtropi-
cal high (WPSH) strongly influences summertime precipita-
tion and atmospheric conditions in eastern China. A strong
WPSH can decrease O3 levels over YRD as enhanced mois-
ture is transported into YRD under prevailing southwest-
erly winds (Zhao and Wang, 2017). Located on the southern
coast of China, PRD features a typical subtropical monsoon
climate. There, O3 concentrations are usually the lowest in
summer due to the prevailing southerlies with clean air from
the ocean and the associated heavy rainfall, while the worst
O3 pollution usually happens in autumn, mainly due to the
occasional northerly winds during the monsoonal transition,
thereby importing precursors from the north, and stable and
still relatively warm and sunny weather conditions before the
winter starts. Downdrafts in the periphery circulation of a ty-
phoon system can also strongly enhance surface O3 before
typhoon landing (Jiang et al., 2015; Lu et al., 2021; Li et al.,
2022). On the one hand, the poor ventilation in the periph-
eral subsidence region of typhoons favors the accumulation
of O3 and its precursors. On the other hand, the deep sub-
sidence can transport the O3 in the upper troposphere and
lower stratosphere to the surface, causing aggravated O3 pol-
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Figure 7. The seasonal mean MDA8 O3 concentrations (µg m−3) in different regions during 1981–2019. Bias-corrected MDA8 O3 in
(a) winter, (c) spring, (e) summer, and (g) autumn. GEOS-Chem MDA8 O3 in (b) winter, (d) spring, (f) summer, and (h) autumn. The error
bar represents the standard deviation.

lution. Moreover, smaller-scale circulation patterns, such as
land–sea and mountain–valley breezes, also influence O3 in
coastal regions (Ding et al., 2004; Zhou et al., 2013; H. Wang
et al., 2018).

When compared to the hybrid approach, GEOS-Chem
generally has similar O3 distribution and trends over
each region, while overestimating O3 concentrations (Ta-
ble S4). GEOS-Chem particularly overestimates wintertime
and autumn-time O3 concentrations in SCB, which are 10±
1 and 17± 3 µg m−3 higher than those of the hybrid ap-
proach, respectively. Previous studies have reported such
model overestimates and have proposed a number of expla-
nations involving precursor emissions, dry deposition, and
vertical mixing in the planetary boundary layer (PBL) (Lin
et al., 2008; Travis et al., 2016; Fiore et al., 2005). Both ob-
servational analyses and inter-model comparisons suggested
that the summertime dry deposition of O3 calculated by the
Wesely scheme in GEOS-Chem could be underestimated,
which has been invoked as a cause for model overestimates
of O3. The biased emissions in the model, consistent with
the biased-high tropospheric NOx columns, result in overes-

timated O3. Travis et al. (2016) showed that GEOS-Chem
with reduced NOx emissions provides an unbiased simula-
tion of O3 observations from aircraft and reproduces the ob-
served O3 production efficiency in the boundary layer. Lin
et al. (2008) suggested that the excessive PBL mixing can
lead to the biased-high O3 concentrations. The fully mixed
O3 throughout the PBL means that the higher O3 concen-
trations in the upper PBL are brought down to the surface
much more efficiently. Moreover, the excessive spatial aver-
aging of emissions at coarser resolutions could also lead to
systematic overestimation of regional O3 production (Wild
and Prather, 2006). In summary, with a higher prediction ac-
curacy, the hybrid approach lends greater credence to using
model simulations to extrapolate historical O3 further back
in time, which can furthermore provide us with more accu-
rate estimates of the impacts of O3 on crop production and
human health.
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Figure 8. Estimated annual mean relative yield losses (RYLs; in %) of four staple crops from 1981–2019 using the AOT40-China metric.
The estimated RYLs using bias-corrected O3 for (a) maize, (d) wheat, (g) soybean, and (j) rice. The estimated RYLs using GEOS-Chem-
simulated O3 for (b) maize, (e) wheat, (h) soybean, and (k) rice. The differences in estimated RYLs between GEOS-Chem-simulated
and bias-corrected O3 for (c) maize, (f) wheat, (i) soybean, and (l) rice. The GEOS-Chem-simulated O3 was regridded to 0.5◦× 0.5◦ for
comparison with bias-corrected O3.

