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Abstract. Biogenic volatile organic compounds (BVOCs) are important precursors to ozone and secondary
organic aerosols in the atmosphere, affecting air quality, clouds, and climate. However, the trend in BVOC emis-
sions and driving factors for the emission changes in different geographic regions over the past 2 decades has
remained unclear. Here, regional to global changes in BVOC emissions during 2001–2020 are simulated using
the latest Model of Emission of Gases and Aerosols from Nature (MEGANv3.2) with the input of time-varying
satellite-retrieved vegetation and reanalysis meteorology data. Comparison of model simulations with the site
observations shows that the model can reasonably reproduce the magnitude of isoprene and monoterpene emis-
sion fluxes. The spatial distribution of the modeled isoprene emissions is generally comparable to the satellite
retrievals. The estimated annual average global BVOC emissions are 835.4 Tg yr−1 with the emissions from
isoprene, monoterpenes, sesquiterpenes, and other BVOC comprised of 347.7, 184.8, 23.3, and 279.6 Tg yr−1,
respectively. We find that the decrease in global isoprene emissions (−0.07 % per year) caused by the increase
in CO2 concentrations (−0.20 % per year) is stronger than that caused by changes in vegetation (−0.03 % per
year) and meteorological factors (0.15 % per year). However, regional disparities are large. Isoprene emissions
increase significantly in Europe, East Asia, and South Asia (0.37 % per year–0.66 % per year). Half of the in-
creasing trend is contributed by increased leaf area index (LAI) (maximum over 0.02 m2 m−2 yr−1) and tree
cover. Changes in meteorological factors contribute to another half, with elevated temperature dominating in
Europe and increased soil moisture dominating in East and South Asia. In contrast, in South America and South-
east Asia, shifts in vegetation type associated with the BVOC emission capacity, which partly results from the
deforestation and agricultural expansion, decrease the BVOC emission and offset nearly half of the emission in-
crease caused by changes in meteorological factors. Overall, isoprene emission increases by 0.35 % per year and
0.25 % per year in South America and Southeast Asia, respectively. In Central Africa, a decrease in temperature
dominates the negative emission trend (−0.74 % per year). Global monoterpene emissions show a significantly
increasing trend (0.34 % per year, 0.6 Tg yr−1) compared to that of isoprene (−0.07 % per year, −0.2 Tg yr−1),
especially in strong greening hotspots. This is mainly because the monoterpene emissions are more sensitive to
changes in LAI and are not subject to the inhibition effect of CO2. The findings highlight the important roles
of vegetation cover and biomass, temperature, and soil moisture in modulating the temporal variations of global
BVOC emissions in the past 2 decades.
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1 Introduction

Emissions of biogenic volatile organic compounds (BVOCs)
from the terrestrial vegetation play a pivotal role in atmo-
spheric chemistry and climate due to their large quantity
(∼ 1000 Tg yr−1) and high reactivity (Guenther et al., 1995,
2012). Isoprene and monoterpenes (e.g., α-pinene, β-pinene,
limonene) are the most prevalent BVOC species, and other
species include sesquiterpenes, methanol, and ethanol. These
BVOCs account for about 90% of total non-methane volatile
organic compounds (NMVOCs) in the atmosphere (Guenther
et al., 2006), which are important precursors for troposphere
ozone and secondary organic aerosols (SOAs) through atmo-
spheric oxidation processes and thus influence air pollution,
clouds, and Earth’s radiative budget. However, BVOC emis-
sions remain highly uncertain as they depend on a diversity
of factors, and the relative importance of different factors is
still unclear.

The BVOC emissions are determined by many environ-
mental factors such as vegetation, meteorology, and carbon
dioxide (CO2) concentrations. The impact of vegetation on
BVOC emissions is primarily reflected in vegetation types
(e.g., forest, grassland), tree species, and vegetation biomass
density (e.g., land cover, leaf area index). Previous stud-
ies have demonstrated that different vegetation types and
tree species affect BVOC emissions dramatically (Lathière
et al., 2006; Stavrakou et al., 2014; Sindelarova et al., 2022).
For meteorological parameters, especially temperature, light,
and soil moisture, it was observed that elevated tempera-
ture, stronger radiation, and wetter soil significantly pro-
mote BVOC emissions (Rinne et al., 2002; Bai et al., 2016;
Jiang et al., 2018). In contrast, elevated CO2 can suppress
the emissions of the major BVOC component (e.g., isoprene)
(Heald et al., 2009; Wilkinson et al., 2009). The vegetation
change has affected nearly half of the global land surface
(Hurtt, 2011) with land cover change intensifying in recent
decades, particularly in tropical and East Asia (Purves et al.,
2004; Pacifico et al., 2012; Piao et al., 2015). Related stud-
ies pointed out that one-third of the global vegetation growth
area has been greening since the 21st century, with the leaf
area index (LAI) increasing by 2.3% per decade, of which
China contributes nearly one-quarter (Chen et al., 2019). In
addition, the surge in greenhouse gas emissions since the
industrial revolution has led to significant global warming
and meteorological changes. Thus, due to the large spatio-
temporal variations in these factors, there may exist signifi-
cant regional and global differences in BVOC emissions as
well as emission trends.

Ground-based measurements can sample BVOC fluxes
from the leaf to the canopy scale (Müller et al., 2010; Bai et
al., 2016; Sarkar et al., 2020). However, the spatial and tem-
poral coverages of such observations are limited and cannot
be extended to represent BVOC emissions in a larger domain.
The BVOC emission models, such as the Model of Emis-
sions of Gases and Aerosols from Nature (MEGAN, Guen-

ther et al., 1995, 2006, 2012) and the BVOC Photosynthesis-
Dependent Scheme (PS_BVOC, Arneth et al., 2007; Unger
et al., 2013), consider the main factors influencing BVOC
emissions. Compared to the widely used MEGAN version
2.1, the recently released MEGAN version 3.2 has addressed
several gaps in BVOC emission modeling (Guenther et al.,
2020), including (i) more refined BVOC emission factors,
where vegetation emission factors are calculated based on
tree species rather than the original fixed plant functional
type (PFT) emission factor, and (ii) consideration of envi-
ronmental stress caused by extreme weather and air pollu-
tion. These models have been applied to simulate the BVOC
emissions from regional to global scales and to identify the
impacts of various factors on the variations in BVOC emis-
sions (Fu and Liao, 2012; Stavrakou et al., 2014; Chen et al.,
2018; Wang et al., 2021; Li et al., 2022).

Previous studies have explored the long-term emission
trends in BVOCs. Chen et al. (2018) paid attention to
changes in vegetation from 2000 to 2015 on the global scale,
and reported that the global total isoprene emission declined
by only 1.5% for this period. Opacka et al. (2021) comple-
mented the work of Chen et al. (2018) by incorporating dif-
ferent satellite-retrieved land cover datasets and pointed out
that land cover changes from 2001 to 2016 mitigate isoprene
emissions ranging from −0.33 % to −0.04 % per year, while
temperature and radiation changes enhance isoprene emis-
sions by 0.94 % per year. Sindelarova et al. (2022) argued
that although vegetation change from 2000 to 2019 exerted
a small effect (−0.11 % per year) on the overall change in
global isoprene emissions, the changes were significant in
some hotspots. Purves et al. (2004) found that changes in
vegetation in the eastern United States from 1980 to 1990
could lead to an increase in BVOC emissions by about 17 %.
Fu and Liao (2012) analyzed the changes in BVOC emis-
sions in China from 2001 to 2006 and found that the in-
terannual variability of isoprene emissions was dominated
by changes in the meteorological fields, while the variabil-
ity of monoterpene emissions was more sensitive to changes
in vegetation. Stavrakou et al. (2014) explored the factors in-
fluencing isoprene emissions in Asia from 1979 to 2012 and
found that enhanced temperature and light led to a 0.52 % per
year increase in emissions in China, and oil palm expansion
in Southeast Asia increased the isoprene emissions by more
than 1 % per year. Chen et al. (2018) showed that from 2000
to 2015, afforestation caused a 5 %–10 % increase in isoprene
emissions in northeastern China and India, while deforesta-
tion led to about a 10 % reduction in isoprene emissions in
the Amazon Basin, West Africa, and Southeast Asia. Wang
et al. (2021) indicated that the greening of China from 2001–
2016 led to a significant increase (up to 11.7 %) in BVOC
emissions, and the regional accumulated BVOC emissions
in 2018 could be 26 % higher than those in 2001, mainly
due to the increase in vegetation cover and LAI (Li et al.,
2022). However, these previous studies were conducted at
various spatio-temporal scales using fixed vegetation or me-
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teorological datasets for a given year, leading to difficulties in
comparing their magnitude and even sign of the BVOC emis-
sion trends, and it is still unclear which factor dominates the
BVOC emission trends in different hotspot regions.

