

Supplement of

Sea salt reactivity over the northwest Atlantic: an in-depth look using the airborne ACTIVATE dataset

Eva-Lou Edwards et al.

Correspondence to: Armin Sorooshian (armin@arizona.edu)

The copyright of individual parts of the supplement might differ from the article licence.

21 S1. Additional information for Equations 1 - 5

Equations 1 - 4 comprise a system of four equations for determining the contribution of sea salt and dust to bulk PILS Na⁺ and Ca²⁺ mass concentrations. Equation 5 (derived from Eqs. 1 – 4) can produce negative values for ssNa⁺ depending on Na⁺_{bulk} and Ca²⁺_{bulk}. In these cases, ssNa⁺ is set to 0, which prevents negative mass concentrations from also being assigned to Na⁺_{dust}, ssCa²⁺, and Ca²⁺_{dust}.

27 **S2.** Additional information for Equations 6 - 14

Equations 6 - 13 constitute a system of equations for determining the contribution of sea salt, dust, and emissions from combustion processes to bulk PILS Na⁺, Ca²⁺, and K⁺ mass concentrations. When a computer-based solver attempts to solve Eqs. 6 - 13, nonphysical results are often produced (i.e., either negative mass concentrations arise for certain species or there is no solution at all). Thus, we manually solve for one unknown variable at a time and adjust calculated values as necessary to arrive at a physical solution using the following method:

- 1. Manual calculations begin with Eq. 14 (derived from Eqs. 6 13), yet Eq. 14 can produce negative values for ssNa⁺ depending on Na⁺_{bulk}, Ca²⁺_{bulk}, K⁺_{bulk}, and the selected $\begin{pmatrix} Na^+\\ K^+ \end{pmatrix}_{comb}$. In these cases, ssNa⁺ is set to 0, which prevents negative mass concentrations
- from also being assigned to $ssCa^{2+}$ and ssK^+ via Eq. 9 and 11, respectively.
- 38 2. If $ssCa^{2+}$ and ssK^{+} exceed Ca^{2+}_{bulk} and K^{+}_{bulk} , respectively, $ssCa^{2+}$ and ssK^{+} are set to 39 Ca^{2+}_{bulk} and K^{+}_{bulk} , respectively.
- 40 3. If the sum of K^+_{dust} and ssK^+ exceed K^+_{bulk} , K^+_{dust} is set to $K^+_{bulk} ssK^+$, which forces K^+_{comb} 41 to be 0.
- 42 4. If the sum of Na⁺_{comb} and ssNa⁺ exceed Na⁺_{bulk}, Na⁺_{comb} is set to Na⁺_{bulk} ssNa⁺, which
 43 forces Na⁺_{dust} to be 0. Note that this adjustment prioritizes allotment of Na⁺_{bulk} to Na⁺_{comb}
 44 over Na⁺_{dust}. We performed this same adjustment except prioritizing assignment of Na⁺_{bulk}
 45 to Na⁺_{dust} over Na⁺_{comb}, and it did not significantly alter our results.

Variable(s)	Description
$Na_{bulk}^+, Ca_{bulk}^{2+}, K_{bulk}^+, SO_{4, bulk}^{2-},$	Raw mass concentrations for each of the species listed from PILS-IC analysis ¹
NUL+	$\mathbf{D}_{\text{constraint}} = \mathbf{c}_{\text{constraint}} + \mathbf{c}_{\text{constraint}}$
INH _{4,bulk}	Raw mass concentrations of NH4 ⁺ from the AMS ² .
ssNa+,ssCa²+,ssK+	Derived mass concentrations attributed to sea salt for each of the species listed.
$Na_{dust}^+, Ca_{dust}^{2+}, K_{dust}^+$	Derived mass concentrations attributed to dust for each of the species listed.
Na^+_{comb}, K^+_{comb}	Derived mass concentrations attributed to combustion processes for each of the species listed.
Sea salt	Derived mass concentrations of sea salt.
%Cl ⁻ depletion	Derived percentages of the original Cl ⁻ in sea salt particles that has since been displaced through depletion reactions.
Lost Cl ⁻	Derived mass concentrations of particulate Cl ⁻ displaced from sea salt particles (when reported in units of µg m ⁻³) or the molar fraction of gaseous Cl added to the atmosphere following Cl ⁻ depletion reactions (when reported in units of pptv or ppbv). Note these are equivalent. Values are calculated using Approach 1, meaning that non-sea salt sources of Na ⁺ are considered.
Lost Cl _{bulk}	Same as lost Cl ⁻ above, but calculated using Approach 2, meaning that sea salt is assumed to be the only source of atmospheric Na ⁺ .
Lost Cl _{diff}	Difference between lost Cl ⁻ _{bulk} and lost Cl ⁻ , which is used to understand how assumptions about the source(s) of atmospheric Na ⁺ affect derived amounts of displaced Cl ⁻ .
nssS04 ^{2–}	Derived mass concentrations of SO_4^{2-} attributed to sources other than sea salt.
$ExSO_4^{2-}, ExNO_3^{-}$	Derived mass concentrations of SO_4^{2-} and NO_3^{-} , respectively, remaining after neutralization with NH_4^+ .
ExNH ₄ ⁺	Derived mass concentrations of remaining NH_4^+ after neutralizing $nssSO_4^{2^-}$.
Excess acidic species	Derived total mass concentrations of the acidic species not neutralized by ammonium and, thus, having the potential to displace Cl ⁻ from sea salt particles.
Lost Cl ⁻ attr. to A	Hypothetical mass concentrations of the amount of Cl ⁻ a given acidic species has the potential to displace, where A can be $ExSO_4^{2-}$, $Ex NO_3^{-}$, or oxalate _{bulk} .
<i>Lost Cl⁻ attr. to</i> excess acidic species	Hypothetical mass concentration of the total Cl ⁻ that can be displaced from sea salt particles based on the available amount of excess acidic species.

Table S1. Nomenclature for variables used in calculations relevant to Cl⁻ depletion.

- 47 ¹"PILS-IC analysis" refers to in-flight sampling with a particle into liquid sampler (PILS)
- 48 following by offline sample analysis using ion chromatography (IC).
- 49 ²"AMS" stands for aerosol mass spectrometer.

Type of parameter	Parameter	Value
	$\left(\frac{total\ mass}{Na^+}\right)_{ss}$	3.267 ^a
	$\left(\frac{Ca^{2+}}{Na^{+}}\right)_{SS}$	0.038 ^{b, c}
	$\left(\frac{Ca^{2+}}{Na^{+}}\right)_{dust}$	1.78 ^b
	$\left(\frac{K^+}{Na^+}\right)_{ss}$	0.036 ^{a, c}
Mass ratio [unitless]	$\left(\frac{K^+}{Ca^{2+}}\right)_{dust}$	1.00^{d}
	$\left(\frac{Na^+}{K^+}\right)_{comb}$	See Table S2
	$\left(\frac{SO_4^{2-}}{Na^+}\right)_{ss}$	0.253 ^{e, f, g}
	$\left(\frac{Cl^{-}}{Na^{+}}\right)_{ss}$	1.81 ^b
	MW _{SO4} ²⁻	96.056
Mologular weight	$MW_{NH_4^+}$	18.039
$[g \text{ mol}^{-1}]$	MW_{NO_3}	62.005
	MW _{Cl} -	35.453
	MW _{oxalate}	88.019
Charge of fully	$y_{SO_4^{2-}}$	2
deprotonated conjugate	$y_{NO_3^-}$	1
base [unitless]	$y_{oxalate}$	2
^a Seinfeld and Pandis (2016) ^b Bowen (1979)		

Table S2. Mass ratios, molecular weights, and charges of fully deprotonated conjugate bases used in calculations relevant to Cl⁻ depletion.

- ^bBowen (1979) ^cFinlayson-Pitts and Pitts (2000) ^dAldhaif et al. (2020)
- ^eBecagli et al. (2005)
- ^fBoreddy and Kawamura (2015)
- ^gFarren et al. (2019)

Table S3. Details regarding the various $\left(\frac{Na^+}{K^+}\right)_{comb}$ ratios used when exploring how different combustion processes may affect calculations relevant to Cl⁻ depletion. 59

Indicator used in text	Description of combustion process	Value
Herbaceous	Agricultural burning of herbaceous crop residue	0.05 ^a
agricultural fire		
Forest fire	Forest fire burning of pinion and juniper trees	0.08^{b}
Industrial (avg)	Average from industrial operations at steel mills	0.24 ^{c, d}
	and cement plants	
Sauna stove	Inefficient batch combustion of birch wood in a	0.75 ^e
	sauna stove for residential heating	
Car exhaust	Fossil fuel combustion by motor vehicles	0.91 ^{c, f}
Coal combustion (avg)	Average from burning of pulverized western coal	3.03 ^{c, g}
	comprised of low sulfur (0.5%) and high ash	
	(22%) at a coal-fired power plant	

60

61 ^aTurn et al. (1997)

^bWatson et al. (2001) 62

^cOoki et al. (2002) 63

^dScheff and Valiozis (1990) 64

^eLamberg et al. (2011) 65

^fHuang et al. (1994) 66

67 ^gOndov et al. (1989) **Table S4.** Summary of findings from this work as well as those from previous studies conducted around the globe. "BDL" stands for below detection limit, and "SSA" stands for sea salt aerosol. Several abbreviations are used and are defined as the following: "Ref" = reference, "Alt" = relevant altitudes, "Dp" = particle size range, "Stat" = statistic reported, "SSA" = sea salt aerosol, "Attr. Na⁺ to nss sources" = Attributes Na⁺ to non-sea salt sources, "Eq" = equation, "Air" = aircraft, "Surf" = surface station(s), "Med" = median, and "Rng" = range, "USEC" = United States East Coast, and "BDL" = below detection limit.

Ref	Date	Site	Platfo rm	Alt	Dp	Stat	SSA	Na⁺	K ⁺	Ca²	Cl	Nss SO4 ²⁻	NO3 ⁻	NH4 ⁺	Cl ⁻ : Na ⁺	Lost Cl ⁻	Cl [.] deple tion	Attr. Na ⁺ to nss sour ces	Eq/ method for determining SSA mass and/or Cl [*] depletion (%)	Eq/ method ref
				m a.s.l	μm		µg m ⁻³	µд m ⁻³	µg m ⁻³	μg m ⁻³	μg m ⁻³	µg m ⁻³	µg m ⁻³	µg m ⁻³		µg m ⁻³ / ppty	%			
This study	Dec- Feb 2022	USEC; 34.0°- 41.7° N/ 70.0°- 76.7° W	Air	160 - 200 0	< 51	Med	0.61	0.25	0.04	0.0 6	0.3 2	0.66	0.49	0.27	1.70 ²	0.04/27	6	Yes	Eqs. 1 – 4, 15, 16	Boreddy and Kawamura (2015); AzadiAghdam et al. (2019)
	Mar 2022	USEC; 32.2°- 38.5° N/ 69.1°- 76.5° W					0.65	0.27	0.07	0.1 3	0.4 3	0.71	0.81	0.38	1.62 ²	0.04/27	10			
	May 2022	USEC; 32.3°- 41.7° N/ 69.1°- 76.5° W					0.95	0.26	0.05	0.1 2	0.4 6	0.90	0.55	0.57	0.64 ²	1.76/ 1174	64			
	Jun 2022	Bermud a; 30.8°- 35.9° N/ 59.5°- 65.9° W					4.3	1.24	0.06	0.0 7	1.6 8	1.34	0.90	0.22	1.35 ²	0.66/440	25			
Studies i	in open o	cean environ	ments	1.7			4 413											N	001	
Prospe ro (1979)	Jun- Aug 1975	NWA; 34°–40° N/ 52°–60° W	Ship	15	< 30	Mean	4.41 ³ / 5.52 ⁴											No	$SSA = 3.252 \cdot Na^+$	
Spada et al. (2015)	1987 - 1996	New Zealand; 41.3°- 46.4° S/ 168.4° E- 176.5° W	Surf		No upp er limi t	Rng	~6 - 14											No	SSA = 1.47 · Na ⁺ + Cl ⁻	Quinn and Bates (2005)
Keene et al. (1990)	Jul- Sep 1988	Bermud a	Ship	10- m tow er on ship	No upp er limi t	Mean					1.3 3					0.68/454			Multiplies Na ⁺ by ratio in seawater	

			Air	MB							0.1					0.34/227			
Heintz enberg	1990 -	30°-45° N ⁵	Ship and air	L MB L	N/ A	Mean	~6				3	~3					No	$SSA = 3.262 \cdot Na^+$	Wilson (1975)
et al. (2000) Shinoz uka et al. (2004)	1997 Nov- Dec 1995	Tasmani a; 135°- 160° E/38°- 57° S	Air	< 200 0	< 3.5/ No upp er	Rng	0 - 8/ 9 - 40										No	$SSA = 1.47 \cdot Na^+ + Cl^-$	Holland (1978); Quinn et al. (2001)
Keene	Apr-	Bermud	Surf	28	limi t ⁶ 0.5	Rng					3.4		0.10			0.22 -	No	SSA	Keene et al.
and Savoie (1998)	May 1996	a; 32° N/64° W			5- 17						2 - 8.2 6					1.35/147 - 900		$= 3.262 \cdot Na^+$	(1986); Wilson (1975)
Quinn and Bates (2005)	Nov- Dec 1995	Souther n Ocean south of Australi	Ship	18	< 10	Mean	0.77		BDL			0.03	BDL	0.01			No	$SSA = 1.47 \cdot Na^+ + Cl^-$	
	Jun- Jul 1997	Sub- tropical northeas t					0.30		BDL			0.20	0.08	0.03					
	Jan- Feb 1999	Atlantic Tropical Atlantic					0.38 /0.43 8		BDL/ 0.01 ⁸			0.01/ 0.08 ⁸	$0.02/0.06^{8}$	0.00/ 0.01 ⁸					
Quinn et al. (2001)	Jan- Feb 1999	Norther n hemisph ere	Ship	18	< 1.1/ 1.1 -	Mean	0.22/ 8.00		0.00/ 0.01			0.15/ <0.00	0.01/ 0.23	0.03/ <0.00			No	SSA = 1.47 ·Na ⁺ + Cl [−]	Holland (1978)
		marine ⁹ Souther n hemisph ere			10		0.08/ 6.40		0.00/ 0.00			0.52/ 0.07	<0.00 / 0.19	0.05/ <0.00					
		marine tropics ⁹ Souther n hemisph ere marine temperat					0.14/ 9.5		0.00/ 0.00			0.56/ 0.03	<0.00 /0.14	0.04/ <0.00					
Boredd y and Kawa mura	Dec- Feb 2001	e ⁹ Chichiji ma Island; 27.1 °N	Surf	259	No upp er limi	Mean		4.12	0.05^{1}_{0}	0.1 2 ¹⁰	7.1 0	3.06	0.78	0.19	1.75		Yes	Same system of equations as Eqs. 1-4 in this study	
(2015)	2012 Mar- May 2001	/142.2 °E			t			3.32	0.05^{1}_{0}	0.3 0 ¹⁰	6.1 8	2.97	0.84	0.23	1.67				
	2012																		