3.5 Crop production losses attributable to O3 pollution

Figure 8 shows the relative yield losses (RYLs;
RYL= 1−RY, where RY is the relative yield defined
as the ratio of the O3-affected yield to the yield without O3
exposure) calculated with GEOS-Chem and bias-corrected
O3 using the AOT40-China metric. For a given crop, the
RYLs show generally consistent spatial distribution across
the metrics, with BTHs having the most serious crop yield

losses due to high O3 concentrations. Compared to the bias-
corrected O3, using GEOS-Chem-simulated O3 generally
leads to larger yield losses, especially over BTHs and SCB,
reflecting overestimated O3 concentrations by GEOS-Chem
in cropland areas during the growing seasons (Fig. S12),
primarily in spring and summer, which is consistent with the
above analysis. GEOS-Chem-simulated O3 leads to slightly
underestimated wheat yield loss only over some parts of
BTHs, mostly because the primary growing period of wheat
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Figure 9. The estimated decadal mean relative yield losses (RYLs)
of four staple crops using different metrics from 1981–2019. The es-
timated RYLs using bias-corrected O3 and GEOS-Chem-simulated
O3 for (a) maize, (b) wheat, (c) soybean, and (d) rice. The error bar
represents the standard deviation.

there is in winter and spring, and GEOS-Chem has lower O3
estimates than the hybrid approach during this period there
(Table S4).

Figure 9 shows the bar plots of the relative yield for each
crop using the AOT40-China exposure–yield response rela-
tionship. Crop yield losses are generally consistent with the
O3 trends as the exposure–yield relationships used here are
essentially a set of linear functions. Most crops experience
aggravated yield losses over the past 4 decades due to en-
hanced O3 concentrations, except for wheat, which has the
largest yield loss during the period from 1991 to 2000. The
reason could be that BTHs have the highest O3 concentra-
tions in spring during the 1990s, which is the primary grow-
ing season for wheat (Fig. S13).

The average annual crop RYLs from 1981 to 2019 for
wheat, rice, soybean, and maize range from 1.1 % to 13.4 %,
2.7 % to 13.4 %, 6.3 % to 24.8 %, and 0.8 % to 7.4 %, re-
spectively. The differences in yield losses across crops re-
flect the dependence on crop-specific phenology and eco-
physiology. The estimated annual RYLs using bias-corrected
O3 for wheat, rice, soybean, and maize from 1981 to
2019 range from 17.5 %–25.5 %, 10.7 %–19.1 %, 7.3 %–
17.9 %, and 7.1 %–12.7 %, with a growth rate of 0.03 % yr−1,
0.04 % yr−1, 0.27 % yr−1, and 0.13 % yr−1. Wheat is the
most sensitive crop to the O3 concentrations, whereas maize
is the least sensitive. Using GEOS-Chem-simulated O3,
the estimated annual RYLs for wheat, rice, soybean, and

maize from 1981 to 2019 are 18.7 %–28.7 %, 14.0 %–22.0 %,
12.4 %–23.1 %, and 7.9 %–13.2 %, having a growth rate
of 0.08 % yr−1, 0.14 % yr−1, 0.23 % yr−1, and 0.11 % yr−1.
There are noticeable differences in crop yield estimates us-
ing the bias-corrected and GEOS-Chem O3, again indicating
the importance of the bias-corrected high-resolution O3 data
in related crop issues.