This study provides a comprehensive analysis of BVOC
emission trends from 2001 to 2020 on a regional to global
scale using the latest BVOC emission model, MEGANv3.2,
combined with time-varying satellite vegetation retrievals
and meteorological reanalysis data. More importantly, this
study further identifies the contribution of various driving
factors to these trends. The findings of this research shed
light on the importance of BVOC emissions in air quality
and aerosol radiative forcing in hotspot regions. This pa-
per is organized as follows. In Sect. 2, we introduce the
MEGANv3.2 model and its input data, model experimental
design, and BVOC observation data used in model evalua-
tions. In Sect. 3, the spatio-temporal distributions and trends
in BVOC emissions in different regions are analyzed. The
contributions of various driving factors (i.e., vegetation, me-
teorology, and CO2) are quantified. In Sect. 4, we discuss the
uncertainty of the model results and the sources of biases in
the BVOC emission trends by comparing with previous stud-
ies. Conclusions of this study are given in Sect. 5.

2 Method and data

2.1 MEGANv3.2

The MEGAN emission model has been widely used to sim-
ulate BVOC emissions at global and regional scales (Guen-
ther et al., 2006, 2012). It has also been incorporated into
various Earth system models and chemical transport mod-
els (Müller et al., 2008; Li et al., 2013; Sindelarova et al.,
2014; Messina et al., 2016; Bauwens et al., 2018; Chen et
al., 2018). Here, the latest version of MEGANv3.2 is ap-
plied to estimate the BVOC emissions from 2001 to 2020.
Compared to the earlier version MEGANv2.1 (Guenther et
al., 2012), MEGANv3.2 estimates vegetation emission fac-
tors based on variable plant species measurements instead
of on fixed plant functional type (PFT; Guenther et al.,
2020). Specifically, while MEGANv2.1 uses a look-up ta-
ble of emission factors for the 15 PFTs corresponding to the
biological emission classes (see Table 2 in Guenther et al.,
2012), MEGANv3.2 uses the so-called emission factor pro-
cessor, to estimate the landscape average emission factors,
which are based on the following three databases: (1) growth
form datasets for four PFTs (tree, shrub, grass, and crops);
(2) ecotype dataset, composed of a mix of emission-specific
tree species and grass associated with specific emission ca-
pacities; and (3) updated tree species and grass datasets cor-
responding to the biogenic emission classes. These updates
can distinguish the differences in vegetation emission factors
in regions with the same PFT but with varying plant species.
The new version also considers the additional stress factors
of emissions by using the simple threshold function, includ-

ing high and low temperature, strong wind, and heavy O3
pollution. Additionally, the number of BVOC components in
MEGANv3.2 is expanded from the original 148 to over 200.
MEGANv3.2 calculates the BVOC emissions rate (ER) as
follows:

ER= EF ·EA, (1)

where EF and EA represent the standard emission factor (i.e.,
ER at “standard” conditions) and the nondimensional emis-
sion activity factor, respectively.

The EF map can be obtained by running the MEGANv3.2
emission factor processor, which combines growth form and
ecotype data with plant species community and species emis-
sion factor datasets to generate the mean emission factor. A
brief algorithm is shown below:

EF= EFtree · ftree+EFshrub · fshrub+EFgrass · fgrass

+EFcrop · fcrop, (2)

where EFtree, EFshrub, EFgrass, and EFcrop represent the
species emission factors for the four types of growth forms
(i.e., PFTs) and f is the fraction of the specific growth form
in a model grid cell.

The emission activity factor considers the effect of various
environmental factors and is calculated as

EA= LAIv · γp · γT · γHT · γLT · γSW · γO3 · γA · γSM · γC, (3)

where LAIv represents the leaf area index of vegetation-
covered surfaces and is obtained by dividing LAI with VCF
(vegetation cover fraction). γp, γT , γHT, γLT, γSW, γO3 ,
γA, γSM, and γC represent the activity factors for down-
ward shortwave radiation, 2 m air temperature, high tem-
perature, low temperature, strong wind, O3 pollution, leaf
age, soil moisture, and CO2 concentration, respectively. In
MEGANv3.2 the increases in temperature, radiation, and soil
moisture favor the BVOC emissions, while high/low temper-
ature (> 40 or< 10 °C) and strong wind (> 12 m s−1) as well
as heavy O3 pollution and high CO2 concentration suppress
the BVOC emissions. Currently, the inhibition effect of CO2
on BVOC emissions in the model is only available for iso-
prene. In this study, we consider the effect of all above activ-
ity factors on BVOC emissions except for the O3 pollution
factor (i.e., γO3 = 1). More details of these algorithms are
described in Guenther et al. (2006, 2012, 2020).

2.2 Data

2.2.1 Vegetation datasets

The vegetation parameters driving MEGANv3.2 include
LAI, VCF, and PFT. In this study, the Moderate Resolution
Imaging Spectroradiometer (MODIS) vegetation retrievals
from 2001 to 2020 were used. LAI data were obtained from
Yuan et al. (2011), which improved the MODIS Version 6
product MCD15A2H (Myneni et al., 2015) with a temporal
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resolution of 8 d and a spatial resolution of 0.5°× 0.5°. The
LAIv calculated in MEGANv3.2 is defined as LAI divided
by VCF, representing the leaf area index per unit vegetation
area. The VCF was from the yearly MODIS MOD44B Ver-
sion 6 dataset (DiMiceli et al., 2015), which contains three
ground cover components (i.e., tree cover, non-tree cover,
and bare soil cover). We summed the first two observed vari-
ables as vegetation cover. The raw VCF product (250 m pixel
size, sinusoidal grid) was further converted to a 0.5°× 0.5°
latitude/longitude grid by a conservation interpolation before
being used in MEGANv3.2. The PFT was obtained from
the yearly MODIS MCD12C1 product with a spatial reso-
lution of 0.05° (Friedl and Sulla-Menashe, 2015). To cal-
culate the growth form fractions used by the emission fac-
tor processor in Eq. (2), the selected 17 MODIS IGBP (In-
ternational Geosphere Biosphere Programme) global vegeta-
tion classification types from the above MODIS PFT prod-
uct were mapped to four main PFT classification types (i.e.,
tree, shrub, grass, and crop) in MEGANv3.2 based on meth-
ods from Sulla-Menashe and Friedl (2018). The ecotype
dataset mentioned in Sect. 2.1 is based on satellite imagery
and ground surveys and comes from the MEGAN devel-
opment group (https://bai.ess.uci.edu/megan/data-and-code/
growth-form-and-ecotypes, last access: 21 November 2022)
The reprocessed datasets were conservatively interpolated to
a spatial resolution of 0.5°× 0.5° as model inputs.