	Jun- Aug 2001							2.52	0.02 ¹ 0	$ \begin{array}{c} 0.0 \\ 4^{10} \end{array} $	4.9 4	1.06	0.24	0.11	1.82 ¹					
	2012 Sep- Nov 2001							3.62	0.05^{1}_{0}	$ \begin{array}{c} 0.0 \\ 4^{10} \end{array} $	7.1 2	1.31	0.43	0.11	1.98^{1}_{1}					
Jiang et al. (2021)	2012 Sum mer 2008 - 2016	Northwe st Pacific; 31°– 51.3° N/ 122°– 172° F	Ship	Top dec k of ship	Uns peci fied	Rng (Mea n)	1.6 – 42.0 (11.7)											No	SSA = 3.256 · Na ⁺	Riley and Chester (1976)
Feng et al. (2017)	Nov 2012/ 2013 Mar- Apr 2014 Mar- May 2015	Yellow Sea and Bohai Sea Yellow Sea and North Pacific	Ship		0.0 1 - 18	Mean	3.8/4. 0 2.5										8 % and 35 % for r particles <10 and <1 μ m, respective to the second se	Νο	SSA = 3.26 · Na ⁺	Manders et al. (2010)
Murph y et al. (2019)	Jul- Aug 2016, Jan- Feb 2017	30°–45° N over Pacific Ocean	Air	160 - 150 0	0.1 8 - 3	Rng	~0.5 - 2.5										Iy	Yes ¹²	Method using ion mass spectra	
Studies in	n coastal	locations	G1 :	10	N						1.0					1 11/740		Ŋ	X 1.1 11 X 1	
Keene et al. (1990)	Jul- Sep 1988	USEC	Ship	10- m tow er on ship	No upp er limi t	Mean					4.0 4					1.11/740		No	Multiplies Na ⁺ by ratio in seawater	
			Air	MB L							0.4 5					0.79/527				

Wai and Tanner (2004)	1995 - 1999	Hong Kong; 22.3° N/114.1	Surf	77	< 10	1995 mean	2.32										Yes ¹³	Uses Na ⁺ as indicator of SSA	
Quinn et al. (2001)	Jan- Feb 1999	USEC ⁸	Ship	18	< 1.1/ 1.1 - 10	Mean	0.12/ 9.20		0.02/ <0.00		2.40/ 0.09	0.04/ 2.30	0.54/ <0.00				No	$SSA = 1.47 \cdot Na^+ + Cl^-$	Holland (1978)
Quinn and Bates (2005)	Jan- Mar 1999 Mar- Apr 2001	Norther n Indian Ocean East coast of Japan, Sea of Japan, East China Sea	Ship	18	< 10 < 10	Mean s	$\begin{array}{c} 0.25 \\ 0.08^1 \\ {}^4 \\ 0.08 \\ 0.06^1 \\ {}^5 \end{array}$		BDL/ 0.01 ¹ 4 BDL/ BDL 15		$0.05/0.25^{1}_{4}0.15/0.07^{1}_{5}$	$0.04/\\0.07^{1}_{4}\\0.07/\\0.03^{1}_{5}$	$0.01/\\0.05^{1}_{4}\\0.05/\\0.02^{1}_{5}$					SSA = 1.47 · Na ⁺ + Cl [−]	
	Jul- Aug 2002	USEC; 33°-45° N					0.04		BDL	0.1 7		0.03	0.05	0.4 (< 1 μm)/ 0.8 (1 - 10 μm)					
Keene et al. (2004)	Jul- Aug 2002	USEC; 33°-44° N/ 68°-80° W	Ship	18	<25	Medi an				0.1 9	3.48	0.79	0.57	μπ		86	N/A	Uses Mg ²⁺ as reference for SSA	Keene et al. (1986)
Nolte et al. (2008)	May- Jun 2002	Tampa, Florida, USA; ~27.9° N,82.5° W	Surf	Un- spe cifi ed	0.0 56 - 18	<u>Mean</u> or mg		<u>1.41</u>		<u>1.6</u> <u>6</u>	<u>3.76¹</u> <u>6</u>	<u>1.74</u>	<u>1.19</u>	0.2 - 0.35 (< 1 µm)/ 0.35 - 0.9 (> 1 µm)		<u>48</u>	No	Cl ⁻ depletion (%) determined by deficit of Cl ⁻ /Na ⁺ ratio from 1.17	Stumm and Morgan (1981)
Yao and Zhang (2012)	Jun- Jul, Oct- Nov 2002	Kejimku jik, Nova Scotia; 44.4° N /65.2° W	Surf	5 m abo ve gro und	3.1 - 6.2	Rng sum mer/ fall		0.05 - 0.22/ 0.03 - 0.24						μιιι)		8 0/ - 55	No	Uses CI::Na ⁺ ratio of 1.174 in sea water to determine CI ⁻ depletion (%)	Zhuang et al. (1999)
	Nov 2002 17				0.0 48 - 18	Rng <1 μm /> 1 μm		BDL 			1.04 - 2.92/ 0.11 - 2.33	0.02 - 0.18/ 0.69 - 2.35	0.31 - 0.91/ 0.02 - 0.80						
Keene et al. (2007)	Jul- Aug 2004	Appledo re Island, Maine, USA;	Surf	43	0.3 9 – 18/ No upp	Med or rng		<u>0.68</u>		<u>0.5</u> <u>0</u>	0.96 - 21.61	0.26 - 1.57	0.00		0.00 - 1.31/0 - 874		No ¹⁹	Uses Na^+ and Mg^{2+} to determine SSA	Keene et al. (1986)

		42.9° N/70.6° W			er limi t ¹⁸															
Zhao and Gao (2008)	Jul- Sep 2006	Newark, New Jersey, USA; 40.7° N/74.2°	Surf	20 m abo ve gro und	0.0 56 - 18	Mean or rng									0.33 - 1.21		14 - 96	Yes ²⁰	For samples with Na ⁺ :Mg ²⁺ >5 , Na ⁺ is reference species for SSA	Finlayson-Pitts and Pitts (2000)
Corral et al. (2021)	Dec- Feb 2014 - 2018 Mar- May 2014 - 2018 Jun- Aug 2014 - 2018 Sep- Nov 2014	w USEC; 25.4°- 44.4° N/70.0° -82.1° W	Surf ²¹	-3 - 157	< 2.5	Rng of mean s acros s 9 statio ns	0.24- 1.15 0.35 - 1.26 0.15 - 0.70 0.19- 1.09											N/A	<i>SSA</i> = 1.81 · <i>Cl</i> [−]	http://vista.cira.co lostate.edu/Impro ve/reconstructed- fine-mass/
Haskin s et al. (2018)	2018 Feb- Mar 2015	USEC; ~28°- 43° N/68°- 85° W	Air	< 100 0	< 4.1	Med					Ove r 0.2 8 - 0.2 Ove r 1an d: 0.1 2 - 0.1 5^{22}					Over ocean: 0.30/202 Over land: 0.08/53		No	Na ⁺ and Cl ⁻ are assumed to come exclusively from SSA	Junge and Werby (1958)
Kloppe r et al. (2020)	Feb 2016 — Dec 2017	Henties Bay, Namibia	Surf	30	< 10	Mean		10.2	0.41	0.7 3	522 13. 9	3.60 ² 3	0.23	0.21	1.35 (201 6)/ 1.34 (201 7)			Yes	Similar system of equations as Eqs.1-4 in this study	Seinfeld and Pandis (2016)
Azadi Aghda m et al. (2019)	Jul- Dec 2018 Aug 2005 – Oct 2007	Quezon City, Philippi nes; 14.6° N/ 121.1° E	Surf	85	0.0 56 - 18 < 2.5 (P	Rng Rng of mean s	0.1 – 2.6	0.20 				2.03 	0.17 		0.32 - 0.59/		21 - 91	Yes	Same as Eqs. 1- 4, 15, 16 in this study; SSA = ssNa ⁺ + Cl ⁻	Becagli et al. (2005); Boreddy and Kawamura (2015); Farren et al. (2019)

					M _{2.} 5)/ 2.5 - 10	0.44	0.44 _ 0.74	1.46 - 1.59				
					(P Mco							
					arse)							
Studies a	t inland	locations										
Bondy	Jun-	Centrevi	Surf	242	0.3				76	Yes ²⁴	Method using	Pilson (1998)
et al.	Jul	lle,			2 –				%		ion mass	
(2017)	2013	Alabana,			1.8				of		spectra; SSA	
		USA;							S		particles	
		32.9°							S		identified as	
		N/87.3°							A		having	
		w							pa		$Na^{+}:Mg^{2+} \sim 10:1$	
									rti			
									cl			
									es			
									na d			
									-			
									de			
									pl			
									eti			
									on			

≥ 90 %

- ¹Median values for NH₄⁺ are for particles $0.06 0.60 \mu m$.
- 74 ²Ratios of Cl⁻:ssNa⁺ are reported instead of Cl⁻:Na⁺.
- ³Geometric mean.
- ⁴Arithmetic mean.
- ⁵Heintzenberg et al. (2000) consider data from multiple field campaigns covering nearly all longitudes and latitudes (see Fig. 1 of their

study) over ocean. Thus, means listed above represent the $30^\circ - 45^\circ$ N latitude band over ocean for the entire globe instead of a specific region.

 6 Filters inside the aircraft sampled particles < 3.5 μ m, while filters outside the aircraft did not have an upper limit for the size of particles sampled.

- 82 ⁷Ranges of NO₃⁻ mass concentrations are for particles > 1 μ m, all other ranges are for the specified size range (0.55 17 μ m).
- ⁸In the tropical Atlantic, air masses influenced by biomass burning (BB) and African dust were sampled. Mean values for a given
- 84 parameter are reported as A/B, where A and B correspond to values associated with BB- and dust-influenced air masses, respectively.
- ⁹Regimes defined in Quinn et al. (2001). Note that ranges of longitude and latitude are not provided for these regimes, but that the
- 86 research vessel traveled from Norfolk, VA, USA (36.9° N, 76.3° W) to Cape Town, South Africa (34.3° S, 18.4° E).
- 10 Boreddy and Kawamura (2015) report non-sea salt K⁺ and Ca²⁺.

- ¹¹These Cl⁻:Na⁺ ratios are higher than those typically found in sea salt particles. Boreddy and Kawamura (2015) note that non-sea salt sources of Cl⁻ contributed to their samples in summer (June – August) and fall (September – November).
- 90 ¹²Particles containing aluminum, barium, and other metals were deemed to not be sea salt particles and excluded from the analysis in
- 91 Murphy et al. (2019).
- 13 Wai and Tanner (2004) reported they "carefully examined their dataset" and determined there was negligible contribution of local non-sea salt sources of Na⁺ (e.g., crustal, granitic) to total Na⁺.
- ¹⁴In the northern Indian Ocean, air masses were categorized as having recent (<2 days) contact with either the Arabian or Indian
- 95 continent. Mean values for a given parameter are reported as A/B, where A and B correspond to values associated with air masses from
- 96 the Arabian and Indian continent, respectively.
- 97 ¹⁵On the east coast of Japan, Sea of Japan, and East China Sea, air masses were categorized as having recent (<2 days) contact with
- 98 either (i) Asian continental regions with known sources of pollution or (ii) Asian continental regions with known sources of pollution
- and dust. Mean values for a given parameter are reported as A/B, where A and B correspond to values associated with air masses likely
- 100 affected by (i) Asian pollution and (ii) Asian pollution and dust, respectively.
- 101 ¹⁶Nolte et al. (2008) reported total SO_4^{2-} instead of $nssSO_4^{2-}$.
- ¹⁰Yao and Zhang (2012) provided speciated sub- and supermicron mass concentrations for three samples collected in November 2002
- 103 that had substantially high mass concentrations of Na^+ , $nssSO_4^{2-}$, NO_3^{-} , and NH_4^+ .
- ¹⁸Aerosols were sampled using a cascade impactor $(0.39 18 \,\mu\text{m})$ as well as in bulk where no upper size limit is specified. Cl⁻ and NO₃⁻
- mass concentrations correspond to the sum across all impactor stages, while Na^+ and $nssSO_4^{2^-}$ mass concentrations correspond to the bulk samples.
- ¹⁹Keene et al. (2007) found good agreement between their measured ratios of Na⁺ to Mg²⁺ to those documented for sea salt. They proceeded assuming all Na⁺ and Mg²⁺ originated from the surface ocean.
- ²⁰ Zhao and Gao (2008) used Na⁺:Mg²⁺ ratios to categorize samples as either from marine-dominated (Group 1; >5) or continentaldominated (Group 2; < 5) air masses. Calculations and discussion regarding Cl⁻ depletion only consider data from Group 1.
- ²¹Stations operated through the United States Environmental Protection Agency (U.S. EPA) Interagency Monitoring of Protected Visual
- 112 Environments (IMPROVE) network.
- ²²Haskins et al. (2018) provided day and night median Cl⁻ mass concentrations for over ocean and over land. Above, we combine the
- 114 day and night medians as a range.
- 115 23 Klopper et al. (2020) reported total SO₄²⁻ instead of nssSO₄²⁻.
- ²⁴Bondy et al. (2017) note particles identified and analyzed as sea salt were unlikely to be influenced by dust as they had negligible
- amounts of soil elements, such as Si and Al. Samples from July 4 and 5 were excluded to eliminate influence from fireworks.