In existing studies evaluating the O3-induced crop losses
in China, which also use exposure–yield relationships de-
rived from the experiments conducted in Asia, Zhang et
al. (2017) reported that the ambient O3 concentrations in
northeastern China cause substantial annual yield loss of soy-
bean ranging from 23.4 % to 30.2 % during 2013 and 2014,
depending on the O3 metric used (including AOT40, W126,
SUM06, and a flux-based metric). Feng et al. (2022), using
AOT40, indicated that the annual average RYLs of wheat,
rice, and maize from 2017 to 2019 are 33 %, 23 %, and 9 %,
respectively. Our correspondingly estimated RYLs for rice
(18.0 %) and maize (10.0 %) are generally consistent with
their results, while the RYLs for soybean (16.4 %) and wheat
(23.4 %) are much lower than their estimates. Since we used
the same exposure–yield response relationships as in their
studies, the discrepancies are primarily attributed to the dif-
ferences in the metrics used (only for soybean), O3 fields,
and the sensitivity of the crop to the changes in O3 concen-
trations (Mukherjee et al., 2021; Feng et al., 2022; Mills et
al., 2018). In Zhang et al. (2017), the O3 measurements are
obtained from the experimental field (45◦73′ N, 126◦61′ E),
and in Feng et al. (2022), the measured O3 concentrations
are from over 3000 monitoring sites across eastern Asia. The
results of the comparison are consistent with the previous
analysis of O3 trends and variability from different sources,
where the domain-averaged values of O3 observations are
larger than gridded O3 from model simulations (Sect. 3.2)
and thus lead to larger estimates of RYLs. On the one hand,
it indicates that O3 fields should be considered a great source
of uncertainty when comparing the results of previous stud-
ies using source-varied O3 fields. Moreover, different degrees
of importance should be given for specific crops; for exam-
ple, the changes in O3 concentrations have a larger impact on
wheat crop. On the other hand, it again highlights the neces-
sity and importance of bias correction for model-simulated
O3 when studying O3-induced crop reduction.

3.6 Health impacts attributable to O3 pollution

The estimated annual all-cause premature deaths induced by
O3 increased from 55 876 in 1981 to 162 370 in 2019 with an
increasing trend of +2979 deaths per year. The annual pre-
mature deaths related to respiratory and cardiovascular dis-
eases were 34 155 and 40 323 in 1998 and 26 471 and 79 021
in 2019, having a rate of change of −546 and +1773 deaths
per year during 1998–2019, respectively (Fig. 10a). Among
three types of health outcomes, only respiratory diseases ex-
perienced a decreasing trend in premature mortality, and the
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Figure 10. (a) Annual premature mortality (in thousands) for different diseases over the past few decades, (b) annual mean province-based
mortality (in thousands) attributed to different health endpoints, and (c) annual mean province-based population (in millions). The mortality
is calculated using the bias-corrected O3.

premature mortality is constantly below 40 000. The decreas-
ing trend of the respiration-related mortality primarily re-
sults from the decreased annual baseline mortality rate over
the past few decades (Fig. S14). As the total respiratory-
related deaths decreased over the past few decades, respi-
ratory O3-related deaths are decreasing even under aggra-
vated O3 pollution. Based on GEOS-Chem-simulated O3, the
corresponding estimated change rate for all-cause disease is
+3516 deaths per year from 50 384 in 1981 to 176 741 in
2019. Premature mortality induced by respiratory disease de-
creased from 37 822 in 1998 to 29 079 in 2019 with a change
rate of−584 deaths per year, while cardiovascular disease in-

creased from 44 516 in 1998 to 85 980 in 2019 with a change
rate of +1977 deaths per year (Fig. S15). The result shows
that using GEOS-Chem-simulated O3 generally gives higher
estimates of mortality than using the bias-corrected data. Fig-
ure 10b shows the provincial annual average premature mor-
tality of different health endpoints. The five provinces with
the highest all-cause mortality are Jiangsu (14 510; 95 % CI:
9022–19 935), Shandong (12 684; 95 % CI: 4258–20 990),
Henan (12 290; 95 % CI: 4125–20 343), Guangdong (9268;
95 % CI: 7224–11 416), and Hebei (8276; 95 % CI: 2776–
13 706), which are generally consistent with previous studies
for China (Zhang et al., 2021, 2022a). Similar distribution
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can be found for respiratory and cardiovascular diseases but
with a different ranking order. Generally, the provinces in
densely populated areas (Fig. 10c) with higher O3 concen-
trations, such as BTHs, YRD, and PRD, have higher health
burdens. In contrast, northeastern and southern China (ex-
cluding Guangdong) suffer the least life losses induced by
O3 exposure (Fig. S16).