2.2.2 Meteorological datasets

The meteorological parameters driving the MEGANv3.2
model were from the Modern-Era Retrospective analysis for
Research and Applications, Version 2 (MERRA-2) (Gelaro
et al., 2017). To reduce the biases in the simulated radia-
tion flux trends from aerosols, MERRA-2 has assimilated
aerosol optical depths from space-based observations in the
long-term and considered the interaction of aerosols with the
climate system. The selected variables used in MEGANv3.2
include 2 m temperature, surface downward shortwave radi-
ation, surface soil moisture, water vapor mixing ratio, 10 m
wind speed, precipitation, surface air pressure, low-level
wind speed, cloud cover, and snow cover. Photosynthetically
active radiation (PAR) in MEGANv3.2 was obtained by di-
viding the surface downward shortwave radiation by 2. The
temporal resolution of these variables is either 1-hourly or 3-
hourly, and the 3-hourly data are linearly interpolated to the
uniform 1-hourly data. All selected parameters were further
interpolated from the original 0.5°× 0.625° to a spatial res-
olution of 0.5°× 0.5° (consistent with the resolution of the
vegetation datasets) for driving the MEGANv3.2 model. In
our study, MERRA-2 data from 2001 to 2020 were used.

2.2.3 Observations

We used in situ observations of BVOC emission fluxes col-
lected from the literature for the comparison with our model

estimates. In total, isoprene emission fluxes at 26 observa-
tion sites and monoterpene emission fluxes at 11 observation
sites were collected and listed in Tables S1 and S2 in the Sup-
plement. Other BVOC emission fluxes were not collected,
mainly due to few observations of them and their small con-
tributions to the total BVOC burdens. The units of all col-
lected data were converted to mg C m−2 d−1 for easy com-
parison.

In addition, we also employed global isoprene burden data
from space-based observations for the comparison with the
simulation. The space-based observations from the Cross-
track Infrared Sounder (CrIS) include direct retrievals of the
global isoprene column burden with an optimal estimate for
January, April, July, and October of 2013 (Fu et al., 2019;
Wells et al., 2020). Although isoprene column burdens are
different from emission fluxes, there is a strong positive cor-
relation between them, and thus isoprene burden data can
provide a good reference for qualitative analysis of the spa-
tial distribution of isoprene emissions.

2.3 Simulations

To isolate the contribution of different influencing factors
(vegetation, meteorology, and CO2) to BVOC emission
trends from 2001 to 2020, we perform nine sensitivity
experiments (Table 1). These experiments consist of
two groups. The first group contains four experiments:
EMIT_ALL is the control experiment that considers the
historical changes in all factors. EMIT_VEG, EMIT_MET,
and EMIT_CO2 consider only the historical changes in
vegetation parameters, meteorological factors, and CO2
concentration, respectively, while the other factors are
fixed as those in 2001. These three experiments were used
to quantify the contributions of vegetation, meteorology,
and CO2 concentrations to the BVOC emission trends,
respectively. In the second group, five experiments were
conducted to isolate the contributions of individual veg-
etation parameters (i.e., PFT, LAIv) and meteorological
factors (i.e., temperature, light, and soil moisture). For
vegetation parameters, the experimental setup is the same
as EMIT_VEG but with PFT (EMIT_VEG_FIX_PFT)
or LAIv (EMIT_ VEG_FIX_LAIv) fixed as that
in 2001. The difference between EMIT_VEG and
EMIT_VEG_FIX_PFT/EMIT_VEG_FIX_LAIv rep-
resents the contribution of LAIv and PFT historical
changes to the BVOC emission trends. For meteoro-
logical factors, the experimental setup is the same as
EMIT_MET but with temperature (EMIT_MET_FIX_T2m),
light (EMIT_MET_FIX_RAD), or soil moisture
(EMIT_MET_FIX_SM) fixed as that in 2001. The dif-
ference between EMIT_MET and EMIT_MET_FIX_T2m,
EMIT_MET_FIX_RAD, and EMIT_MET_FIX_SM rep-
resents the impact of temperature, light, and soil moisture
changes to the BVOC emission trends, respectively. The
model horizontal resolution is 0.5°× 0.5°, the temporal
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resolution is 1 h, and the simulation period is 2001–2020.
The input variables include the satellite-retrieved vegetation
parameters and MERRA-2 reanalysis data as described
above.

3 Results

3.1 Spatio-temporal distribution of BVOC emissions

3.1.1 Spatial distribution of BVOC emissions

The latest version of the MEGANv3.2 model used in this
study has not been fully evaluated in previous studies; thus
we first compared the simulation results with the in situ iso-
prene and monoterpene emission fluxes collected from the
literature. For a fair comparison, the simulated isoprene and
monoterpene fluxes were interpolated to the sample-specific
locations and averaged over the same measurement period.

Figure 1a shows the locations of the observation sites,
which are mainly distributed in North America, Europe,
and Asia. Four main vegetation types are included: (1) ev-
ergreen broadleaf forest (EBF), (2) deciduous broadleaf
forest (DBF), (3) evergreen needleleaf forest (ENF), and
(4) grassland (grass). Observations show that there is a large
range of isoprene emission fluxes (10–120 mg C m−2 d−1)
and monoterpene emission fluxes (0.1–15 mg C m−2 d−1) for
different PFTs (Guenther et al., 2012). Isoprene emission
flux is generally larger in EBF and DBF than in ENF and
grass. Compared to the observations of isoprene emission
fluxes, MEGANv3.2 can simulate the magnitude of isoprene
emission fluxes with a correlation coefficient of 0.48 and a
mean bias of −3.25 mg C m−2 d−1 (Fig. 1b). The model can
also simulate larger isoprene emission fluxes for EBF and
DBF than for ENF and grass. However, the model tends to
underestimate isoprene fluxes from grassland by a factor of
about 10, possibly because the prescribed grass emission fac-
tors are too low. The model also tends to mostly overestimate
the isoprene emission fluxes from EBF while underestimat-
ing them from DBF. For ENF, although there is only one sta-
tion, the model significantly overestimates the isoprene emis-
sion fluxes by a factor of 6.

Fewer monoterpene samples (11) were collected than iso-
prene samples (26). As shown in Fig. 1c, the model over-
estimates the monoterpene emission with a correlation coef-
ficient of 0.34 and a mean bias of 3.65 mg C m−2 d−1. Al-
though the overestimation is mostly within a factor of 10, it
largely overestimates the monoterpene emission flux at two
sites located in eastern China and northwestern South Amer-
ica by 2 orders of magnitude. Comparison of long-term ob-
servations at the K34 tower site (vegetation type: EBF) in
2013 in the Amazon reveals that the simulated seasonal vari-
ations of isoprene emission fluxes are similar to the observa-
tion (Fig. 1d). The model also captures the increase in emis-
sion during the dry season with a correlation coefficient of

0.48, although there is a smaller contrast between dry season
and other seasons in the model.

Not surprisingly, there are still large discrepancies be-
tween the simulations and observations, which may be as-
cribed to the deficiency in emission parameterizations such
as vegetation emission factors. It may be also ascribed to in-
put parameters such as vegetation and meteorology. In addi-
tion, note that the comparison of in situ isoprene measure-
ments with the model is not always representative. Isoprene
has a very short lifetime (minutes to hours) in the atmo-
sphere, which implies that its measured fluxes depend on
the local tree or plant species near the observation site. The
model results at a horizontal resolution of 50 km represent a
regional mean for the grid cell where the specific observation
site is located, which can also partly explain the difference
between the simulations and observations because of the
large spatial variability in BVOC emissions. The large bias
in the seasonal variation of isoprene fluxes in MEGANv3.2
may be due to a lack of representation of the isoprene emis-
sion capacity of tree species at different leaf ages (Alves et
al., 2018). Additionally, the model bias arises from a lack of
realistic representations of leaf phenology, canopy structure,
soil moisture feedbacks, and variation in isoprene emissions
due to the complex biodiversity in the Amazon region.