Table S5. Number of data points considered in Figs. 1, 4, and S6 for each of the parameters

119	presented	for each	of the	seasonal	/monthly	categories.
-----	-----------	----------	--------	----------	----------	-------------

Parameter	Dec-Feb	Mar	Mar transit	May	May transit	Jun Bermuda
Temperature	105781	83108	12806	34175	27427	19807
Relative humidity	105846	83098	12805	34175	27421	19803
Water vapor mixing						
ratio	105846	83098	12805	34175	27421	19803
Wind speed	75483	58823	7994	19826	12955	6477
CO	75523	58407	8545	23799	18745	10946
Na^+	275	246	48	113	106	81
K^+	218	217	47	60	43	52
Ca ²⁺	235	244	48	73	81	67
Cl-	268	230	43	43	65	78
Cl⁻:Na⁺	258	227	43	43	65	77
$K^+:Na^+$	185	208	47	58	41	52
$Ca^{2+}:Na^+$	202	220	48	64	75	66
SO4 ²⁻	342	276	48	136	116	81
NO ₃ -	322	269	48	137	119	83
Oxalate	263	227	43	137	120	82
$\mathrm{NH_{4^+}}$	2748	2385	403	1169	947	678
Excess acidic species	1372	1790	423	468	373	486
ssNa ⁺	202	220	48	64	75	66
Cl ⁻ :ssNa ⁺	154	175	36	33	52	63
Lost Cl ⁻ attributed to	1258	1748	418	391	323	466
ExSO ₄ ²⁻						
Lost Cl ⁻ attributed to	1212	1733	418	391	323	466
ExNO ₃ -						
Lost Cl ⁻ attributed to	263	227	43	137	120	82
oxalate						
Lost Cl ⁻ based on	190	206	43	33	53	64
ssNa ⁺						
Lost Cl ⁻ attributed to	1385	1794	423	468	373	487
excess acidic species						
ExSO ₄ ²⁻	1258	1748	418	391	323	466
ExNO ₃ -	1212	1733	418	391	323	466
<i>m/z</i> , 44	2748	2385	403	1169	947	678
m/z 79	2748	2385	403	1169	947	678

Parameter	Units	Dec-Feb	Mar	Mar transit	May	May transit	Jun Bermuda
Temperature	°C	2.7	9.2	13.3	19.9	19.2	21.9
Relative humidity	%	52.6	50.5	46.6	64.2	61.6	80.8
Water vapor mixing		3607.38	5585.31	6868.43	15798.90	15681.40	21605.40
ratio	ррш						
Wind speed	m s ⁻¹	8.926	10.266	8.617	8.355	6.710	6.425
CO	ppm	0.1332	0.1404	0.1408	0.1246	0.1214	0.0813
Na ⁺		0.25	0.27	0.75	0.26	0.46	1.24
\mathbf{K}^+	$\mu \alpha m^{-3}$	0.04	0.07	0.09	0.05	0.03	0.06
Ca ²⁺	μgm	0.06	0.13	0.14	0.12	0.05	0.07
Cl		0.32	0.43	1.33	0.46	0.31	1.68
Cl ⁻ :Na ⁺		1.443	1.309	1.376	0.391	0.456	1.310
$K^+:Na^+$	-	0.132	0.267	0.119	0.065	0.020	0.037
Ca ²⁺ :Na ⁺		0.261	0.412	0.219	0.233	0.075	0.050
SO4 ²⁻		0.63	0.74	1.08	0.53	0.72	1.63
NO ₃ -		0.49	0.81	0.77	0.55	0.74	0.90
Oxalate		0.01	0.01	0.01	0.04	0.03	0.02
$\mathrm{NH_4}^+$	μgm	0.28	0.38	0.46	0.58	0.56	0.24
Excess acidic species		0.30	0.57	0.36	0.05	0.44	1.82
ssNa ⁺		0.19	0.20	0.71	0.29	0.63	1.32
Cl ⁻ :ssNa ⁺	-	1.536	1.560	1.617	0.645	0.471	1.354
Lost Cl ⁻ attributed to		0.00	0.00	0.00	0.00	0.00	0.46
ExSO ₄ ²⁻							
Lost Cl ⁻ attributed to		0.13	0.29	0.18	0.00	0.42	0.58
ExNO ₃ -							
Lost Cl ⁻ attributed to		0.01	0.01	0.01	0.03	0.03	0.02
oxalate							
Lost Cl ⁻ based on	-3	0.04	0.04	0.11	1.76	1.33	0.66
ssNa ⁺	μgm						
Lost Cl ⁻ attributed to		0.17	0.34	0.21	0.04	0.26	1.14
excess acidic species							
ExSO ₄ ²⁻		0.00	0.00	0.00	0.00	0.00	0.63
ExNO ₃ -		0.24	0.51	0.32	0.00	0.74	1.02
<i>m/z</i> 44		0.11	0.22	0.38	0.46	0.41	0.03
<i>m/z</i> , 79		0.01	0.02	0.03	0.03	0.02	0.01
3						-	

Table S6. Seasonal/monthly median values for each of the parameters presented in Figs. 1, 4, and 122 S6. Recall the median is represented as a solid red line in the center of each box.

- 125 **Table S7.** Dates, quantity of samples, meteorological conditions, and derived contributions of sea
- 126 salt and dust to bulk PILS Na^+ (ss Na^+ and Na^+_{dust} , respectively) and Ca^{2+} (ss Ca^{2+} and Ca^{2+}_{dust} ,
- 127 respectively) mass concentrations for research flights (RFs) considered in each category. "N PILS
- 128 samples" refers to the total number of PILS samples collected during clear conditions on the date
- 129 indicated, while "N samples w/ derived species" refers to the number of these samples providing
- 130 enough information to solve Eqs. 1-4 (i.e., samples providing mass concentrations of both Na⁺_{bulk}
- 131 and Ca^{2+}_{bulk}).

Category	Date	RF(s)	N PILS samples	N samples w/ derived species	Meteorological conditions and/or relevant notes	Median ssNa ⁺ (µg m ⁻³)	Median Na ⁺ dust (µg m ⁻³)	Median ssCa ²⁺ (µg m ⁻³)	Median Ca ²⁺ dust (µg m ⁻³)
	30 November 2021	94	7	7	Remains of post-frontal conditions	0.00	0.14	0.00	0.31
	01 December 2021	95	16	16	Prefrontal, high pressure; smoke in boundary layer near coast	0.03	0.23	0.00	0.47
	07 December 2021	96	5	5	Postfrontal, cold high pressure behind a strong cold front	0.07	0.11	0.00	0.20
	11 January 2022	100, 101	6	4	Cold high pressure, cold air outbreak (CAO) conditions	0.32	0.03	0.01	0.07
	12 January 2022	102, 103	33	17	Cold high pressure	0.09	0.01	0.00	0.03
Dec-Feb	15 January 2022	104	3	2	Postfrontal	0.67	0.02	0.01	0.04
	18 January 2022	105	11	0	Low pressure moves offshore, sets up CAO conditions	NaN	NaN	NaN	NaN
	19 January 2022	107, 108	26	6	Short-lived high pressure	0.28	0.04	0.01	0.07
	24 January 2022	109, 110	26	9	Postfrontal, weak high pressure	0.16	0.04	0.00	0.07
	26 January 2022	111, 112	20	7	Postfrontal	0.35	0.02	0.01	0.04
	27 January 2022	113, 114	18	5	Cold high pressure	0.24	0.00	0.01	0.00
	01 February 2022	115	8	5	High pressure	1.07	0.01	0.03	0.03

	02 February 2022	116	17	6	High pressure	0.74	0.00	0.02	0.01
	03 February 2022	117, 118	15	5	High pressure	1.00	0.00	0.02	0.00
	15 February 2022	120, 121	34	21	Postfrontal conditions, cold high pressure	0.22	0.01	0.00	0.02
	16 February 2022	122, 123	21	18	Cold high pressure	0.17	0.04	0.01	0.08
	19 February 2022	124, 125	38	30	Weak postfrontal	0.09	0.02	0.00	0.05
	22 February 2022	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Prefrontal, high pressure	1.47	0.03	0.04	0.05	
	26 February 2022	128, 129	16	15	Postfrontal	0.11	0.03	0.00	0.05
	Overall		345	202		0.19	0.03	0.01	0.06
	Overall 02 March 2022	130	345 39	202 36	Postfrontal, high pressure	0.19 0.19	0.03	0.01	0.06 0.15
	Overall 02 March 2022 03 March 2022	130 131, 132	345 39 71	202 36 57	Postfrontal, high pressure Weak prefrontal	0.19 0.19 0.71	0.03 0.08 0.13	0.01 0.01 0.03	0.06 0.15 0.26
	Overall 02 March 2022 03 March 2022 04 March 2022	130 131, 132 133, 134	345 39 71 42	202 36 57 37	Postfrontal, high pressure Weak prefrontal Cold high pressure	0.19 0.19 0.71 1.62	0.03 0.08 0.13 0.02	0.01 0.01 0.03 0.04	0.06 0.15 0.26 0.04
	Overall 02 March 2022 03 March 2022 04 March 2022 13 March 2022	130 131, 132 133, 134 138	345 39 71 42 8	202 36 57 37 6	Postfrontal, high pressure Weak prefrontal Cold high pressure Postfrontal, CAO conditions	0.19 0.19 0.71 1.62 0.05	0.03 0.08 0.13 0.02 0.03	0.01 0.01 0.03 0.04 0.00	0.06 0.15 0.26 0.04 0.06
Mar	Overall 02 March 2022 03 March 2022 04 March 2022 13 March 2022 14 March 2022	130 131, 132 133, 134 138 139, 140	345 39 71 42 8 38	202 36 57 37 6 36	Postfrontal, high pressure Weak prefrontal Cold high pressure Postfrontal, CAO conditions Late postfrontal, cold high pressure; smoke plume sampled from a woodland fire	0.19 0.19 0.71 1.62 0.05 0.10	0.03 0.08 0.13 0.02 0.03 0.03	0.01 0.01 0.03 0.04 0.00 0.00	0.06 0.15 0.26 0.04 0.06 0.05
Mar	Overall 02 March 2022 03 March 2022 04 March 2022 13 March 2022 14 March 2022 18 March 2022	130 131, 132 133, 134 138 139, 140 141	 345 39 71 42 8 38 14 	202 36 57 37 6 36 12	Postfrontal, high pressure Weak prefrontal Cold high pressure Postfrontal, CAO conditions Late postfrontal, cold high pressure; smoke plume sampled from a woodland fire Weak postfrontal	 0.19 0.19 0.71 1.62 0.05 0.10 0.13 	0.03 0.08 0.13 0.02 0.03 0.03 0.02	0.01 0.01 0.03 0.04 0.00 0.00 0.00	0.06 0.15 0.26 0.04 0.06 0.05 0.03
Mar	Overall 02 March 2022 03 March 2022 04 March 2022 13 March 2022 14 March 2022 18 March 2022 26 March 2022	130 131, 132 133, 134 138 139, 140 141 144, 145	 345 39 71 42 8 38 14 29 	 202 36 57 37 6 36 12 19 	Postfrontal, high pressure Weak prefrontal Cold high pressure Postfrontal, CAO conditions Late postfrontal, cold high pressure; smoke plume sampled from a woodland fire Weak postfrontal Postfrontal; sampled dust, smoke, and potentially pollen	 0.19 0.19 0.71 1.62 0.05 0.10 0.13 0.02 	0.03 0.08 0.13 0.02 0.03 0.03 0.02 0.02	0.01 0.03 0.04 0.00 0.00 0.00 0.00	0.06 0.15 0.26 0.04 0.06 0.05 0.03 0.04
Mar	Overall 02 March 2022 03 March 2022 04 March 2022 13 March 2022 14 March 2022 18 March 2022 26 March 2022 28 March 2022	130 131, 132 133, 134 138 139, 140 141 144, 145 146	 345 39 71 42 8 38 14 29 17 	202 36 57 37 6 36 12 19 12	Postfrontal, high pressure Weak prefrontal Cold high pressure Postfrontal, CAO conditions Late postfrontal, cold high pressure; smoke plume sampled from a woodland fire Weak postfrontal Postfrontal; sampled dust, smoke, and potentially pollen	 0.19 0.19 0.71 1.62 0.05 0.10 0.13 0.02 0.02 0.02 	0.03 0.08 0.13 0.02 0.03 0.03 0.03 0.02 0.02 0.02	0.01 0.03 0.04 0.00 0.00 0.00 0.00 0.00	0.06 0.15 0.26 0.04 0.06 0.05 0.03 0.04 0.04

	Overall		277	220		0.20	0.05	0.01	0.11
	03 May 2022	149	15	12	Weak prefrontal; presence of smoke potentially from New Mexico	0.36	0.07	0.01	0.13
	05 May 2022	150, 151	18	11	Postfrontal	0.03	0.02	0.00	0.04
Mav	16 May 2022	153, 154	39	7	Prefrontal to an approaching cold front yet also postfrontal to a departing band of precipitation	0.11	0.14	0.00	0.26
	17 May 2022	155	37	7	Postfrontal	0.08	0.00	0.00	0.00
Mar transit	20 May 2022	158	28	27	Warm high pressure, southerly flow due to Bermuda high ² ; haze with potential sampling of bioaerosol	1.77	0.04	0.06	0.08
	Overall		137	64		0.29	0.03	0.01	0.07
Mar transit	22 March 2022	142, 143	48	48	High pressure, two days after a cold front and two days before another cold front	0.71	0.05	0.03	0.10
	18 May 2022	156, 157	67	46	Postfrontal along East Coast, aircraft passed across the cold front on the way to Bermuda	0.58	0.01	0.02	0.02
May transit	21 May 2022	159, 160	42	24	Warm high pressure, anticyclonic flow around Bermuda high	0.72	0.01	0.02	0.02
	31 May 2022	161	11	5	Postfrontal	0.19	0.01	0.01	0.02
	Overall		120	75		0.63	0.01	0.02	0.02
	02 June 2022	162, 163	4	3	Prefrontal	0.83	0.00	0.01	0.00
	03 June 2022	164	1	0	Prefrontal, tropical system approaching from the southwest	NaN	NaN	NaN	NaN
Jun Domuudo	05 June 2022	165	29	26	Could only fly in the morning due to approaching tropical cyclone (TC), TC departs 06 June 2022.	1.94	0.00	0.07	0.00
Bermuda	07 June 2022	167	1	0	High behind departing TC	NaN	NaN	NaN	NaN
	08 June 2022	168, 169	2	1	High pressure behind TC, African dust known to be in domain	5.63	0.48	0.21	0.86
	10 June 2022	170	1	1	High pressure, isolated thunderstorms, African dust known to be in domain	2.28	0.00	0.06	0.00

11 June 2022	172, 173	20	12	High pressure, African dust known to be in domain High pressure, African dust	0.63	0.08	0.02	0.18
13 June 2022	174	25	23	known to be in domain but sampled away from dust for contrast	1.31	0.00	0.05	0.01
Overall		83	66		1.32	0.01	0.05	0.01

¹Davis et al. (1997)

- 133 **Table S8.** Dates, quantity of samples, meteorological conditions, and derived contributions of sea
- 134 salt, dust, and combustion emissions to bulk PILS Na^+ (ss Na^+ , Na^+ _{dust}, and Na^+ _{comb}, respectively)
- and K^+ (ss K^+ , K^+ _{dust}, and K^+ _{comb}, respectively) for RFs considered in each category. Combustion
- emissions are assumed to not be a source of Ca^{2+} , so only contributions of sea salt and dust to bulk
- 137 PILS Ca^{2+} mass concentrations are reported (ss Ca^{2+} and Ca^{2+}_{dust} , respectively). Here, agricultural
- burning of herbaceous crop residue is considered as the only combustion process contributing to Na⁺_{comb} and K⁺_{comb}. "N PILS samples" refers to the total number of PILS samples collected during
- Na⁺_{comb} and K⁺_{comb}. "N PILS samples" refers to the total number of PILS samples collected during
 clear conditions on the date indicated, while "N samples w/ derived species" refers to the number
- 140 clear conditions on the date indicated, while "N samples w/ derived species" refers to the number 141 of these samples providing enough information to solve Eqs. 6 - 13 (i.e., samples providing mass
- 142 concentrations of Na^+_{bulk} , Ca^{2+}_{bulk} , and K^+_{bulk}).