When compared with estimates from previous studies, our
estimates are generally quite consistent with those given by
Maji and Namdeo (2021), who reported that the short-term
all-cause, cardiovascular, and respiratory premature mor-
talities attributed to ambient O3 exposure were 156 000,
73 500, and 28 600 in 2019, respectively. Based on O3 ob-
servations in 334 Chinese cities, Zhang et al. (2021) sug-
gested that the national all-cause, respiratory, and cardiovas-
cular mortalities attributable to O3 were 270 000 to 390 000,
49 000 to 63 000, and 150 000 to 220 000 across 2015–2018,
respectively, which are much higher than most existing re-
sults. Since the methodological approaches are largely simi-
lar and since we use the log-linear exposure–response func-
tion, we attribute the very high estimated mortalities mainly
to the concentration–response threshold X0 assumed to be 0
in their study. A lower X0 means that O3 can cause more ad-
verse impacts on human health even at low concentrations,
thus leading to higher mortalities.

4 Conclusions and discussion

In this study, to have a more accurate characterization of O3
spatiotemporal distribution and trends as well as its impacts
on agriculture and human health, we used a hybrid approach
to generate bias-corrected O3 data across China from 1981 to
2019. The hybrid approach helps improve O3 predictions by
taking advantage of a chemical transport model and a ML al-
gorithm as well as increasing availability of high-resolution
environmental and meteorological data. In the model train-
ing process, we found that utilizing a higher-resolution me-
teorological dataset, albeit one that is not the same as the
default CTM input meteorology, has high potential to en-
hance the performance of the hybrid model in reproduc-
ing observed O3 concentrations. The validation shows that
the bias-corrected O3 can achieve a higher prediction accu-
racy than the GEOS-Chem-simulated O3 alone when com-
pared with historical in situ measurements. Before being cor-
rected, the GEOS-Chem-simulated O3 concentrations tend to
be overestimated, which leads to higher crop yield losses and
larger O3-induced mortalities. Noticeable differences in crop
RYLs and mortality estimates highlight the advantages of us-
ing high-resolution O3 data to improve our understanding of
long-term O3 impacts.

When examining the regional and national O3 trends, we
found that MDA8 O3 concentrations have a perceptible in-
creasing trend before the 2000s but fluctuate within a cer-
tain range with large interannual variabilities in more recent

years. The large discrepancies in previous studies indicate
that the regional and national O3 trends in China still suffer
great uncertainties, particularly when different approaches
are used to produce the O3 estimates. However, these studies
using source-varied O3 fields consistently show the great in-
terannual variabilities of O3 concentrations. Some insights
can be obtained from existing findings, which need to be
carefully considered when examining O3 trends and compar-
ing them with existing results. First, given the large site dif-
ferences, the calculation of observational O3 trends is very
sensitive to the subsets of data from networks. Thus, great
uncertainty could still exist even when using O3 observa-
tions from the same source depending on the chosen sub-
sets of data. Second, different formats of O3 fields (e.g., site-
based and gridded) could lead to large uncertainties in the O3
trend estimates. A higher resolution of gridded O3 estimates
from CTMs and ML may reduce the differences between
O3 observational results. Third, the calculated O3 trends are
very sensitive to the chosen study period due to large in-
terannual variability and seasonal differences. The changing
meteorological conditions are the major factor causing the
large interannual O3 variations, and reductions in the emis-
sions of NOx , SO2, and PM also have complex effects on
ground-level O3 concentrations (T. Wang et al., 2022). Liu
and Wang (2020a) suggested that the meteorological impacts
on O3 trends vary from region to region and year by year
and that it could be comparable with or even larger than the
impacts of changes in anthropogenic emissions.

Our estimated RYLs for maize and rice in China are gener-
ally consistent with existing studies, while the RYLs for soy-
bean and wheat are lower than their estimates, mainly due to
the differences in the metrics used, O3 fields, and crop sen-
sitivity to ambient O3 concentrations. It suggests that plat-
ing O3-resistant cultivars could be an effective approach to
increase total crop production to meet increasing food de-
mands. Although other metrics (e.g., M7, M12, and W126)
have also been used in some studies (Van Dingenen et al.,
2009; Avnery et al., 2013; Y. Wang et al., 2022), exposure–
yield relationships are not available for all four major crops
specific to China. The estimated RYLs for crops could be
largely biased using metrics with exposure–yield relation-
ships developed for the US or Europe (Fig. S17), as they are
inadequate to represent Asian crop genotypes and environ-
mental conditions. Therefore, the region-specific exposure–
yield relationships are highly recommended to be used in fu-
ture studies estimating O3-induced crop reduction, especially
for regional studies.