Figure 2 shows the comparison of simulated isoprene
emission fluxes from this study, the IASB-TD-OMI (top–
down isoprene emissions constrained by HCHO columns
from the Ozone Monitoring Instrument) dataset, and CrIS.
IASB-TD-OMI datasets employ a “top–down” approach to
constrain isoprene emission fluxes simulated by a chemi-
cal transport model with formaldehyde observations from
the Ozone Monitoring Instrument (OMI) (Stavrakou et al.,
2014, 2015). CrIS is directly retrieved from satellite obser-
vations (Sect. 2.2). Note that CrIS provides the isoprene bur-
den, which cannot be directly compared with the modeled
emission flux. Here we use it to indicate the relative inten-
sity of isoprene emission (Sect. 2.2) and validate the spatial
patterns of simulated isoprene emissions.

The simulated results and IASB-TD-OMI show similar
spatial patterns of isoprene emission, with the correlation co-
efficients of 0.64, 0.77, 0.74, and 0.77 for January, April,
July, and October, respectively. However, except for Jan-
uary, the simulated emissions from this study are system-
atically higher than those obtained from IASB-TD-OMI by
about 20 %. The differences are mainly concentrated in South
America, Central Africa, and Southeast Asia, which may be
partly due to differences in estimation methods (i.e., top–
down vs. bottom–up), emission model parameters (e.g., veg-
etation emission factors), and the meteorological datasets
used (MERRA-2 vs. ERA-Interim). In addition, the simu-
lated isoprene emissions are compared to the isoprene col-
umn burdens retrieved from the CrIS. The spatial distribu-
tions of simulated isoprene emission and the CrIS-retrieved
column burden are moderately correlated, with the correla-
tion coefficient varying between 0.43 and 0.58. The isoprene
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Table 1. Description of model experiments driven with vegetation parameters, meteorological parameters, and CO2.

Simulations LAIv PFT T2m RAD SM CO2

EMIT_ALL 2001–2020 2001–2020 2001–2020 2001–2020 2001–2020 2001–2020
EMIT_VEG 2001–2020 2001–2020 2001 2001 2001 2001
EMIT_MET 2001 2001 2001–2020 2001–2020 2001–2020 2001
EMIT_CO2 2001 2001 2001 2001 2001 2001–2020
EMIT_VEG_FIX_PFT 2001–2020 2001 2001 2001 2001 2001
EMIT_VEG_FIX_LAIv 2001 2001–2020 2001 2001 2001 2001
EMIT_MET_FIX_T2m 2001 2001 2001 2001–2020 2001–2020 2001
EMIT_MET_FIX_RAD 2001 2001 2001–2020 2001 2001–2020 2001
EMIT_MET_FIX_SM 2001 2001 2001–2020 2001–2020 2001 2001

LAIv: leaf area index of vegetation-covered surfaces; PFT: plant functional type; T2m: 2 m temperature; RAD: surface solar radiation; SM: soil
moisture; CO2: CO2 concentrations.

emission and the column burden show similar spatial pat-
terns (e.g., large values in eastern North America and Central
Africa) and seasonal variations (e.g., the lowest emission flux
and column burden in July), which suggests that the model
estimates reasonable isoprene emissions.

Figure 3 shows the spatial distribution of annual emis-
sion fluxes for four BVOC categories, including isoprene,
monoterpenes, sesquiterpenes, and other BVOCs. The con-
tribution of each category to total BVOC emission is also
shown. The spatial patterns of the emission fluxes for the
four BVOC categories are relatively similar (Fig. 3a–d). The
strongest emissions (> 20 g m−2 yr−1 for total BVOC emis-
sion) are mainly located in the tropical regions such as South
America, Central Africa, and Southeast Asia. The latitudinal
distribution of emissions shows that the peaks of all four cat-
egories are located at 0–15 °S, decreasing gradually toward
the poles (Fig. 3f). Isoprene emission accounts for the largest
fraction (> 40%) of total BVOC emission at 0–15° S, and the
fraction decreases at higher latitudes. In contrast, monoter-
pene emission accounts for the smallest fraction (around
20%) at 0–15° S, and the fraction increases to∼ 40% at high
altitudes. The latitudinal variations of different BVOC cate-
gories are mainly caused by different kinds of PFT cover at
different latitudes.

In total, annual global BVOC emission is 835.4 Tg yr−1

during 2001–2020. The total emission for isoprene, monoter-
penes, sesquiterpenes, and other BVOC is 347.7, 184.8, 23.3,
and 279.6 Tg yr−1, respectively, and accounts for 41.6%,
22.1%, 2.8%, and 33.5%, respectively, of the total BVOC
emission. Overall, isoprene is the dominant component for
total BVOC emissions. The contribution from sesquiter-
penes is relatively minor compared to isoprene and monoter-
pene emissions. Table 2 further compares the BVOC emis-
sions estimated in this study with others. The annual global
BVOC emission (835.4 Tg yr−1) from this study is within
the range (558–1005 Tg yr−1) of previous estimations with
MEGANv2.1 using different drivers. The annual global iso-
prene emission estimated in this study (347.7 Tg yr−1) is
smaller than most previous bottom–up estimates but is close

to the top–down estimate based on GOME2 (344.7 Tg yr−1).
Interestingly, the isoprene emission estimated in this study
is 12% lower than that estimated by Weng et al. (2020),
while the monoterpene emission estimated in this study is
26% higher, although the present study used the same driv-
ing fields (i.e., MERRA-2 meteorological field and MODIS
vegetation parameters) as Weng et al. (2020). These dis-
crepancies are mainly ascribed to the differences in vegeta-
tion emission factors between the two versions of MEGAN.
As compared to MEGANv2.1, isoprene emission factors
are smaller and monoterpene emission factors are larger in
MEGANv3.2. Note that MEGANv2.1 only utilizes fixed
emission factors corresponding to the PFTs, but the PFT is
insufficient to characterize the emission factors; e.g., tree
species with the same PFT may have very different BVOC
emission rates. MEGANv3.2 further considers differences in
emission factors for tree species with the same PFTs. Thus,
the vegetation emission factors in MEGANv3.2 are more ac-
curately represented. However, we note that the uncertain-
ties associated with emission factors are still large due to the
limited observational data (Guenther et al., 2020). The es-
timated sesquiterpene emission in this study (23.3 Tg yr−1)
is consistent with previous estimates based on the MERRA
meteorological field (20.0–21.6 Tg yr−1) but is higher than
those based on the ERA (the European Center for Medium-
Range Weather Forecasting reanalysis products) meteoro-
logical field (11.9–16.6 Tg yr−1). This is partly due to the
higher values of 2 m temperature and downward shortwave
radiation field in MERRA than in ERA in the tropical
regions, resulting in higher emission (Sindelarova et al.,
2022). In addition, the other BVOC emission estimated in
this study (279.6 Tg yr−1) is higher than in previous stud-
ies (115.5–278.8 Tg yr−1), which can be partly attributed to
more BVOC components (e.g., butane, butanenitrile, ace-
tophenone, benzene cinnamaldehyde, cinnamic acid) consid-
ered in MEGANv3.2 than in MEGANv2.1.
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Table 2. Comparison of annual global BVOC emission rate with previous studies (Tg yr−1).