Category	Date	RF(s)	N PILS samples	N samples w/ derived species	Meteorological conditions and/or relevant notes	Median ssNa ⁺ (µg m ⁻³)	Median Na ⁺ dust (µg m ⁻³)	Median Na ⁺ _{comb} (µg m ⁻³)	Median ssCa ²⁺ (µg m ⁻³)	Median Ca ²⁺ dust (µg m ⁻³)	Median ssK⁺ (µg m⁻³)	Median K ⁺ _{dust} (µg m ⁻³)	Median K ⁺ _{comb} (µg m ⁻³)
	30 November 2021	94	7	1	Remains of post- frontal conditions	0.00	0.16	0.00	0.00	0.41	0.00	0.06	0.00
	01 December 2021	95	16	14	Prefrontal, high pressure; smoke in boundary layer near coast	0.08	0.23	0.00	0.00	0.48	0.00	0.05	0.00
	07 December 2021	96	5	3	Postfrontal, cold high pressure behind a strong cold front	0.08	0.11	0.00	0.00	0.22	0.00	0.03	0.00
	11 January 2022	100, 101	6	3	Cold high pressure, cold air outbreak (CAO) conditions	0.33	0.03	0.00	0.01	0.08	0.01	0.01	0.00
Dec-Feb	12 January 2022	102, 103	33	11	Cold high pressure	0.15	0.04	0.00	0.01	0.08	0.00	0.02	0.00
200100	15 January 2022	104	3	2	Postfrontal	0.67	0.02	0.00	0.01	0.04	0.01	0.00	0.00
	18 January 2022	105	11	0	Low pressure moves offshore, sets up CAO conditions	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	19 January 2022	107, 108	26	6	Short-lived high pressure	0.28	0.04	0.00	0.01	0.07	0.01	0.05	0.06
	24 January 2022	109, 110	26	9	Postfrontal, weak high pressure	0.17	0.04	0.00	0.00	0.07	0.01	0.05	0.02
	26 January 2022	111, 112	20	7	Postfrontal	0.33	0.02	0.01	0.01	0.04	0.01	0.03	0.35

	27 January 2022	113, 114	18	4	Cold high pressure	0.28	0.00	0.00	0.01	0.00	0.01	0.00	0.00
	01 February 2022	115	8	4	High pressure	1.08	0.01	0.00	0.02	0.03	0.02	0.00	0.00
	02 February 2022	116	17	4	High pressure	0.74	0.00	0.00	0.02	0.01	0.03	0.00	0.02
	03 February 2022	117, 118	15	4	High pressure	1.16	0.00	0.00	0.03	0.00	0.04	0.00	0.01
	15 February 2022	120, 121	34	7	Postfrontal conditions, cold high pressure	0.11	0.04	0.00	0.00	0.13	0.00	0.02	0.00
	16 February 2022	122, 123	21	10	Cold high pressure	0.13	0.06	0.00	0.00	0.12	0.00	0.04	0.00
	19 February 2022	124, 125	38	18	Weak postfrontal	0.06	0.02	0.00	0.00	0.11	0.00	0.04	0.00
	22 February 2022	126, 127	25	20	Prefrontal, high pressure	1.68	0.03	0.00	0.04	0.07	0.04	0.00	0.00
	26												
	February 2022	128, 129	16	14	Postfrontal	0.10	0.02	0.00	0.00	0.05	0.00	0.04	0.00
	February 2022 Overall	128, 129	16 345	14 141	Postfrontal	0.10 0.21	0.02 0.03	0.00 0.00	0.00 0.01	0.05 0.08	0.00 0.01	0.04 0.03	0.00 0.00
	February 2022 Overall 02 March 2022	128, 129 130	16 345 39	14 141 30	Postfrontal Postfrontal, high pressure	0.10 0.21 0.27	0.02 0.03 0.08	0.00 0.00 0.00	0.00 0.01 0.01	0.05 0.08 0.17	0.00 0.01 0.00	0.04 0.03 0.02	0.00 0.00 0.00
	February 2022 Overall 02 March 2022 03 March 2022	128, 129 130 131, 132	16 345 39 71	14 141 30 53	Postfrontal Postfrontal, high pressure Weak prefrontal	0.10 0.21 0.27 0.74	0.02 0.03 0.08 0.12	0.00 0.00 0.00 0.00	0.00 0.01 0.01 0.03	0.05 0.08 0.17 0.26	0.00 0.01 0.00 0.03	0.04 0.03 0.02 0.04	0.00 0.00 0.00 0.00
	February 2022 Overall 02 March 2022 03 March 2022 04 March 2022	128, 129 130 131, 132 133, 134	16 345 39 71 42	14 141 30 53 29	Postfrontal Postfrontal, high pressure Weak prefrontal Cold high pressure	0.10 0.21 0.27 0.74 1.64	0.02 0.03 0.08 0.12 0.02	0.00 0.00 0.00 0.00	0.00 0.01 0.03 0.06	0.05 0.08 0.17 0.26 0.05	0.00 0.01 0.00 0.03 0.06	0.04 0.03 0.02 0.04 0.01	0.00 0.00 0.00 0.00
	20 February 2022 Overall 02 March 2022 03 March 2022 04 March 2022 13 March 2022	128, 129 130 131, 132 133, 134 138	16 345 39 71 42 8	14 141 30 53 29 2	Postfrontal Postfrontal, high pressure Weak prefrontal Cold high pressure Postfrontal, CAO conditions	0.10 0.21 0.27 0.74 1.64 0.00	0.02 0.03 0.08 0.12 0.02 0.11	0.00 0.00 0.00 0.00 0.00	0.00 0.01 0.03 0.06 0.00	0.05 0.08 0.17 0.26 0.05 0.59	0.00 0.01 0.00 0.03 0.06 0.00	0.04 0.03 0.02 0.04 0.01 0.08	0.00 0.00 0.00 0.00 0.00 0.00
Mar	20 February 2022 Overall 02 March 2022 03 March 2022 04 March 2022 13 March 2022 14 March 2022	128, 129 130 131, 132 133, 134 138 139, 140	16 345 39 71 42 8 38	14 141 30 53 29 2 32	Postfrontal Postfrontal, high pressure Weak prefrontal Cold high pressure Postfrontal, CAO conditions Late postfrontal, cold high pressure; smoke plume sampled from a woodland fire	0.10 0.21 0.27 0.74 1.64 0.00 0.08	0.02 0.03 0.08 0.12 0.02 0.11 0.03	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.01 0.03 0.06 0.00 0.00	0.05 0.08 0.17 0.26 0.05 0.59 0.05	0.00 0.01 0.00 0.03 0.06 0.00 0.00	0.04 0.03 0.02 0.04 0.01 0.08 0.04	0.00 0.00 0.00 0.00 0.00 0.00 0.01
Mar	20 February 2022 Overall 02 March 2022 03 March 2022 04 March 2022 13 March 2022 14 March 2022 18 March 2022	128, 129 130 131, 132 133, 134 138 139, 140 141	16 345 39 71 42 8 38 38	14 141 30 53 29 2 32 12	Postfrontal Postfrontal, high pressure Weak prefrontal Cold high pressure Postfrontal, CAO conditions Late postfrontal, cold high pressure; smoke plume sampled from a woodland fire Weak postfrontal	0.10 0.21 0.27 0.74 1.64 0.00 0.08 0.12	0.02 0.03 0.08 0.12 0.02 0.11 0.03 0.02	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.01 0.03 0.06 0.00 0.00 0.00	0.05 0.08 0.17 0.26 0.05 0.05 0.05 0.03	0.00 0.01 0.00 0.03 0.06 0.00 0.00 0.00	0.04 0.03 0.02 0.04 0.01 0.08 0.04 0.04	0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.07
Mar	20 February 2022 Overall 02 March 2022 03 March 2022 04 March 2022 13 March 2022 14 March 2022 18 March 2022 26 March 2022	128, 129 130 131, 132 133, 134 138 139, 140 141 144, 145	16 345 39 71 42 8 38 38 14 29	14 141 30 53 29 2 32 12 15	Postfrontal Postfrontal, high pressure Weak prefrontal Cold high pressure Postfrontal, CAO conditions Late postfrontal, CAO cold high pressure; smoke plume sampled from a woodland fire Weak postfrontal Postfrontal; sampled dust, smoke, and potentially pollen	0.10 0.21 0.27 0.74 1.64 0.00 0.08 0.12 0.02	0.02 0.03 0.08 0.12 0.02 0.11 0.03 0.02 0.02	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.01 0.03 0.06 0.00 0.00 0.00	0.05 0.08 0.17 0.26 0.05 0.59 0.05 0.03 0.05	0.00 0.01 0.00 0.03 0.06 0.00 0.00 0.00 0.00	0.04 0.03 0.02 0.04 0.01 0.08 0.04 0.03 0.04	0.00 0.00 0.00 0.00 0.00 0.01 0.07 0.01

	29 March 2022	147, 148	19	4	Postfrontal, high pressure, CAO conditions	0.09	0.08	0.00	0.00	0.16	0.00	0.05	0.02
	Overall		277	187		0.22	0.05	0.00	0.01	0.12	0.01	0.03	0.00
	03 May 2022	149	15	10	Weak prefrontal; presence of smoke potentially from New Mexico	0.37	0.08	0.00	0.01	0.14	0.01	0.05	0.00
	05 May 2022	150, 151	18	9	Postfrontal	0.03	0.02	0.00	0.00	0.04	0.00	0.02	0.00
May	16 May 2022	153, 154	39	5	Prefrontal to an approaching cold front yet also postfrontal to a departing band of precipitation	0.12	0.16	0.00	0.00	0.31	0.00	0.03	0.00
	17 May 2022	155	37	2	Postfrontal	0.06	0.00	0.00	0.00	0.01	0.00	0.01	0.00
	20 May 2022	158	28	19	Warm high pressure, southerly flow due to Bermuda high ² ; haze with potential sampling of bioaerosol	2.19	0.01	0.00	0.08	0.06	0.05	0.00	0.00
	Overall		137	45		0.39	0.02	0.00	0.01	0.08	0.01	0.01	0.00
Mar transit	22 March 2022	142, 143	48	47	High pressure, two days after a cold front and two days before another cold front	0.74	0.04	0.00	0.03	0.10	0.01	0.06	0.00
	18 May 2022	156, 157	67	23	Postfrontal along East Coast, aircraft passed across the cold front on the way to Bermuda	1.10	0.00	0.00	0.04	0.01	0.02	0.00	0.00
May transit	21 May 2022	159, 160	42	14	Warm high pressure, anticyclonic flow around Bermuda high	1.14	0.00	0.00	0.04	0.01	0.03	0.00	0.00
	31 May 2022	161	11	1	Postfrontal	0.18	0.01	0.01	0.01	0.02	0.01	0.02	0.20
	Overall		120	38		1.07	0.00	0.00	0.04	0.01	0.02	0.00	0.00
	02 June 2022	162, 163	4	1	Prefrontal	0.83	0.00	0.00	0.03	0.00	0.03	0.00	0.13
Jun Bermuda	03 June 2022	164	1	0	Prefrontal, tropical system approaching from the southwest	NaN							
	05 June 2022	165	29	24	Could only fly in the morning due to approaching tropical cyclone	1.97	0.00	0.00	0.07	0.00	0.06	0.00	0.00

				(TC), TC departs 06 June 2022.								
07 June 2022	167	1	0	High behind departing TC	NaN							
08 June 2022	168, 169	2	1	High pressure behind TC, African dust known to be in domain	5.56	0.47	0.09	0.21	0.86	0.20	0.86	1.97
10 June 2022	170	1	1	High pressure, isolated thunderstorms, African dust known to be in domain	2.28	0.00	0.00	0.06	0.00	0.01	0.00	0.00
11 June 2022	172, 173	20	7	High pressure, African dust known to be in domain	0.78	0.10	0.00	0.03	0.20	0.02	0.02	0.00
13 June 2022	174	25	17	High pressure, African dust known to be in domain but sampled away from dust for contrast	1.31	0.00	0.00	0.05	0.00	0.04	0.00	0.00
Overall		83	51		1.38	0.00	0.00	0.05	0.01	0.04	0.00	0.00

¹Davis et al. (1997)

rest fire burning of pinion and juniper trees is considered 144 Table S8 nt fo Table CO. C. 14

44	Table S9. Same as Table S8, except forest fire burning of pinion and juniper trees is
45	as the only combustion process contributing to Na^+_{comb} and K^+_{comb} .