In recent years, although existing studies have made ef-
forts to quantify the O3-related health impacts in China, only
a few studies have focused on nationwide acute O3 health
burden assessment, particularly for assessment over multiple
decades (Maji and Namdeo, 2021; Sahu et al., 2021; Zhang
et al., 2021., 2022a). There are some remaining issues to be
addressed regarding O3 health impacts. For instance, the ex-
istence of a “safe” threshold of O3 levels is still debated. A
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recent study reported that no consistent evidence was found
for a threshold in the O3 mortality concentration–response
relationship in seven cities of Jiangsu Province, China, dur-
ing 2013–2014 (Chen et al., 2017; Maji and Namdeo, 2021).
Given the importance of the threshold assumption in assess-
ing health effects of air pollution, more studies are needed to
determine a most likely threshold for O3 mortality associa-
tion in the future. Moreover, the multiple temporal O3 met-
rics (e.g., 1 h maximum and daytime average O3 concentra-
tions) have also proved to play an important role in the vari-
ability of estimated health effects, even though standard ra-
tios are used to convert among multiple metrics (Anderson
and Bell, 2010). In addition to the uncertainties from vary-
ing methodologies, interpretation of the O3 epidemiological
impact is also constrained by the variability in geographi-
cal, seasonal, and demographic characteristics (P. Yin et al.,
2017). Liu et al. (2013) suggested that associations between
O3 and mortality appeared to be more evident during the cool
season than in the warm season and stronger in the oldest age
group and among those with less education. The effect modi-
fication by population susceptibility and the confounding ef-
fects of concomitant exposures (e.g., temperature, particulate
matter) should be further considered in future work.

A major limitation of our study lies in the uncertain pre-
dictions in regions where monitoring data are scarce (e.g.,
the western half of China). The monitoring sites are sparsely
distributed in those areas, which may fail to capture the accu-
rate association between O3 concentrations and various pre-
dictors there, especially considering that the ML algorithm
has likely over-emphasized such relationships in the data-
intensive eastern regions. Second, the land use data were
prescribed in 2013 due to the limited availability of data,
and this may neglect some major land use changes in China
over the past few decades. Although the land use data were
found by the ML algorithm to contribute little to the overall
model, more detailed land use data are expected to further in-
crease model accuracy. In addition, although concentration-
based metrics are easy to calculate and ensured to be scientif-
ically sound in some experiments (Fuhrer et al., 1997; Mills
et al., 2007), they do not consider the active responses of
plant ecophysiology to ambient climatic and environmental
changes and are thus likely inadequate for examining yield
losses in a future climate and atmospheric environment (Tai
et al., 2021). Therefore, flux-based metrics are recommended
in future studies to better understand the long-term evolution
of crop losses over China (Feng et al., 2012; Zhang et al.,
2017; Tai et al., 2021; Pleijel et al., 2022), wherein more
crop- and region-specific experiments and trials are needed
to acquire appropriate metrics and exposure–yield response
functions and calibrate the process-based crop model.

Despite these limitations, our study represents important
progress in evaluating the long-term, multidecadal health
burdens and agricultural losses resulting from O3 pollution
in China. Across the four major regions, BTHs experience
the highest RYLs for major crops due to elevated O3. On the
other hand, the YRD and PRD regions have greater human
health losses primarily due to their large population size. The
results can provide important references for governments and
agencies when making related national or regional policies
to meet imperative environmental, health, and food security
demands. To effectively address the impacts of O3, collabo-
rative efforts can be made in multifaceted aspects: (1) imple-
ment stricter regulations and specific emission control mea-
sures for major ozone precursors from industrial, vehicu-
lar, and agricultural sources that account for region-specific
chemical, meteorological, and terrestrial conditions; (2) en-
courage the adoption of more sustainable and adaptive agri-
cultural practices that minimize O3 exposure and its dam-
age on crops (e.g., cultivating O3-resistant crop varieties);
(3) improve short-range O3 forecast capabilities of regional
models, especially with the enhancement of artificial intel-
ligence technology, which may enable better early-warning
systems to prepare the public and farmers for O3 episodes;
and (4) raise public awareness via promotional campaigns
and educational programs to inform individuals, communi-
ties, and farmers about the risks associated with O3. It is im-
portant for policymakers to consider these suggestions and
act to effectively mitigate the negative impacts of O3.
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