Iso- Monoter- Sesquiter- Other Total
Reference Period Method

(model, meteorology, vegetation)
prene pene penes BVOC BVOC

Bottom–up

This study 2001–2020 MEGANv3.2, MERRA-2, MODIS 347.7 184.8 23.3 279.6 835.4

Sindelarova et al. (2022) 2000–2019 MEGANv2.1, ERA5, CLM4 440.5 82.7 16.6 222.3 762.1

Sindelarova et al. (2022) 2000–2019 MEGANv2.1, ERA5, ESA-CCI 299.1 63.2 11.9 183.7 557.9

Sindelarova et al. (2022) 2000–2017 MEGANv2.1, ERA-Interim, CLM4 385.2 78.5 14.9 211.4 690.0

Weng et al. (2020) 1980–2017 MEGANv2.1 in HEMCO,
MERRA-2, MODIS

391.0 135.9 21.6 115.5 664.0

Weng et al. (2020) 2014–2017 MEGANv2.1 in HEMCO,
GEOS-FP, MODIS, 4°× 5°

374.0 142.8 23.3 124.9 665.0

Weng et al. (2020) 2014–2017 MEGANv2.1 in HEMCO,
GEOS-FP, MODIS, 2°× 2.5°

377.4 140.4 22.7 121.3 661.8

Weng et al. (2020) 2014–2017 MEGANv2.1 in HEMCO,
GEOS-FP, MODIS, 0.25°× 0.3125°

386.5 135.8 21.8 115.9 659.9

Sindelarova et al. (2014) 1980–2010 MEGAN-MACC, MERRA, MODIS 594.0 95.0 20.0 261.3 970.3

Guenther et al. (2012) 2000 MEGANv2.1, Qian 2006,
CLM4-SP

535.0 162.3 29.0 278.8 1005.1

Opacka et al. (2021) 2001–2016 MEGAN-MOHYCAN,
ERA-Interim, CLM4

418.0

Opacka et al. (2021) 2001–2016 MEGAN-MOHYCAN,
ERA-Interim, MODIS

520.0

Opacka et al. (2021) 2001–2016 MEGAN-MOHYCAN,
ERA-Interim, GFW and MODIS

354.0

Arneth et al. (2011) 1981–2002 LPJ-GUESS, CRU, LPJV 524.7

Arneth et al. (2011) 1981–2002 MEGANv2.02, NCEP, MODIS 428.4

Arneth et al. (2011) 1981–2002 BVOCEM, UM, SDGVMV 533.8

Guenther et al. (2006) 2003 MEGANv2.02, NCEP, MODIS 600.0

Top–down

Stavrakou et al. (2015) 2005–2014 OMI-based, MEGAN-MOHYCAN,
ERA-Interim, MODIS

273.9

Stavrakou et al. (2014) 2007–2012 GOME2-based, MEGAN-MOHYCAN,
ERA-Interim, MODIS

344.7

Shim et al. (2005) 1996–1997 GOME-based, GEOS-Chem-MEGAN,
GEOS-STRAT, AVHRR

641.5

Note: MEGAN – Model of Emission of Gases and Aerosols from Nature; HEMCO – Harvard-NASA Emissions Component; MACC – Monitoring Atmospheric Composition and
Climate project; MOHYCAN – Model of Hydrocarbon emissions by the CANopy; LPJ-GUESS – Lund-Potsdam-Jena General Ecosystem Simulator; BVOCEM – Biogenic Volatile
Organic Compound Emission Model; OMI – Ozone Monitoring Instrument; GOME – Global Ozone Monitoring Experiment instrument; GEOS-Chem – the global 3-D model of
atmospheric chemistry driven by meteorological input from the Goddard Earth Observing System (GEOS) of the NASA Global Modeling and Assimilation Office (GMAO); MERRA –
the Modern-Era Retrospective analysis for Research and Applications; ERA5 – the European Center for Medium-Range Weather Forecasting fifth generation of atmospheric reanalysis
products; ERA-Interim – the European Center for Medium-Range Weather Forecasting interim reanalysis products; GEOS-FP – GEOS-Chem met field archive of the GMAO “forward
processing” product; Qian 2006 – Qian et al. (2006) atmospheric forcing; CRU – the Climatic Research Unit of the University of East Anglia; NCEP – the National Center for
Environmental Prediction reanalysis product; UM – climate model output from the UK Met Office Unified Model; GEOS-STRAT – met field data product compatible with
GEOS-Chem from GMAO; MODIS – Moderate Resolution Imaging Spectroradiometer; CLM4 – Community Land Model; ESA-CCI – Climate Change Initiative of the European
Space Agency; CLM-SP – standard global simulation constrained by observed land cover; GFW – Global Forest Watch; LPJV – Lund-Potsdam-Jena vegetation; SDGVMV – Sheffield
Dynamic Vegetation Model; AVHRR – Advanced Very High Resolution Radiometer.
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Figure 1. (a) The location distribution of isoprene and monoterpene
observation sites based on the literature collection (the five-pointed
star represents the location of the K34 tower site; EBF: evergreen
broadleaf forest; DBF: deciduous broadleaf forest; ENF: evergreen
needleleaf forest; grass: grassland) and comparison with simulated
(b) isoprene fluxes, (c) monoterpene fluxes, and (d) monthly vari-
ations of isoprene fluxes measured at the K34 tower site in 2013
(the upper and lower limits of the observations represent 1 standard
deviation). R: correlation coefficient; bias: absolute bias; RMSE:
root mean square error; Num: total number of observation samples.
In (b) and (c), the 1 : 1 (solid) and 1 : 10/10 : 1 (dashed) lines are
plotted for references. In (d), gray shade denotes the dry season.

3.1.2 Seasonal variation of isoprene emissions

The seasonal cycle of simulated isoprene emissions over
the nine regions (i.e., NAM: North America; EUR: Europe;
NAS: North Asia; EAS: East Asia; SAS: South Asia; SEAS:
Southeast Asia; SAM: South America; CAF: Central Africa;
AUS: Australia) is presented in Fig. 4. Overall, different
regions show different seasonal cycles. Isoprene emissions
mainly depend on vegetation and meteorological conditions.
At midlatitudes to high latitudes, due to the densest vegeta-
tion and highest temperatures in the summer months (Fig. S1

in the Supplement), isoprene emissions peak in the summer
months. In contrast, isoprene emissions are lowest during
winter months in these regions. For example, in North Amer-
ica, Europe, North Asia, and East Asia (Northern Hemi-
sphere), isoprene emissions are highest in July and lowest
in January. We note that the seasonal variations of isoprene
emissions in Europe are consistent with the results from the
EMEP (European Monitoring and Evaluation Programme)
model, which are derived based on the cover fractions and
emission factors of detailed tree species and other vegeta-
tion (categorized into six PFTs) (Sindelarova et al., 2022). In
Australia (Southern Hemisphere), isoprene emissions peak
in austral summer. At low latitudes of northern China, South
Asia, and South America isoprene emissions peak at the end
of the dry season in May and October, respectively, due to the
higher temperatures (Fig. S1). In the tropical regions and low
latitudes of the Southern Hemisphere, including Southeast
Asia and Central Africa, isoprene emissions exhibit a typical
bimodal distribution with two peaks in April and October,
corresponding to the peak LAI and temperature in these 2
months (Fig. S1).

In total, the global total isoprene emission peaks in July
and reaches its minimum in January. This is different from
the study of Sindelarova et al. (2014), which showed the peak
of global total isoprene emission in October and the lowest
value in June, mainly because Sindelarova et al. (2014) sim-
ulated greater isoprene emissions over South America and
Central Africa than our study.