Category	Date	RF(s)	N PILS samples	N samples w/ derived species	Meteorological conditions and/or relevant notes	Median ssNa ⁺ (µg m ⁻³)	Median Na ⁺ _{dust} (µg m ⁻³)	Median Na ⁺ _{comb} (µg m ⁻³)	Median ssCa ²⁺ (µg m ⁻³)	Median Ca ²⁺ dust (µg m ⁻³)	Median ssK ⁺ (µg m ⁻³)	Median K ⁺ _{dust} (µg m ⁻³)	Median K ⁺ _{comb} (µg m ⁻³)
	30 November 2021	94	7	1	Remains of post- frontal conditions	0.00	0.16	0.00	0.00	0.41	0.00	0.06	0.00
	01 December 2021	95	16	14	Prefrontal, high pressure; smoke in boundary layer near coast	0.11	0.21	0.00	0.00	0.48	0.00	0.05	0.00
	07 December 2021	96	5	3	Postfrontal, cold high pressure behind a strong cold front	0.09	0.10	0.00	0.00	0.22	0.00	0.03	0.00
	11 January 2022	100, 101	6	3	Cold high pressure, cold air outbreak (CAO) conditions	0.34	0.03	0.00	0.01	0.08	0.01	0.01	0.00
	12 January 2022	102, 103	33	11	Cold high pressure	0.16	0.04	0.00	0.01	0.08	0.00	0.02	0.00
	15 January 2022	104	3	2	Postfrontal	0.67	0.02	0.00	0.01	0.04	0.01	0.00	0.00
Dec-Feb	18 January 2022	105	11	0	Low pressure moves offshore, sets up CAO conditions	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	19 January 2022	107, 108	26	6	Short-lived high pressure	0.27	0.04	0.01	0.01	0.07	0.01	0.05	0.06
	24 January 2022	109, 110	26	9	Postfrontal, weak high pressure	0.19	0.04	0.00	0.00	0.07	0.01	0.05	0.02
	26 January 2022	111, 112	20	7	Postfrontal	0.32	0.02	0.04	0.01	0.04	0.01	0.03	0.35
	27 January 2022	113, 114	18	4	Cold high pressure	0.28	0.00	0.00	0.01	0.00	0.01	0.00	0.00
	01 February 2022	115	8	4	High pressure	1.09	0.01	0.00	0.02	0.03	0.02	0.00	0.00
	02 February 2022	116	17	4	High pressure	0.74	0.00	0.00	0.02	0.01	0.03	0.00	0.02

	03 February 2022	117, 118	15	4	High pressure	1.16	0.00	0.00	0.03	0.00	0.04	0.00	0.01
	15 February 2022	120, 121	34	7	Postfrontal conditions, cold high pressure	0.15	0.04	0.00	0.01	0.13	0.01	0.02	0.00
	16 February 2022	122, 123	21	10	Cold high pressure	0.14	0.05	0.00	0.01	0.12	0.00	0.04	0.00
	19 February 2022	124, 125	38	18	Weak postfrontal	0.06	0.02	0.00	0.00	0.11	0.00	0.04	0.00
	22 February 2022	126, 127	25	20	Prefrontal, high pressure	1.69	0.03	0.00	0.04	0.07	0.04	0.00	0.00
	26 February 2022	128, 129	16	14	Postfrontal	0.10	0.02	0.00	0.00	0.05	0.00	0.04	0.00
	Overall		345	141		0.21	0.03	0.00	0.01	0.08	0.01	0.03	0.00
	02 March 2022	130	39	30	Postfrontal, high pressure	0.27	0.07	0.00	0.01	0.17	0.00	0.02	0.00
	03 March 2022	131, 132	71	53	Weak prefrontal	0.76	0.11	0.00	0.03	0.26	0.03	0.04	0.00
	04 March 2022	133, 134	42	29	Cold high pressure	1.65	0.01	0.00	0.06	0.05	0.06	0.01	0.00
	13 March 2022	138	8	2	Postfrontal, CAO conditions	0.00	0.11	0.00	0.00	0.59	0.00	0.08	0.00
Mar	14 March 2022	139, 140	38	32	Late postfrontal, cold high pressure; smoke plume sampled from a woodland fire	0.08	0.03	0.00	0.00	0.05	0.00	0.04	0.01
	18 March 2022	141	14	12	Weak postfrontal	0.12	0.02	0.01	0.00	0.03	0.00	0.03	0.07
	26 March 2022	144, 145	29	15	Postfrontal; sampled dust, smoke, and potentially pollen	0.02	0.02	0.00	0.00	0.05	0.00	0.04	0.01
	28 March 2022	146	17	10	Postfrontal	0.01	0.03	0.00	0.00	0.05	0.00	0.05	0.00
	29 March 2022	147, 148	19	4	Postfrontal, high pressure, CAO conditions	0.09	0.08	0.00	0.00	0.16	0.00	0.05	0.02
	Overall		277	187		0.23	0.05	0.00	0.01	0.12	0.01	0.03	0.00
May	03 May 2022	149	15	10	Weak prefrontal; presence of smoke potentially from New Mexico	0.38	0.07	0.00	0.01	0.14	0.01	0.05	0.00

	05 May 2022	150, 151	18	9	Postfrontal	0.03	0.02	0.00	0.00	0.04	0.00	0.02	0.00
	16 May 2022	153, 154	39	5	Prefrontal to an approaching cold front yet also postfrontal to a departing band of precipitation	0.13	0.15	0.00	0.00	0.31	0.00	0.03	0.00
	17 May 2022	155	37	2	Postfrontal	0.06	0.00	0.00	0.00	0.01	0.00	0.01	0.00
	20 May 2022	158	28	19	Warm high pressure, southerly flow due to Bermuda high ² ; haze with potential sampling of bioaerosol	2.21	0.00	0.00	0.08	0.06	0.06	0.00	0.00
	Overall		137	45		0.41	0.02	0.00	0.01	0.08	0.01	0.01	0.00
Mar transit	22 March 2022	142, 143	48	47	High pressure, two days after a cold front and two days before another cold front	0.75	0.04	0.00	0.03	0.10	0.01	0.06	0.00
	18 May 2022	156, 157	67	23	Postfrontal along East Coast, aircraft passed across the cold front on the way to Bermuda	1.11	0.00	0.00	0.04	0.01	0.02	0.00	0.00
May transit	21 May 2022	159, 160	42	14	Warm high pressure, anticyclonic flow around Bermuda high	1.14	0.00	0.00	0.04	0.01	0.03	0.00	0.00
	31 May 2022	161	11	1	Postfrontal	0.17	0.01	0.02	0.01	0.02	0.01	0.02	0.20
	Overall		120	38		1.08	0.00	0.00	0.04	0.01	0.02	0.00	0.00
	02 June 2022	162, 163	4	1	Prefrontal	0.82	0.00	0.01	0.03	0.00	0.03	0.00	0.13
	03 June 2022	164	1	0	Prefrontal, tropical system approaching from the southwest	NaN							
Jun Bermuda	05 June 2022	165	29	24	Could only fly in the morning due to approaching tropical cyclone (TC), TC departs 06 June 2022.	1.97	0.00	0.00	0.07	0.00	0.06	0.00	0.00
	07 June 2022	167	1	0	High behind departing TC	NaN							
	08 June 2022	168, 169	2	1	High pressure behind TC, African dust known to be in domain	5.47	0.45	0.20	0.21	0.87	0.20	0.87	1.97

	10 June 2022	170	1	1	High pressure, isolated thunderstorms, African dust known to be in domain	2.28	0.00	0.00	0.06	0.00	0.01	0.00	0.00
	11 June 2022	172, 173	20	7	High pressure, African dust known to be in domain	0.80	0.09	0.00	0.03	0.20	0.02	0.01	0.00
	13 June 2022	174	25	17	High pressure, African dust known to be in domain but sampled away from dust for contrast	1.32	0.00	0.00	0.05	0.00	0.04	0.00	0.00
	Overall		83	51		1.38	0.00	0.00	0.05	0.01	0.04	0.00	0.00
¹ Davis et	al. (199	97)											

146 ¹Davi

Table S10. Same as Table S8, except industrial operations (i.e., those at steel mills and cement

148 plants) are considered as the only combustion process contributing to Na^+_{comb} and K^+_{comb} .

Category	Date	RF(s)	N PILS samples	N samples w/ derived species	Meteorological conditions and/or relevant notes	Median ssNa ⁺ (µg m ⁻³)	Median Na ⁺ _{dust} (µg m ⁻³)	Median Na ⁺ _{comb} (µg m ⁻³)	Median ssCa ²⁺ (µg m ⁻³)	Median Ca ²⁺ dust (µg m ⁻³)	Median ssK ⁺ (µg m ⁻³)	Median K ⁺ _{dust} (µg m ⁻³)	Median K ⁺ _{comb} (µg m ⁻³)
	30 November 2021	94	7	1	Remains of post- frontal conditions	0.01	0.14	0.00	0.00	0.41	0.00	0.06	0.00
	01 December 2021	95	16	14	Prefrontal, high pressure; smoke in boundary layer near coast	0.18	0.16	0.00	0.01	0.48	0.01	0.05	0.00
	07 December 2021	96	5	3	Postfrontal, cold high pressure behind a strong cold front	0.12	0.07	0.00	0.00	0.22	0.00	0.02	0.00
	11 January 2022	100, 101	6	3	Cold high pressure, cold air outbreak (CAO) conditions	0.35	0.03	0.00	0.01	0.08	0.01	0.01	0.00
	12 January 2022	102, 103	33	11	Cold high pressure	0.16	0.03	0.00	0.01	0.08	0.00	0.02	0.00
	15 January 2022	104	3	2	Postfrontal	0.68	0.01	0.00	0.01	0.04	0.01	0.00	0.00
Dec-Feb	18 January 2022	105	11	0	Low pressure moves offshore, sets up CAO conditions	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	19 January 2022	107, 108	26	6	Short-lived high pressure	0.26	0.03	0.02	0.01	0.07	0.01	0.05	0.06
	24 January 2022	109, 110	26	9	Postfrontal, weak high pressure	0.22	0.04	0.00	0.00	0.08	0.01	0.05	0.02
	26 January 2022	111, 112	20	7	Postfrontal	0.27	0.01	0.09	0.01	0.04	0.01	0.04	0.35
	27 January 2022	113, 114	18	4	Cold high pressure	0.28	0.00	0.00	0.01	0.00	0.01	0.00	0.00
	01 February 2022	115	8	4	High pressure	1.10	0.00	0.00	0.02	0.03	0.02	0.00	0.00
	02 February 2022	116	17	4	High pressure	0.75	0.00	0.00	0.02	0.01	0.03	0.00	0.02

	03 February 2022	117, 118	15	4	High pressure	1.16	0.00	0.00	0.03	0.00	0.04	0.00	0.01
	15 February 2022	120, 121	34	7	Postfrontal conditions, cold high pressure	0.23	0.04	0.00	0.01	0.13	0.01	0.01	0.00
	16 February 2022	122, 123	21	10	Cold high pressure	0.15	0.04	0.00	0.01	0.12	0.00	0.04	0.00
	19 February 2022	124, 125	38	18	Weak postfrontal	0.06	0.02	0.00	0.00	0.11	0.00	0.04	0.00
	22 February 2022	126, 127	25	20	Prefrontal, high pressure	1.73	0.00	0.00	0.05	0.07	0.04	0.00	0.00
	26 February 2022	128, 129	16	14	Postfrontal	0.09	0.02	0.00	0.00	0.05	0.00	0.04	0.00
	Overall		345	141		0.23	0.02	0.00	0.01	0.08	0.01	0.03	0.00
	02 March 2022	130	39	30	Postfrontal, high pressure	0.29	0.04	0.00	0.01	0.17	0.00	0.02	0.00
	03 March 2022	131, 132	71	53	Weak prefrontal	0.81	0.07	0.00	0.03	0.26	0.03	0.04	0.00
	04 March 2022	133, 134	42	29	Cold high pressure	1.66	0.00	0.00	0.06	0.05	0.06	0.01	0.00
	13 March 2022	138	8	2	Postfrontal, CAO conditions	0.00	0.11	0.00	0.00	0.59	0.00	0.08	0.00
Mar	14 March 2022	139, 140	38	32	Late postfrontal, cold high pressure; smoke plume sampled from a woodland fire	0.09	0.03	0.00	0.00	0.05	0.00	0.04	0.01
	18 March 2022	141	14	12	Weak postfrontal	0.11	0.02	0.02	0.00	0.03	0.00	0.03	0.07
	26 March 2022	144, 145	29	15	Postfrontal; sampled dust, smoke, and potentially pollen	0.02	0.02	0.00	0.00	0.05	0.00	0.04	0.01
	28 March 2022	146	17	10	Postfrontal	0.01	0.03	0.00	0.00	0.05	0.00	0.05	0.00
	29 March 2022	147, 148	19	4	Postfrontal, high pressure, CAO conditions	0.10	0.07	0.01	0.00	0.16	0.00	0.05	0.02
	Overall		277	187		0.22	0.03	0.00	0.01	0.12	0.01	0.03	0.00
May	03 May 2022	149	15	10	Weak prefrontal; presence of smoke potentially from New Mexico	0.41	0.06	0.00	0.01	0.14	0.01	0.05	0.00

	05 May 2022	150, 151	18	9	Postfrontal	0.03	0.02	0.00	0.00	0.04	0.00	0.03	0.00
	16 May 2022	153, 154	39	5	Prefrontal to an approaching cold front yet also postfrontal to a departing band of precipitation	0.16	0.10	0.00	0.01	0.31	0.01	0.03	0.00
	17 May 2022	155	37	2	Postfrontal	0.06	0.00	0.00	0.00	0.01	0.00	0.01	0.00
	20 May 2022	158	28	19	Warm high pressure, southerly flow due to Bermuda high ² ; haze with potential sampling of bioaerosol	2.24	0.00	0.00	0.08	0.06	0.06	0.00	0.00
	Overall		137	45		0.45	0.01	0.00	0.01	0.08	0.01	0.01	0.00
Mar transit	22 March 2022	142, 143	48	47	High pressure, two days after a cold front and two days before another cold front	0.77	0.02	0.00	0.03	0.10	0.01	0.06	0.00
	18 May 2022	156, 157	67	23	Postfrontal along East Coast, aircraft passed across the cold front on the way to Bermuda	1.11	0.00	0.00	0.04	0.01	0.02	0.00	0.00
May transit	21 May 2022	159, 160	42	14	Warm high pressure, anticyclonic flow around Bermuda high	1.14	0.00	0.00	0.04	0.01	0.03	0.00	0.00
	31 May 2022	161	11	1	Postfrontal	0.14	0.01	0.05	0.01	0.02	0.01	0.02	0.20
	Overall		120	38		1.08	0.00	0.00	0.04	0.01	0.02	0.00	0.00
	02 June 2022	162, 163	4	1	Prefrontal	0.81	0.00	0.02	0.03	0.00	0.03	0.00	0.13
	03 June 2022	164	1	0	Prefrontal, tropical system approaching from the southwest	NaN							
Jun Bermuda	05 June 2022	165	29	24	Could only fly in the morning due to approaching tropical cyclone (TC), TC departs 06 June 2022.	1.97	0.00	0.00	0.07	0.00	0.06	0.00	0.00
	07 June 2022	167	1	0	High behind departing TC	NaN							
	08 June 2022	168, 169	2	1	High pressure behind TC, African dust known to be in domain	5.24	0.39	0.48	0.20	0.88	0.19	0.88	1.97

10 June 2022	170	1	1	High pressure, isolated thunderstorms, African dust known to be in domain	2.28	0.00	0.00	0.06	0.00	0.01	0.00	0.00
11 June 2022	172, 173	20	7	High pressure, African dust known to be in domain	0.83	0.06	0.00	0.03	0.20	0.02	0.01	0.00
13 June 2022	174	25	17	High pressure, African dust known to be in domain but sampled away from dust for contrast	1.35	0.00	0.00	0.05	0.00	0.04	0.00	0.00
Overall		83	51		1.38	0.00	0.00	0.05	0.01	0.04	0.00	0.00

¹Davis et al. (1997)

Table S11. Same as Table S8, except inefficient batch combustion in a sauna stove is considered

151 as the only combustion process contributing to Na^+_{comb} and K^+_{comb} .