3.2 Trends in BVOC emissions

Figure 5 shows the interannual variation of total isoprene
emissions over the nine regions for the last 20 years from
the four experiments in the first group (ALL: EMIT_ALL;
VEG: EMIT_VEG; MET: EMIT_MET; CO2: EMIT_CO2).
By comparing these experiments, the individual impact of
three major factors (i.e., vegetation, meteorology, and CO2)
on isoprene emissions can be identified. There are strong in-
terannual variations in isoprene emissions in all the regions.
As shown in Table 3, the standard deviation of the region-
ally summed isoprene emissions is 0.1–8.1 Tg yr−1 in the
nine regions, and the ratio of standard deviation to the cli-
matology mean is 0.01–0.08. For the trends, although the
trend in global isoprene emissions between 2001 and 2020
is weak (∼ 0.07 % per year; p = 0.67), significant trends in
regional emissions can be found in some specific regions.
In Europe, East Asia, and South Asia, regionally summed
isoprene emissions exhibit significantly increasing trends of
about 0.37 % per year–0.66 % per year. In contrast, there is
a significantly decreasing trend in Central Africa (−0.74 %
per year). The trends are weak in the other regions (North
America, South America, Southeast Asia, and Australia) ex-
cept in North Asia, where a decreasing trend of −0.32 % per
year is modest but not statistically significant due to the large
interannual variability of isoprene emission in this region.
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Figure 2. The comparison of (left column) simulated isoprene emission fluxes (0.5°× 0.5°) with (middle column) IASB-TD-OMI
(0.5°× 0.5°) and (right column) CrIS data (2°× 2.5°) in January, April, July, and October of 2013. The annual global emission or bur-
den is given at the bottom left of each panel. The correlation coefficients R of the simulation results with IASB-TD-OMI and CrIS are
marked in the panels in the middle and right columns, respectively. Gray shade denotes the regions where data are not available.

For the impacts of various factors, the interannual varia-
tions of isoprene emissions are mainly determined by me-
teorological factors in all the regions, as the time series of
isoprene emissions in MET follows closely those in ALL.
In comparison, vegetation factors play a much smaller role
in the interannual variations of isoprene emissions. As CO2
concentrations increase constantly, there is little impact from
CO2 concentrations on the interannual variations of isoprene
emissions. The most remarkable impacts of vegetation and
CO2 concentrations is on the trends in isoprene emissions
during the last 20 years.

Vegetation factors lead to significant trends in isoprene
emissions (p < 0.1 for AUS; p < 0.05 for other regions) in
all regions. In Europe, North Asia, East Asia, South Asia, and
Australia, vegetation changes (increases in vegetation cover
or shift in vegetation type) strongly promote isoprene emis-
sions, with the trends of 0.28 %–0.41 % per year. In contrast,
vegetation changes (decreases in vegetation cover or shift in
vegetation type) reduce isoprene emissions in South Amer-
ica and Southeast Asia (with the trends of about−0.15 % per
year), which may be ascribed to the local deforestation.

There are also considerable contributions from meteoro-
logical factors to the trends in isoprene emissions. Changes in
meteorological factors lead to significantly increasing trends

in isoprene emissions (0.28% to 0.43 % per year; p < 0.1)
in Europe, East Asia, South Asia, and South America. In
contrast, meteorological factors cause a strongly declining
trend in isoprene emissions in Central Africa (−0.61 % per
year; p < 0.05). There are also increasing trends in isoprene
emissions (0.25% to 0.35 % per year) in North America and
Southeast Asia and decreasing trends (−0.15% to −0.38 %
per year) in North Asia and Australia due to changes in me-
teorological factors, although the trends are not statistically
significant (p > 0.1).

As expected, the CO2 inhibition effect results in a signif-
icant decrease of −0.20 % per year in isoprene emissions
(Fig. 5). Note that this study uses a globally uniform and
yearly mean CO2 concentration without considering spatial
and seasonal variations of CO2 concentration. Additionally,
the CO2 concentration can also indirectly affect isoprene
emissions by changing meteorological and vegetation fac-
tors. Specifically, the increase in CO2 concentration is partly
responsible for global warming and thus higher temperatures
(e.g., Monson et al., 2007), and the increased CO2 concen-
tration can potentially lead to a larger LAIv (Monson et al.,
2007). These indirect effects are not explicitly considered in
this study.
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Table 3. The statistical parameters (avg: average value, Tg yr−1; SD: standard deviation, Tg yr−1; SD / avg: ratio of standard deviation to
average value) of total isoprene emissions over the nine regions during 2001–2020 from the four experiments in the first group (ALL, VEG,
MET, and CO2).

NAM ALL VEG MET CO2 EUR ALL VEG MET CO2 NAS ALL VEG MET CO2

Avg 22.8 22.2 22.9 21.4 avg 5.3 5.3 5.2 4.9 avg 5.8 6.7 5.8 6.5
SD 1.4 0.2 1.5 0.3 SD 0.4 0.1 0.3 0.1 SD 0.5 0.2 0.4 0.1
SD / avg 0.06 0.01 0.06 0.01 SD / avg 0.07 0.02 0.07 0.01 SD / avg 0.08 0.02 0.08 0.01

EAS ALL VEG MET CO2 SAS ALL VEG MET CO2 SEAS ALL VEG MET CO2

Avg 18.6 18.0 18.1 16.9 avg 5.6 5.5 5.3 5.0 avg 39.7 38.3 40.2 37.4
SD 0.7 0.4 0.6 0.2 SD 0.3 0.2 0.2 0.1 SD 1.6 0.4 1.7 0.5
SD / avg 0.04 0.02 0.03 0.01 SD / avg 0.06 0.04 0.04 0.01 SD / avg 0.04 0.01 0.04 0.01

SAM ALL VEG MET CO2 CAF ALL VEG MET CO2 AUS ALL VEG MET CO2

Avg 148.8 146.3 151.2 143.3 avg 58.3 59.0 56.9 55.5 avg 8.9 9.6 8.9 9.4
SD 7.0 1.4 8.1 1.7 SD 4.1 0.7 3.7 0.7 SD 0.7 0.4 0.7 0.1
SD / avg 0.05 0.01 0.05 0.01 SD / avg 0.07 0.01 0.07 0.01 SD / avg 0.08 0.04 0.08 0.01

Figure 3. The spatial pattern of the annual average BVOC emis-
sion fluxes of (a) isoprene, (b) monoterpenes, (c) sesquiterpenes,
(d) other BVOCs, (e) total BVOC, and (f) the latitudinal distribu-
tion (left: total emission; right: fraction of each category; pie chart:
the fraction of each category in global total emissions) for the period
2001–2020. The annual global emissions are given at the bottom left
of each panel.

Different from isoprene emissions, there is no statisti-
cally significant effect of CO2 concentration on monoter-
pene emissions as suggested by previous studies (Malik
et al., 2019, 2023). Therefore, monoterpene emissions in
MEGANv3.2 only consider the effects of vegetation and me-
teorological factors and show a significantly positive trend
of 0.34 % per year globally (Fig. S2). In total, the increas-
ing trends caused by vegetation changes and meteorologi-

Figure 4. The seasonal variation of isoprene emissions for each re-
gion outlined in black on the map averaged during 2001–2020. The
shaded area represents 1 standard deviation. The nine regions are
as follows: NAM – North America; EUR – Europe; NAS – North
Asia; EAS – East Asia; SAS – South Asia; SEAS – Southeast Asia;
SAM – South America; CAF – Central Africa; AUS – Australia.

cal factors are comparable globally. In Europe, East Asia,
and South Asia, the increasing trends induced by vegetation
changes (increase in vegetation cover or shift in vegetation
type) are larger than those induced by meteorology changes,
indicating the dominant role of vegetation change in these re-
gions. In North Asia and Australia, vegetation changes lead
to increasing trends, while meteorological changes lead to
decreasing trends. The overall impacts are the increase in
monoterpene emissions, due to the dominant impacts from
vegetation changes. In the other regions, changes in meteo-
rological factors dominate vegetation changes in determining
the trends in monoterpene emissions. In particular, in South
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Figure 5. Interannual variation and trends in regional isoprene emissions for each region outlined by black rectangles on the map. Trends
are expressed by the relative change in percentage (i.e., the linear change during 2001–2020 divided by the mean value). p values denote
statistically significant levels using the Mann–Kendall test. ALL represents simulated results considering interannual variability of all drivers
(i.e., vegetation, meteorology, and CO2), while VEG, MET, and CO2 represent simulated results considering only interannual variability of
vegetation, meteorology, and CO2 concentrations, respectively.

America and Southeast Asia, changes in meteorological fac-
tors lead to strongly increasing trends in monoterpene emis-
sions, which are much larger than those induced by vegeta-
tion changes.

Vegetation changes affect isoprene and monoterpene emis-
sions differently, mainly due to differences in the emis-
sion capacity (i.e., emission factors, Eq. 2) of vegetation
types for these two components. Vegetation changes lead
to a stronger trend in the monoterpene emission than that
of the isoprene emission in some regions. For example, the
isoprene-emission trends are 0.08 % per year, 0.40 % per
year, 0.28 % per year, 0.30 % per year, and 0.41 % per year,
while the monoterpene-emission trends are up to 0.19 % per
year, 0.54 % per year, 0.43 % per year, 0.47 % per year, and
0.56 % per year in North America, Europe, North Asia, East
Asia, and South Asia, respectively. However, in Southeast
Asia and South America, the effect of vegetation changes on
the trends in monoterpene emissions is weaker. In addition,
the effect of meteorological changes on monoterpene emis-
sions is found to be weaker than that on isoprene emissions
in most regions, especially in Central Africa, where the trend
for isoprene emission is −0.61 % per year, while the trend
for monoterpene emission is−0.26 % per year. Overall, com-
pared to isoprene emissions, a stronger increasing trend and a
weaker decreasing trend in monoterpene emissions are found

in these hotspot regions when all influencing factors are con-
sidered.

3.3 Drivers of BVOC emission trends

3.3.1 Changes in vegetation factors, meteorology, and
CO2 concentrations

BVOC emissions depend on various factors including vege-
tation parameters, meteorological conditions, and CO2 con-
centration. Figure 6 shows the global distribution of the
trends in these influencing factors of BVOC emissions from
2001 to 2020, including vegetation parameters (i.e., VCF,
LAI), meteorological parameters (i.e., surface 2 m temper-
ature, surface solar radiation, and soil moisture), and CO2
concentrations. Different regions show different VCF trends.
A moderate increase of 0.1 % to 1 % per year in VCF can be
found in central North America, East Asia, and India, while a
decrease of −0.1 % to −1 % per year exists in central South
America, Central and southwestern Africa, the west of Aus-
tralia, and Central Asia. The decrease in VCF is mainly re-
lated to local deforestation or wildfire burning. Specifically,
the four main PFTs used in MEGANv3.2 (i.e., tree, shrub,
grass, and crop; Eq. 2) have shifted significantly in some re-
gions (Fig. 7a–d). Tree cover increases in East Asia and Eu-
rope by about 0.3–0.5 % per year. Grass cover increases in
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Figure 6. Trends in (a, b) vegetation factors, (c–e) meteorological
factors, and (f) CO2 concentrations from 2001 to 2020. (a) Vege-
tation cover fraction (VCF), (b) leaf area index (LAI), (c) surface
2 m temperature (T2m), (d) surface solar radiation, (e) soil mois-
ture, and (f) CO2 concentration. Stippling denotes regions where the
trend is statistically significant (p < 0.1) using the Mann–Kendall
test.

central South America, with a maximum increasing trend of
more than 1 % per year, corresponding to the decrease in tree
and shrub cover in these regions. Crop cover also increases
in some regions such as eastern South America and northern
India.

Most vegetated areas are becoming greener (i.e., have
a higher LAI) during 2001–2020, especially in Europe,
East Asia, and South Asia, with a positive trend exceeding
0.02 m2 m−2 yr−1. The decreasing trends in LAI only exist
in some isolated regions in eastern South America, Central
Africa, and the west of Australia. Note that VCF and LAI
reflect two different aspects of vegetation information us-
ing different retrieval methods. VCF represents the amount
of ground covered by the vertical projection of vegetation,
and its variation focuses on the extension or shrinkage of
vegetation on the ground surface. While LAI reflects the
amount of vegetation biomass, its variation emphasizes the
changes in vegetation biomass content per unit of ground
surface area. Therefore, the variations of these two param-
eters may be different. LAIv in MEGANv3.2 (Eq. 3) is cal-
culated by dividing LAI by VCF, representing the leaf area
per unit of the canopy area (vegetation-covered area), which
implicitly reflects the overall growth condition of vegetation
(e.g., the amount of plant foliage, canopy structure) per unit
of vegetation-covered area. Due to the rapid shrinking of veg-
etation cover, LAIv in South America shows a more remark-
able increasing trend than LAI does (Fig. 7e).

Figure 7. Trends in (a)–(d) cover fractions of the four plant func-
tional types (PFTs) and (e) LAIv (leaf area index of vegetation-
covered surfaces) from 2001 to 2020. (a) Tree, (b) shrub, (c) grass,
and (d) crop. Stippling denotes regions where the trend is statisti-
cally significant (p < 0.1) using the Mann–Kendall test.

For meteorological factors, trends in surface 2 m tempera-
ture (T2m) vary significantly in different regions. T2m in-
creases with a small trend (0.01 to 0.05 °C yr−1) in most
regions during 2001–2020. A larger increase of 0.05 to
0.2 °C yr−1 occurs in the Arctic and Europe. Despite in-
creasing trends in T2m in most regions, there are also cool-
ing trends of −0.05 to −0.2 °C yr−1 in some regions such
as northeastern North America, Central Africa, and Central
Asia. Large trends in surface solar radiation exist in tropi-
cal regions, with significant dimming trends in central South
America and Central Africa and brightening trends in some
parts of Southeast Asia. Soil moisture increases significantly
in large parts of Central Africa, South Asia, and northeast-
ern Asia, while it decreases significantly in South America
and Australia. Finally, global CO2 levels have increased dra-
matically from 370.57 ppm in 2001 to 412.44 ppm in 2020.
Overall, these factors have changed significantly over the
past 20 years, which has led to significant changes in BVOC
emissions as shown in Sect. 3.2.

3.3.2 Contribution of drivers to BVOC emission trends

We further decompose the main drivers (vegetation, meteo-
rology, and CO2 concentrations) and quantify the contribu-
tion of individual drivers to isoprene emission trends. Fig-
ure 8 shows the spatial patterns of isoprene emission trends
estimated from the nine experiments listed in Table 1. The
pattern in Fig. 8a is affected by a combination of vegetation
change (Fig. 8b), meteorological variability (Fig. 8c), and
CO2 concentration change (Fig. 8d). The statistically signif-
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icant and positive trends are mainly located in the midlati-
tudes of Eurasia, with the strongest trends of 2 % to 5 % per
year, while the negative emission trends are distributed in
Central Africa and central Australia, with the largest mag-
nitudes ranging from −5 % to −8 % per year. Vegetation
changes increase isoprene emissions in most regions ex-
cept in the Amazon, while CO2 concentration changes de-
crease isoprene emissions uniformly across the globe (rela-
tive trend: −0.20 % per year; absolute trend: −0.7 Tg yr−1;
p < 0.01). For meteorological variability effects, the areas
with statistically significant trends are smaller than those
considering the effects of vegetation or CO2 concentration
changes and show different signs in different regions. For
instance, the positive trends are mainly in Europe, Central
Asia, and northern South America, while the negative trends
are in Central Africa, central Australia, and the area around
Lake Baikal.