Category	Date	RF(s)	N PILS samples	N samples w/ derived species	Meteorological conditions and/or relevant notes	Median ssNa ⁺ (µg m ⁻³)	Median Na ⁺ dust (µg m ⁻³)	Median Na ⁺ _{comb} (µg m ⁻³)	Median ssCa ²⁺ (µg m ⁻³)	Median Ca ²⁺ dust (µg m ⁻³)	Median ssK ⁺ (µg m ⁻³)	Median K ⁺ _{dust} (µg m ⁻³)	Median K ⁺ _{comb} (µg m ⁻³)
	30 November 2021	94	7	1	Remains of post- frontal conditions	0.16	0.00	0.00	0.01	0.40	0.01	0.06	0.00
	01 December 2021	95	16	14	Prefrontal, high pressure; smoke in boundary layer near coast	0.35	0.00	0.00	0.01	0.47	0.01	0.05	0.00
	07 December 2021	96	5	3	Postfrontal, cold high pressure behind a strong cold front	0.19	0.00	0.00	0.01	0.22	0.01	0.02	0.00
	11 January 2022	100, 101	6	3	Cold high pressure, cold air outbreak (CAO) conditions	0.36	0.00	0.00	0.01	0.08	0.01	0.01	0.00
	12 January 2022	102, 103	33	11	Cold high pressure	0.21	0.00	0.00	0.01	0.08	0.00	0.02	0.00
	15 January 2022	104	3	2	Postfrontal	0.69	0.00	0.00	0.01	0.04	0.01	0.00	0.00
Dec-Feb	18 January 2022	105	11	0	Low pressure moves offshore, sets up CAO conditions	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	19 January 2022	107, 108	26	6	Short-lived high pressure	0.22	0.02	0.05	0.01	0.07	0.01	0.06	0.06
Dec-Feb	24 January 2022	109, 110	26	9	Postfrontal, weak high pressure	0.07	0.00	0.01	0.00	0.09	0.00	0.05	0.02
	26 January 2022	111, 112	20	7	Postfrontal	0.12	0.00	0.27	0.00	0.04	0.00	0.04	0.35
	27 January 2022	113, 114	18	4	Cold high pressure	0.28	0.00	0.00	0.01	0.00	0.01	0.00	0.00
	01 February 2022	115	8	4	High pressure	1.10	0.00	0.00	0.02	0.03	0.02	0.00	0.00
	02 February 2022	116	17	4	High pressure	0.74	0.00	0.00	0.02	0.01	0.03	0.00	0.02

	03 February 2022	117, 118	15	4	High pressure	1.16	0.00	0.00	0.03	0.00	0.04	0.00	0.01
	15 February 2022	120, 121	34	7	Postfrontal conditions, cold high pressure	0.31	0.00	0.00	0.01	0.13	0.01	0.01	0.00
	16 February 2022	122, 123	21	10	Cold high pressure	0.23	0.00	0.00	0.01	0.12	0.01	0.03	0.00
	19 February 2022	124, 125	38	18	Weak postfrontal	0.08	0.01	0.00	0.00	0.11	0.00	0.04	0.00
	22 February 2022	126, 127	25	20	Prefrontal, high pressure	1.73	0.00	0.00	0.05	0.07	0.04	0.00	0.00
	26 February 2022	128, 129	16	14	Postfrontal	0.10	0.01	0.00	0.00	0.05	0.00	0.04	0.00
	Overall		345	141		0.24	0.00	0.00	0.01	0.08	0.01	0.02	0.00
	02 March 2022	130	39	30	Postfrontal, high pressure	0.31	0.00	0.00	0.01	0.17	0.01	0.01	0.00
	03 March 2022	131, 132	71	53	Weak prefrontal	0.86	0.00	0.00	0.03	0.26	0.03	0.03	0.00
	04 March 2022	133, 134	42	29	Cold high pressure	1.51	0.00	0.00	0.05	0.05	0.05	0.01	0.00
	13 March 2022	138	8	2	Postfrontal, CAO conditions	0.11	0.00	0.00	0.00	0.59	0.00	0.08	0.00
Mar	14 March 2022	139, 140	38	32	Late postfrontal, cold high pressure; smoke plume sampled from a woodland fire	0.08	0.01	0.01	0.00	0.06	0.00	0.04	0.01
	18 March 2022	141	14	12	Weak postfrontal	0.10	0.01	0.05	0.00	0.04	0.00	0.04	0.07
	26 March 2022	144, 145	29	15	Postfrontal; sampled dust, smoke, and potentially pollen	0.03	0.02	0.01	0.00	0.05	0.00	0.04	0.01
	28 March 2022	146	17	10	Postfrontal	0.05	0.00	0.00	0.00	0.05	0.00	0.04	0.00
	29 March 2022	147, 148	19	4	Postfrontal, high pressure, CAO conditions	0.12	0.03	0.02	0.00	0.15	0.00	0.05	0.02
	Overall		277	187		0.25	0.00	0.00	0.01	0.12	0.01	0.03	0.00
May	03 May 2022	149	15	10	Weak prefrontal; presence of smoke potentially from New Mexico	0.43	0.00	0.00	0.01	0.14	0.02	0.05	0.00

	05 May 2022	150, 151	18	9	Postfrontal	0.02	0.00	0.00	0.00	0.05	0.00	0.03	0.00
	16 May 2022	153, 154	39	5	Prefrontal to an approaching cold front yet also postfrontal to a departing band of precipitation	0.26	0.00	0.00	0.01	0.31	0.01	0.02	0.00
	17 May 2022	155	37	2	Postfrontal	0.06	0.00	0.00	0.00	0.01	0.00	0.01	0.00
	20 May 2022	158	28	19	Warm high pressure, southerly flow due to Bermuda high ² ; haze with potential sampling of bioaerosol	2.24	0.00	0.00	0.08	0.06	0.06	0.00	0.00
	Overall		137	45		0.45	0.00	0.00	0.02	0.08	0.01	0.01	0.00
Mar transit	22 March 2022	142, 143	48	47	High pressure, two days after a cold front and two days before another cold front	0.72	0.00	0.00	0.03	0.10	0.02	0.05	0.00
	18 May 2022	156, 157	67	23	Postfrontal along East Coast, aircraft passed across the cold front on the way to Bermuda	1.11	0.00	0.00	0.04	0.01	0.02	0.00	0.00
May transit	21 May 2022	159, 160	42	14	Warm high pressure, anticyclonic flow around Bermuda high	1.14	0.00	0.00	0.04	0.01	0.03	0.00	0.00
	31 May 2022	161	11	1	Postfrontal	0.04	0.01	0.15	0.00	0.02	0.00	0.02	0.20
	Overall		120	38		1.08	0.00	0.00	0.04	0.01	0.02	0.00	0.00
	02 June 2022	162, 163	4	1	Prefrontal	0.77	0.00	0.05	0.03	0.00	0.03	0.00	0.13
	03 June 2022	164	1	0	Prefrontal, tropical system approaching from the southwest	NaN							
Jun Bermuda	05 June 2022	165	29	24	Could only fly in the morning due to approaching tropical cyclone (TC), TC departs 06 June 2022.	1.97	0.00	0.00	0.07	0.00	0.06	0.00	0.00
	07 June 2022	167	1	0	High behind departing TC	NaN							
	08 June 2022	168, 169	2	1	High pressure behind TC, African dust known to be in domain	4.37	0.26	1.48	0.17	0.91	0.16	0.91	1.97

10 June 2022	170	1	1	High pressure, isolated thunderstorms, African dust known to be in domain	2.28	0.00	0.00	0.06	0.00	0.01	0.00	0.00
11 June 2022	172, 173	20	7	High pressure, African dust known to be in domain	0.89	0.00	0.00	0.03	0.19	0.03	0.01	0.00
13 June 2022	174	25	17	High pressure, African dust known to be in domain but sampled away from dust for contrast	1.38	0.00	0.00	0.05	0.00	0.04	0.00	0.00
Overall		83	51		1.42	0.00	0.00	0.05	0.01	0.04	0.00	0.00

¹Davis et al. (1997)

Table S12. Same as Table S8, except fossil fuel combustion by motor vehicles is considered as

154 the only combustion process contributing to Na^+_{comb} and K^+_{comb} .

Category	Date	RF(s)	N PILS samples	N samples w/ derived species	Meteorological conditions and/or relevant notes	Median ssNa ⁺ (µg m ⁻³)	Median Na ⁺ _{dust} (µg m ⁻³)	Median Na ⁺ _{comb} (µg m ⁻³)	Median ssCa ²⁺ (µg m ⁻³)	Median Ca ²⁺ dust (µg m ⁻³)	Median ssK ⁺ (µg m ⁻³)	Median K ⁺ _{dust} (µg m ⁻³)	Median K ⁺ _{comb} (µg m ⁻³)
	30 November 2021	94	7	1	Remains of post- frontal conditions	0.16	0.00	0.00	0.01	0.40	0.01	0.06	0.00
	01 December 2021	95	16	14	Prefrontal, high pressure; smoke in boundary layer near coast	0.35	0.00	0.00	0.01	0.47	0.01	0.05	0.00
	07 December 2021	96	5	3	Postfrontal, cold high pressure behind a strong cold front	0.19	0.00	0.00	0.01	0.22	0.01	0.02	0.00
	11 January 2022	100, 101	6	3	Cold high pressure, cold air outbreak (CAO) conditions	0.36	0.00	0.00	0.01	0.08	0.01	0.01	0.00
	12 January 2022	102, 103	33	11	Cold high pressure	0.21	0.00	0.00	0.01	0.08	0.00	0.02	0.00
	15 January 2022	104	3	2	Postfrontal	0.69	0.00	0.00	0.01	0.04	0.01	0.00	0.00
Dec-Feb	18 January 2022	105	11	0	Low pressure moves offshore, sets up CAO conditions	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	19 January 2022	107, 108	26	6	Short-lived high pressure	0.21	0.01	0.05	0.01	0.07	0.01	0.06	0.06
	24 January 2022	109, 110	26	9	Postfrontal, weak high pressure	0.07	0.00	0.02	0.00	0.09	0.00	0.05	0.02
	26 January 2022	111, 112	20	7	Postfrontal	0.05	0.00	0.32	0.00	0.05	0.00	0.05	0.35
	27 January 2022	113, 114	18	4	Cold high pressure	0.28	0.00	0.00	0.01	0.00	0.01	0.00	0.00
	01 February 2022	115	8	4	High pressure	1.10	0.00	0.00	0.02	0.03	0.02	0.00	0.00
	02 February 2022	116	17	4	High pressure	0.74	0.00	0.00	0.02	0.01	0.03	0.00	0.02

	03 February 2022	117, 118	15	4	High pressure	1.16	0.00	0.00	0.03	0.00	0.04	0.00	0.01
	15 February 2022	120, 121	34	7	Postfrontal conditions, cold high pressure	0.31	0.00	0.00	0.01	0.13	0.01	0.01	0.00
	16 February 2022	122, 123	21	10	Cold high pressure	0.22	0.00	0.00	0.01	0.12	0.01	0.03	0.00
	19 February 2022	124, 125	38	18	Weak postfrontal	0.07	0.00	0.00	0.00	0.11	0.00	0.04	0.00
	22 February 2022	126, 127	25	20	Prefrontal, high pressure	1.73	0.00	0.00	0.05	0.07	0.04	0.00	0.00
	26 February 2022	128, 129	16	14	Postfrontal	0.10	0.00	0.00	0.00	0.05	0.00	0.04	0.00
	Overall		345	141		0.24	0.00	0.00	0.01	0.08	0.01	0.02	0.00
	02 March 2022	130	39	30	Postfrontal, high pressure	0.29	0.00	0.00	0.01	0.17	0.01	0.01	0.00
	03 March 2022	131, 132	71	53	Weak prefrontal	0.86	0.00	0.00	0.03	0.26	0.03	0.03	0.00
	04 March 2022	133, 134	42	29	Cold high pressure	1.51	0.00	0.00	0.05	0.05	0.05	0.01	0.00
	13 March 2022	138	8	2	Postfrontal, CAO conditions	0.11	0.00	0.00	0.00	0.59	0.00	0.08	0.00
Mar	14 March 2022	139, 140	38	32	Late postfrontal, cold high pressure; smoke plume sampled from a woodland fire	0.08	0.00	0.01	0.00	0.06	0.00	0.04	0.01
	18 March 2022	141	14	12	Weak postfrontal	0.08	0.01	0.06	0.00	0.04	0.00	0.04	0.07
	26 March 2022	144, 145	29	15	Postfrontal; sampled dust, smoke, and potentially pollen	0.04	0.02	0.01	0.00	0.05	0.00	0.04	0.01
	28 March 2022	146	17	10	Postfrontal	0.05	0.00	0.00	0.00	0.05	0.00	0.04	0.00
	29 March 2022	147, 148	19	4	Postfrontal, high pressure, CAO conditions	0.13	0.02	0.02	0.00	0.15	0.00	0.05	0.02
	Overall		277	187		0.25	0.00	0.00	0.01	0.12	0.01	0.03	0.00
May	03 May 2022	149	15	10	Weak prefrontal; presence of smoke potentially from New Mexico	0.40	0.00	0.00	0.01	0.14	0.01	0.05	0.00

	05 May 2022	150, 151	18	9	Postfrontal	0.02	0.00	0.00	0.00	0.05	0.00	0.03	0.00
	16 May 2022	153, 154	39	5	Prefrontal to an approaching cold front yet also postfrontal to a departing band of precipitation	0.29	0.00	0.00	0.01	0.31	0.01	0.02	0.00
	17 May 2022	155	37	2	Postfrontal	0.06	0.00	0.00	0.00	0.01	0.00	0.01	0.00
	20 May 2022	158	28	19	Warm high pressure, southerly flow due to Bermuda high ² ; haze with potential sampling of bioaerosol	2.24	0.00	0.00	0.08	0.06	0.06	0.00	0.00
	Overall		137	45		0.42	0.00	0.00	0.01	0.08	0.01	0.01	0.00
Mar transit	22 March 2022	142, 143	48	47	High pressure, two days after a cold front and two days before another cold front	0.72	0.00	0.00	0.03	0.10	0.02	0.05	0.00
	18 May 2022	156, 157	67	23	Postfrontal along East Coast, aircraft passed across the cold front on the way to Bermuda	1.11	0.00	0.00	0.04	0.01	0.02	0.00	0.00
May transit	21 May 2022	159, 160	42	14	Warm high pressure, anticyclonic flow around Bermuda high	1.14	0.00	0.00	0.04	0.01	0.03	0.00	0.00
	31 May 2022	161	11	1	Postfrontal	0.01	0.01	0.18	0.00	0.02	0.00	0.02	0.20
	Overall		120	38		1.08	0.00	0.00	0.04	0.01	0.02	0.00	0.00
	02 June 2022	162, 163	4	1	Prefrontal	0.76	0.00	0.07	0.03	0.00	0.03	0.00	0.13
	03 June 2022	164	1	0	Prefrontal, tropical system approaching from the southwest	NaN							
Jun Bermuda	05 June 2022	165	29	24	Could only fly in the morning due to approaching tropical cyclone (TC), TC departs 06 June 2022.	1.97	0.00	0.00	0.07	0.00	0.06	0.00	0.00
	07 June 2022	167	1	0	High behind departing TC	NaN							
	08 June 2022	168, 169	2	1	High pressure behind TC, African dust known to be in domain	4.09	0.23	1.79	0.16	0.92	0.15	0.92	1.97

10 June 2022	170	1	1	High pressure, isolated thunderstorms, African dust known to be in domain	2.28	0.00	0.00	0.06	0.00	0.01	0.00	0.00
11 June 2022	172, 173	20	7	High pressure, African dust known to be in domain	0.89	0.00	0.00	0.03	0.19	0.03	0.01	0.00
13 June 2022	174	25	17	High pressure, African dust known to be in domain but sampled away from dust for contrast	1.38	0.00	0.00	0.05	0.00	0.04	0.00	0.00
Overall		83	51		1.42	0.00	0.00	0.05	0.01	0.04	0.00	0.00

¹Davis et al. (1997)

- 156 **Table S13.** Same as Table S8, except burning of pulverized western coal comprised of low sulfur
- 157 (0.5%) and high ash (22%) at a coal-fired power plant is considered as the only combustion process
- 158 contributing to Na^+_{comb} and K^+_{comb} .

Category	Date	RF(s)	N PILS samples	N samples w/ derived species	Meteorological conditions and/or relevant notes	Median ssNa⁺ (µg m⁻³)	Median Na ⁺ dust (µg m ⁻³)	Median Na ⁺ _{comb} (µg m ⁻³)	Median ssCa ²⁺ (µg m ⁻³)	Median Ca ²⁺ dust (µg m ⁻³)	Median ssK ⁺ (µg m ⁻³)	Median K ⁺ _{dust} (µg m ⁻³)	Median K ⁺ _{comb} (µg m ⁻³)
	30 November 2021	94	7	1	Remains of post- frontal conditions	0.16	0.00	0.00	0.01	0.40	0.01	0.06	0.00
	01 December 2021	95	16	14	Prefrontal, high pressure; smoke in boundary layer near coast	0.35	0.00	0.00	0.01	0.47	0.01	0.05	0.00
	07 December 2021	96	5	3	Postfrontal, cold high pressure behind a strong cold front	0.19	0.00	0.00	0.01	0.22	0.01	0.02	0.00
	11 January 2022	100, 101	6	3	Cold high pressure, cold air outbreak (CAO) conditions	0.36	0.00	0.00	0.01	0.08	0.01	0.01	0.00
	12 January 2022	102, 103	33	11	Cold high pressure	0.16	0.00	0.00	0.01	0.08	0.00	0.03	0.00
	15 January 2022	104	3	2	Postfrontal	0.69	0.00	0.00	0.01	0.04	0.01	0.00	0.00
Dec-Feb	18 January 2022	105	11	0	Low pressure moves offshore, sets up CAO conditions	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	19 January 2022	107, 108	26	6	Short-lived high pressure	0.00	0.01	0.19	0.00	0.07	0.00	0.06	0.06
	24 January 2022	109, 110	26	9	Postfrontal, weak high pressure	0.07	0.00	0.06	0.00	0.09	0.00	0.05	0.02
	26 January 2022	111, 112	20	7	Postfrontal	0.00	0.00	0.37	0.00	0.05	0.00	0.05	0.35
	27 January 2022	113, 114	18	4	Cold high pressure	0.28	0.00	0.00	0.01	0.00	0.01	0.00	0.00
	01 February 2022	115	8	4	High pressure	1.10	0.00	0.00	0.02	0.03	0.02	0.00	0.00
	02 February 2022	116	17	4	High pressure	0.72	0.00	0.00	0.02	0.01	0.02	0.00	0.02

	03 February 2022	117, 118	15	4	High pressure	1.16	0.00	0.00	0.03	0.00	0.04	0.00	0.01
	15 February 2022	120, 121	34	7	Postfrontal conditions, cold high pressure	0.31	0.00	0.00	0.01	0.13	0.01	0.01	0.00
	16 February 2022	122, 123	21	10	Cold high pressure	0.16	0.00	0.00	0.01	0.12	0.00	0.03	0.00
	19 February 2022	124, 125	38	18	Weak postfrontal	0.04	0.00	0.00	0.00	0.11	0.00	0.04	0.00
	22 February 2022	126, 127	25	20	Prefrontal, high pressure	1.73	0.00	0.00	0.05	0.07	0.04	0.00	0.00
	26 February 2022	128, 129	16	14	Postfrontal	0.08	0.00	0.00	0.00	0.05	0.00	0.04	0.00
	Overall		345	141		0.20	0.00	0.00	0.01	0.08	0.01	0.03	0.00
	02 March 2022	130	39	30	Postfrontal, high pressure	0.22	0.00	0.00	0.01	0.17	0.00	0.01	0.00
	03 March 2022	131, 132	71	53	Weak prefrontal	0.83	0.00	0.00	0.03	0.26	0.03	0.03	0.00
	04 March 2022	133, 134	42	29	Cold high pressure	1.51	0.00	0.00	0.06	0.05	0.05	0.01	0.00
	13 March 2022	138	8	2	Postfrontal, CAO conditions	0.11	0.00	0.00	0.00	0.59	0.00	0.08	0.00
Mar	14 March 2022	139, 140	38	32	Late postfrontal, cold high pressure; smoke plume sampled from a woodland fire	0.06	0.00	0.01	0.00	0.06	0.00	0.04	0.01
	18 March 2022	141	14	12	Weak postfrontal	0.00	0.00	0.12	0.00	0.04	0.00	0.04	0.07
	26 March 2022	144, 145	29	15	Postfrontal; sampled dust, smoke, and potentially pollen	0.02	0.00	0.01	0.00	0.05	0.00	0.04	0.01
	28 March 2022	146	17	10	Postfrontal	0.07	0.00	0.00	0.00	0.06	0.00	0.04	0.00
	29 March 2022	147, 148	19	4	Postfrontal, high pressure, CAO conditions	0.13	0.00	0.04	0.00	0.15	0.00	0.05	0.02
	Overall		277	187		0.18	0.00	0.00	0.01	0.12	0.01	0.03	0.00
May	03 May 2022	149	15	10	Weak prefrontal; presence of smoke potentially from New Mexico	0.39	0.00	0.00	0.01	0.14	0.01	0.05	0.00

	05 May 2022	150, 151	18	9	Postfrontal	0.02	0.00	0.00	0.00	0.05	0.00	0.03	0.00
	16 May 2022	153, 154	39	5	Prefrontal to an approaching cold front yet also postfrontal to a departing band of precipitation	0.29	0.00	0.00	0.01	0.31	0.01	0.02	0.00
	17 May 2022	155	37	2	Postfrontal	0.06	0.00	0.00	0.00	0.01	0.00	0.01	0.00
	20 May 2022	158	28	19	Warm high pressure, southerly flow due to Bermuda high ² ; haze with potential sampling of bioaerosol	2.24	0.00	0.00	0.08	0.06	0.06	0.00	0.00
	Overall		137	45		0.42	0.00	0.00	0.01	0.08	0.01	0.01	0.00
Mar transit	22 March 2022	142, 143	48	47	High pressure, two days after a cold front and two days before another cold front	0.45	0.00	0.00	0.02	0.10	0.01	0.05	0.00
	18 May 2022	156, 157	67	23	Postfrontal along East Coast, aircraft passed across the cold front on the way to Bermuda	1.11	0.00	0.00	0.04	0.01	0.02	0.00	0.00
May transit	21 May 2022	159, 160	42	14	Warm high pressure, anticyclonic flow around Bermuda high	1.14	0.00	0.00	0.04	0.01	0.03	0.00	0.00
	31 May 2022	161	11	1	Postfrontal	0.00	0.00	0.20	0.00	0.02	0.00	0.02	0.20
	Overall		120	38		1.08	0.00	0.00	0.04	0.01	0.02	0.00	0.00
	02 June 2022	162, 163	4	1	Prefrontal	0.56	0.00	0.27	0.02	0.01	0.02	0.01	0.13
	03 June 2022	164	1	0	Prefrontal, tropical system approaching from the southwest	NaN							
Jun Bermuda	05 June 2022	165	29	24	Could only fly in the morning due to approaching tropical cyclone (TC), TC departs 06 June 2022.	1.94	0.00	0.00	0.07	0.00	0.06	0.00	0.00
	07 June 2022	167	1	0	High behind departing TC	NaN							
	08 June 2022	168, 169	2	1	High pressure behind TC, African dust known to be in domain	0.00	0.18	5.94	0.00	1.07	0.00	1.08	1.96

10 June 2022	170	1	1	High pressure, isolated thunderstorms, African dust known to be in domain	2.28	0.00	0.00	0.06	0.00	0.01	0.00	0.00
11 June 2022	172, 173	20	7	High pressure, African dust known to be in domain	0.89	0.00	0.00	0.03	0.19	0.03	0.01	0.00
13 June 2022	174	25	17	High pressure, African dust known to be in domain but sampled away from dust for contrast	1.38	0.00	0.00	0.05	0.00	0.04	0.00	0.00
Overall		83	51		1.34	0.00	0.00	0.05	0.01	0.04	0.00	0.00

¹Davis et al. (1997)

160

Figure S1. Bulk PILS Na⁺ mass concentrations from clear ensembles during flights experiencing
(a) postfrontal conditions on 19 February 2022 (RFs 124 and 125) (b) prefrontal conditions on
22 February 2022 (RFs 126 and 127), and (c) postfrontal conditions on 26 February 2022 (RFs
128 and 129). NASA Langley Research Center (LaRC) and Bermuda are marked with red-edged

and gold-edged stars, respectively. Normalized histograms in each panel show the distribution of

bulk PILS Na⁺ mass concentrations for the date indicated since overlap among the colored dots

167 can hide some from view. Grey arrows in each panel indicate the average magnitude and

168 direction of winds at 950 hPa from MERRA-2 at 3-hour time resolution during periods relevant

to each RF.

171 Figure S2. Same as Fig. S1 except for (a) postfrontal conditions on 02 March 2022 (RF 130), (b)

- 172 weak prefrontal conditions on 03 March 2022 (RFs 131 and 132), and (c) cold high pressure on
- 173 04 March 2022 (RFs 133 and 134).

Figure S3. Same as Fig. S1 except for (**a**) conditions between fronts on 16 May 2022 (RFs 153

and 154), (b) postfrontal conditions on 17 May 2022 (RF 155), and (c) warm high pressure on 20
May 2022 (RF 158).

178

179 **Figure S4.** Bulk PILS Ca²⁺ mass concentrations from clear ensembles during (**a**) December

180 2021-February 2022, (**b**) March 2022, (**c**) March 2022 transit flights between LaRC (marked

181 with a red-edged star) and Bermuda (marked with a golden-edged star), (d) May 2022, (e) May

182 2022 transit flights between LaRC and Bermuda, and (f) the Bermuda field campaign in June

183 2022. Normalized histograms in each panel show the distribution of bulk PILS Ca^{2+} mass

184 concentrations for that specific category since overlap among the colored dots can hide some

185 from view. Grey arrows indicate the average magnitude and direction of MERRA-2 winds at 950

186 hPa for the month(s) relevant to each category.

188 **Figure S5.** Normalized histograms showing differences in bulk PILS Ca²⁺ mass concentration

189 from clear ensembles occurring in prefrontal and/or high-pressure versus postfrontal conditions

190 for December-February (top row), March (middle row), and May (bottom row). These categories

are shown as they represent flights occurring in and around the East Coast, eliminating coastal

192 versus open-ocean sampling as a confounding variable.

194 **Figure S6.** Notched box plots showing seasonal/categorical differences in mass concentrations

- from clear ensembles of (**a**) excess SO_4^{2-} (ExSO₄²⁻), (**b**) excess NO₃⁻ (ExNO₃⁻), and spectral
- 196 markers for (c) oxygenated organics, m/z 44, and (d) methanesulfonic acid (MSA), m/z 79.

Figure S7. Same as Fig. S4, except for derived mass concentrations of excess acidic species.

200 Figure S8. Same as Fig. S5, except for mass concentrations of excess acidic species.

Figure S9. Same as Fig. S5, except for lost Cl⁻ mass concentration.

204 **Figure S10.** Relationships between mass concentration of bulk PILS Na⁺ and lost Cl⁻ colored by

- 205 bulk PILS Ca²⁺ mass concentration for the (**a**) December-February, (**b**) March, (**c**) March transit,
- 206 (d) May, (e) May transit, and (f) June Bermuda categories.

Figure S11. Same as Fig. S10, except colored by bulk PILS K⁺ mass concentration.

Figure S13. Same as Fig. S4, except for %Cl⁻ depletion.

227 **References**

- 228 Aldhaif, A. M., Lopez, D. H., Dadashazar, H., and Sorooshian, A.: Sources, frequency, and
- chemical nature of dust events impacting the United States East Coast, Atmospheric
- 230 Environment, 231, 117456, https://doi.org/10.1016/j.atmosenv.2020.117456, 2020.
- 231 AzadiAghdam, M., Braun, R. A., Edwards, E.-L., Bañaga, P. A., Cruz, M. T., Betito, G.,
- 232 Cambaliza, M. O., Dadashazar, H., Lorenzo, G. R., Ma, L., MacDonald, A. B., Nguyen, P.,
- 233 Simpas, J. B., Stahl, C., and Sorooshian, A.: On the nature of sea salt aerosol at a coastal
- 234 megacity: Insights from Manila, Philippines in Southeast Asia, Atmospheric Environment, 216,
- 235 116922, https://doi.org/10.1016/j.atmosenv.2019.116922, 2019.
- 236 Becagli, S., Proposito, M., Benassai, S., Gragnani, R., Magand, O., Traversi, R., and Udisti, R.:
- 237 Spatial distribution of biogenic sulphur compounds (MSA, nssSO42–) in the northern Victoria
- Land–Dome C–Wilkes Land area, East Antarctica, Annals of Glaciology, 41, 23–31,
- 239 https://doi.org/10.3189/172756405781813384, 2005.
- 240 Bondy, A. L., Wang, B., Laskin, A., Craig, R. L., Nhliziyo, M. V., Bertman, S. B., Pratt, K. A.,
- 241 Shepson, P. B., and Ault, A. P.: Inland Sea Spray Aerosol Transport and Incomplete Chloride
- 242 Depletion: Varying Degrees of Reactive Processing Observed during SOAS, Environ. Sci.
- 243 Technol., 51, 9533–9542, https://doi.org/10.1021/acs.est.7b02085, 2017.
- 244 Boreddy, S. K. R. and Kawamura, K.: A 12-year observation of water-soluble ions in TSP
- 245 aerosols collected at a remote marine location in the western North Pacific: an outflow region of
- Asian dust, Atmospheric Chemistry and Physics, 15, 6437–6453, https://doi.org/10.5194/acp-15-
- 247 6437-2015, 2015.
- Bowen, H. J. M.: Environmental chemistry of the elements, Academic Press, London, New
 York, xv, 333 pp., 1979.
- 250 Corral, A. F., Braun, R. A., Cairns, B., Gorooh, V. A., Liu, H., Ma, L., Mardi, A. H., Painemal,
- 251 D., Stamnes, S., van Diedenhoven, B., Wang, H., Yang, Y., Zhang, B., and Sorooshian, A.: An
- 252 Overview of Atmospheric Features Over the Western North Atlantic Ocean and North American
- 253 East Coast Part 1: Analysis of Aerosols, Gases, and Wet Deposition Chemistry, Journal of
- 254 Geophysical Research: Atmospheres, 126, e2020JD032592,
- 255 https://doi.org/10.1029/2020JD032592, 2021.
- 256 Davis, R. E., Hayden, B. P., Gay, D. A., Phillips, W. L., and Jones, G. V.: The North Atlantic
- 257 Subtropical Anticyclone, Journal of Climate, 10, 728–744, https://doi.org/10.1175/1520-
- 258 0442(1997)010<0728:TNASA>2.0.CO;2, 1997.
- 259 Farren, N. J., Dunmore, R. E., Mead, M. I., Mohd Nadzir, M. S., Samah, A. A., Phang, S.-M.,
- 260 Bandy, B. J., Sturges, W. T., and Hamilton, J. F.: Chemical characterisation of water-soluble
- 261 ions in atmospheric particulate matter on the east coast of Peninsular Malaysia, Atmospheric
- 262 Chemistry and Physics, 19, 1537–1553, https://doi.org/10.5194/acp-19-1537-2019, 2019.

- 263 Feng, L., Shen, H., Zhu, Y., Gao, H., and Yao, X.: Insight into Generation and Evolution of Sea-
- 264 Salt Aerosols from Field Measurements in Diversified Marine and Coastal Atmospheres,
- 265 Scientific Reports, 7, 41260, https://doi.org/10.1038/srep41260, 2017.
- 266 Finlayson-Pitts, B. J. and Pitts, J. N.: CHAPTER 9 Particles in the Troposphere, in: Chemistry
- 267 of the Upper and Lower Atmosphere, edited by: Finlayson-Pitts, B. J. and Pitts, J. N., Academic
- 268 Press, San Diego, 349–435, https://doi.org/10.1016/B978-012257060-5/50011-3, 2000.
- 269 Haskins, J. D., Jaeglé, L., Shah, V., Lee, B. H., Lopez-Hilfiker, F. D., Campuzano-Jost, P.,
- 270 Schroder, J. C., Day, D. A., Guo, H., Sullivan, A. P., Weber, R., Dibb, J., Campos, T., Jimenez,
- 271 J. L., Brown, S. S., and Thornton, J. A.: Wintertime Gas-Particle Partitioning and Speciation of
- 272 Inorganic Chlorine in the Lower Troposphere Over the Northeast United States and Coastal
- 273 Ocean, Journal of Geophysical Research: Atmospheres, 123, 12,897-12,916,
- 274 https://doi.org/10.1029/2018JD028786, 2018.
- 275 Heintzenberg, J., Covert, D. C., and Dingenen, R. V.: Size distribution and chemical composition
- of marine aerosols: a compilation and review, Tellus B: Chemical and Physical Meteorology, 52,
- 277 1104–1122, https://doi.org/10.3402/tellusb.v52i4.17090, 2000.
- Holland, H. D.: The chemistry of the atmosphere and oceans, New York : Wiley, 378 pp., 1978.
- Huang, X., Olmez, I., Aras, N. K., and Gordon, G. E.: Emissions of trace elements from motor
- vehicles: Potential marker elements and source composition profile, Atmospheric Environment,
- 281 28, 1385–1391, https://doi.org/10.1016/1352-2310(94)90201-1, 1994.
- 282 Jiang, B., Xie, Z., Lam, P. K. S., He, P., Yue, F., Wang, L., Huang, Y., Kang, H., Yu, X., and
- 283 Wu, X.: Spatial and Temporal Distribution of Sea Salt Aerosol Mass Concentrations in the
- 284 Marine Boundary Layer From the Arctic to the Antarctic, Journal of Geophysical Research:
- 285 Atmospheres, 126, e2020JD033892, https://doi.org/10.1029/2020JD033892, 2021.
- 286 Junge, C. E. and Werby, R. T.: THE CONCENTRATION OF CHLORIDE, SODIUM,
- 287 POTASSIUM, CALCIUM, AND SULFATE IN RAIN WATER OVER THE UNITED
- STATES, Journal of the Atmospheric Sciences, 15, 417–425, https://doi.org/10.1175/1520-
- 289 0469(1958)015<0417:TCOCSP>2.0.CO;2, 1958.
- Keene, W. C. and Savoie, D. L.: The pH of deliquesced sea-salt aerosol in polluted marine air,
 Geophysical Research Letters, 25, 2181–2184, https://doi.org/10.1029/98GL01591, 1998.
- 292 Keene, W. C., Pszenny, A. A. P., Galloway, J. N., and Hawley, M. E.: Sea-salt corrections and
- 293 interpretation of constituent ratios in marine precipitation, Journal of Geophysical Research:
- 294 Atmospheres, 91, 6647–6658, https://doi.org/10.1029/JD091iD06p06647, 1986.
- 295 Keene, W. C., Pszenny, A. A. P., Jacob, D. J., Duce, R. A., Galloway, J. N., Schultz-Tokos, J. J.,
- 296 Sievering, H., and Boatman, J. F.: The geochemical cycling of reactive chlorine through the
- 297 marine troposphere, Global Biogeochemical Cycles, 4, 407–430,
- 298 https://doi.org/10.1029/GB004i004p00407, 1990.

- 299 Keene, W. C., Pszenny, A. A. P., Maben, J. R., Stevenson, E., and Wall, A.: Closure evaluation
- 300 of size-resolved aerosol pH in the New England coastal atmosphere during summer, Journal of
- 301 Geophysical Research: Atmospheres, 109, D23307, https://doi.org/10.1029/2004JD004801,
- 302 2004.
- 303 Keene, W. C., Stutz, J., Pszenny, A. A. P., Maben, J. R., Fischer, E. V., Smith, A. M., von
- 304 Glasow, R., Pechtl, S., Sive, B. C., and Varner, R. K.: Inorganic chlorine and bromine in coastal
- 305 New England air during summer, Journal of Geophysical Research: Atmospheres, 112, D10S12,
- 306 https://doi.org/10.1029/2006JD007689, 2007.
- 307 Klopper, D., Formenti, P., Namwoonde, A., Cazaunau, M., Chevaillier, S., Feron, A., Gaimoz,
- 308 C., Hease, P., Lahmidi, F., Mirande-Bret, C., Triquet, S., Zeng, Z., and Piketh, S. J.: Chemical
- 309 composition and source apportionment of atmospheric aerosols on the Namibian coast,
- 310 Atmospheric Chemistry and Physics, 20, 15811–15833, https://doi.org/10.5194/acp-20-15811-
- 311 2020, 2020.
- 312 Lamberg, H., Nuutinen, K., Tissari, J., Ruusunen, J., Yli-Pirilä, P., Sippula, O., Tapanainen, M.,
- Jalava, P., Makkonen, U., Teinilä, K., Saarnio, K., Hillamo, R., Hirvonen, M.-R., and Jokiniemi,
- 314 J.: Physicochemical characterization of fine particles from small-scale wood combustion,
- Atmospheric Environment, 45, 7635–7643, https://doi.org/10.1016/j.atmosenv.2011.02.072,
 2011.
- 317 Manders, A. M. M., Schaap, M., Querol, X., Albert, M. F. M. A., Vercauteren, J., Kuhlbusch, T.
- A. J., and Hoogerbrugge, R.: Sea salt concentrations across the European continent, Atmospheric
- 319 Environment, 44, 2434–2442, https://doi.org/10.1016/j.atmosenv.2010.03.028, 2010.
- 320 Murphy, D. M., Froyd, K. D., Bian, H., Brock, C. A., Dibb, J. E., DiGangi, J. P., Diskin, G.,
- 321 Dollner, M., Kupc, A., Scheuer, E. M., Schill, G. P., Weinzierl, B., Williamson, C. J., and Yu, P.:
- 322 The distribution of sea-salt aerosol in the global troposphere, Atmospheric Chemistry and
- 323 Physics, 19, 4093–4104, https://doi.org/10.5194/acp-19-4093-2019, 2019.
- Nolte, C., Bhave, P., Arnold, J., Dennis, R., Zhang, K., and Wexler, A.: Modeling urban and
- 325 regional aerosols—Application of the CMAQ-UCD Aerosol Model to Tampa, a coastal urban
- site, Atmospheric Environment, 42, 3179–3191, https://doi.org/10.1016/j.atmosenv.2007.12.059,
 2008.
- 328 Ondov, J. M., Choquette, C. E., Zoller, W. H., Gordon, G. E., Biermann, A. H., and Heft, R. E.:
- 329 Atmospheric behavior of trace elements on particles emitted from a coal-fired power plant,
- 330 Atmospheric Environment, 23, 2193–2204, https://doi.org/10.1016/0004-6981(89)90181-9,
- 331 1989.
- 332 Ooki, A., Uematsu, M., Miura, K., and Nakae, S.: Sources of sodium in atmospheric fine
- particles, Atmospheric Environment, 36, 4367–4374, https://doi.org/10.1016/S1352-
- 334 2310(02)00341-2, 2002.

Pilson, M. E. Q.: An Introduction to the Chemistry of the Sea, 1st ed., Prentice Hall, 1998.

- 336 Prospero, J. M.: Mineral and sea salt aerosol concentrations in various ocean regions, Journal of
- 337 Geophysical Research: Oceans, 84, 725–731, https://doi.org/10.1029/JC084iC02p00725, 1979.
- 338 Quinn, P. K. and Bates, T. S.: Regional aerosol properties: Comparisons of boundary layer
- 339 measurements from ACE 1, ACE 2, Aerosols99, INDOEX, ACE Asia, TARFOX, and NEAQS,
- Journal of Geophysical Research: Atmospheres, 110, D14202,
- 341 https://doi.org/10.1029/2004JD004755, 2005.
- 342 Quinn, P. K., Coffman, D. J., Bates, T. S., Miller, T. L., Johnson, J. E., Voss, K., Welton, E. J.,
- and Neusüss, C.: Dominant aerosol chemical components and their contribution to extinction
- during the Aerosols99 cruise across the Atlantic, Journal of Geophysical Research: Atmospheres,
 - 345 106, 20783–20809, https://doi.org/10.1029/2000JD900577, 2001.
 - Riley, J. P. and Chester, R. (Eds.): Copyright, in: Chemical Oceanography (Second Edition),
 Academic Press, iv, https://doi.org/10.1016/B978-0-12-588606-2.50002-3, 1976.
 - 348 Scheff, P. A. and Valiozis, C.: Characterization and source identification of respirable particulate
 - matter in Athens, Greece, Atmospheric Environment. Part A. General Topics, 24, 203–211,
 - 350 https://doi.org/10.1016/0960-1686(90)90457-X, 1990.
 - 351 Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to 352 Climate Change John Wiley & Song 1146 pp. 2016
 - Climate Change, John Wiley & Sons, 1146 pp., 2016.
 - 353 Shinozuka, Y., Clarke, A. D., Howell, S. G., Kapustin, V. N., and Huebert, B. J.: Sea-salt vertical
 - 354 profiles over the Southern and tropical Pacific oceans: Microphysics, optical properties, spatial
 - variability, and variations with wind speed, Journal of Geophysical Research: Atmospheres, 109,
 - 356 D24201, https://doi.org/10.1029/2004JD004975, 2004.
 - 357 Spada, M., Jorba, O., Pérez García-Pando, C., Janjic, Z., and Baldasano, J. M.: On the evaluation
 - 358 of global sea-salt aerosol models at coastal/orographic sites, Atmospheric Environment, 101, 41–
 - 359 48, https://doi.org/10.1016/j.atmosenv.2014.11.019, 2015.
 - Stumm, W. and Morgan, J. J. aut: Aquatic chemistry : an introd. emphasizing chemical equilibria
 in natural waters, New York [u.a.] : Wiley, 804 pp., 1981.
 - 362 Turn, S. Q., Jenkins, B. M., Chow, J. C., Pritchett, L. C., Campbell, D., Cahill, T., and Whalen,
 - 363 S. A.: Elemental characterization of particulate matter emitted from biomass burning: Wind
 - tunnel derived source profiles for herbaceous and wood fuels, Journal of Geophysical Research:
- 365 Atmospheres, 102, 3683–3699, https://doi.org/10.1029/96JD02979, 1997.
- Wai, K.-M. and Tanner, P. A.: Wind-dependent sea salt aerosol in a Western Pacific coastal area,
 Atmospheric Environment, 38, 1167–1171, https://doi.org/10.1016/j.atmosenv.2003.11.007,
 2004.
- 369 Watson, J. G., Chow, J. C., and Houck, J. E.: PM2.5 chemical source profiles for vehicle
- 370 exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado
- during 1995, Chemosphere, 43, 1141–1151, https://doi.org/10.1016/S0045-6535(00)00171-5,
- 372 2001.

- 373 Wilson, T. R. S.: Salinity and the major elements of sea water, in: Chemical Oceanography, vol.
- 374 1, Academic, Orlando, FL, USA, 365–413, 1975.
- 375 Yao, X. and Zhang, L.: Chemical processes in sea-salt chloride depletion observed at a Canadian
- 376 rural coastal site, Atmospheric Environment, 46, 189–194,
- 377 https://doi.org/10.1016/j.atmosenv.2011.09.081, 2012.
- 378 Zhao, Y. and Gao, Y.: Acidic species and chloride depletion in coarse aerosol particles in the US
- ast coast, Science of The Total Environment, 407, 541–547,
- 380 https://doi.org/10.1016/j.scitotenv.2008.09.002, 2008.
- 381 Zhuang, H., Chan, C. K., Fang, M., and Wexler, A. S.: Formation of nitrate and non-sea-salt
- 382 sulfate on coarse particles, Atmospheric Environment, 33, 4223–4233,
- 383 https://doi.org/10.1016/S1352-2310(99)00186-7, 1999.