In terms of the effects of individual factors, the trends
in isoprene emissions illustrated in Fig. 8e and f are both
statistically significant in most areas, which result from the
changes in LAIv (Fig. 7e) and PFT (Fig. 7a–d, especially
for tree cover). Note that changes in LAIv and PFT lead
to opposite trends for the total global isoprene emissions
(LAIv effect: 0.07 % per year, p < 0.01; PFT effect: −0.1 %
per year, p < 0.01), resulting in a weak effect of vegeta-
tion changes on the global isoprene emission trend (−0.03 %
per year; p = 0.16). The trends in isoprene emissions illus-
trated in Fig. 8g–i result from the changes in 2 m temperature
(Fig. 6c), surface solar radiation (Fig. 6d), and soil mois-
ture (Fig. 6e). Temperature changes play a dominant role
in the isoprene emission trends, with statistically significant
positive trends in Europe and South America of up to 1 %
to 2 % per year, while negative trends are found in Central
Africa, northwestern South Asia, and southern North Asia,
with maximum trends of −2 % to −5 % per year. Radiation
changes exert a weaker effect on the isoprene emission trends
(−0.2 % to −0.5 % per year) but show statistically signif-
icant negative trends over most regions (global scale; rela-
tive trend: −0.06 % per year; absolute trend: −0.2 Tg yr−1;
p < 0.05). In some specific regions, changes in soil moisture
significantly affect the trends in isoprene emissions. Positive
trends are mainly distributed in Central Africa and Central
Asia (2 % to 5 % per year), while negative trends are located
in eastern Amazonia and Australia (up to −5 % to −10 %).

To understand the discrepancies in isoprene emission
trends across regions and to identify the contribution of in-
dividual influencing factors, nine hotspot regions (same as
Fig. 4) are selected for further analysis. As shown in Fig. 9a,
in some regions of the Northern Hemisphere, such as Europe,
East Asia, and South Asia, both vegetation and meteorology
changes strongly boost the isoprene emissions. In contrast,
isoprene emissions in Central Africa decline sharply, mainly
due to the meteorological changes. In other regions, espe-
cially Southeast Asia, South America, and Australia, the ef-

fects of the three factors offset each other, resulting in overall
small trends.

The vegetation parameters can be decom-
posed into LAIv and PFT cover (Fig. 9b, Eqs. 2
and 3; the difference between EMIT_VEG and
EMIT_VEG_FIX_PFT/EMIT_VEG_FIX_LAIv in Ta-
ble 1). The LAIv calculated in MEGANv3.2 combines the
information from LAI and VCF, which implies the growth
of vegetation per unit of vegetation-covered area, while
PFT cover reflects the amount of extension for different
vegetation types on the ground surface. Large increases in
the isoprene emissions mainly exist in Europe, North Asia,
East Asia, South Asia, and Australia, where changes in
LAIv and PFT jointly promote the emissions. These regions
have experienced a dramatic increase in LAIv, along with
an obvious expansion of tree cover. In particular, crop cover
in South Asia and shrub cover in Australia increase rapidly
(Fig. 9d). In other regions, however, changes in the PFT
cover cancel out the contribution from increased LAIv,
resulting in weaker positive trends in the isoprene emissions.
Southeast Asia and South America even have experienced
a moderate decrease of −0.14 % to −0.16 % per year in the
emissions, mainly due to shifts in local vegetation functional
types induced by the deforestation (Fig. 9d). In these regions,
primary broadleaf evergreen forests are converted to some
economic trees and crops (e.g., rubber, oil palm, and sugar
cane).

Three meteorological variables namely temperature, radi-
ation, and soil moisture, which are the main influencing fac-
tors from meteorology, are selected for quantifying their ef-
fects on the trends in isoprene emissions (Fig. 9c, d; the dif-
ference between EMIT_MET and EMIT_MET_FIX_T2m,
EMIT_MET_FIX_RAD, and EMIT_MET_FIX_SM in Ta-
ble 1). The emission trends caused by meteorological factors
are large in Europe, East Asia, South Asia, South America,
and Central Africa, although the emission trends are not sta-
tistically significant in some regions (p > 0.1). Elevated tem-
perature is found to dominate the rise in emissions in Europe
and South America, and temperature cooling dominates the
falling in emissions in Central Africa. The enhancement of
isoprene emissions in East and South Asia is dominated by
the increase in soil moisture. Overall, for meteorological pa-
rameters, changes in temperature and soil moisture exert the
largest influence on the trends in isoprene emissions, with lit-
tle effects from changes in radiation except in some regions
of South America and Central Africa.

The spatial pattern of monoterpene emission trends is sim-
ilar to that of isoprene emission trends but shows stronger
positive trends in larger areas, especially in greening hotspots
(Fig. S3). The discrepancies are mainly owing to the fact
that monoterpene emissions are more sensitive to changes in
LAIv (Fig. S3d; LAIv effect: 0.15 % per year, p < 0.01) and
not sensitive to the inhibition effect of CO2. Monoterpene
emission trends differ significantly in some regions from iso-
prene emission trends, which is mainly due to the different
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Figure 8. Spatial distribution of isoprene emission trends from 2001 to 2020. (a) ALL represents simulated results considering interannual
variability of all drivers. (b, c, and d) VEG, MET, and CO2 represent simulated trends when considering only interannual variability of
vegetation, meteorology, and CO2 concentrations, respectively. (e, f) Contributions from individual vegetation parameters including LAIv
(leaf area index of vegetation-covered surfaces) and PFT (plant functional type). (g, h, and i) Contributions from individual meteorological
factors including T2m (surface 2 m temperature), RAD (surface solar radiation), and SM (soil moisture). Stippling denotes regions where the
trend is statistically significant (p < 0.1) using the Mann–Kendall test. Trends are expressed by the relative change in percentage (i.e., the
linear change during 2001–2020 divided by the mean value) and absolute change. p values represent statistically significant levels using the
Mann–Kendall test.

impacts of vegetation and meteorological factors on their
emissions (Fig. S4). In North America, Southeast Asia, and
South America, monoterpene emissions exhibit significantly
increasing trends, while isoprene emission trends are not sig-
nificant. For vegetation parameters, changes in LAIv increase
the monoterpene emissions more significantly than the iso-
prene emissions, while changes in PFT exert a weaker ef-
fect on the monoterpene emission trends. The combined ef-
fects cancel out negative emission trends in Southeast Asia
and South America and promote the increase in emissions
in other regions. The effect of meteorological factors on
monoterpene emission trends is similar to that on the iso-
prene emission trends, although the effect is weaker.

4 Discussion

In this study, we simulate the global BVOC emissions over
the last 20 years using the latest version of the BVOC
emission model MEGANv3.2 with time-varying vegetation
and meteorological parameters and CO2 concentrations. We
quantify the impacts of the various driving factors on the
BVOC emission trends. Isoprene emissions are found to in-
crease significantly in Europe, East Asia, and South Asia,
with comparable contributions from vegetation and meteo-
rological factors. Warming in Europe and wetting of soil in
East Asia and South Asia lead to an increase in the isoprene

emissions, while cooling in Central Africa leads to a signifi-
cant decrease in the isoprene emissions.

The results presented here demonstrate the heterogeneous
spatial and temporal variabilities of vegetation and meteo-
rological factors, leading to different trends in BVOC emis-
sions in different regions of the world. In some regions (e.g.,
Europe, East Asia, and South Asia), vegetation and meteo-
rological factors combine to promote the BVOC emissions,
resulting in significant positive trends, while in other regions,
such as South America and Southeast Asia, the effects of
vegetation and meteorological factors on the BVOC emis-
sions offset each other, resulting in weak emission trends. For
vegetation parameters, the biomass-related parameter LAIv
and type-related parameter PFT cover are both proportional
to the intensity of BVOC emissions. Although multiple satel-
lite data reveal a global trend towards greening (i.e., in-
creased LAI), there is a substantial decrease in PFT cover
(i.e., tree cover) in some local regions of Southeast Asia and
South America, leading to a decreasing trend in BVOC emis-
sions there.

Note that the selection of the reference year (i.e., the year
2001 in Table 1) may cause variations in simulated BVOC
emissions, mostly affecting the magnitude rather than the
sign of the absolute trends. Since this study focuses on the
relative trends in BVOC emissions (i.e., the ratio of abso-
lute trend to multi-year means), differences in the reference
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Figure 9. Trends in isoprene emissions and associated influencing
factors from 2001–2020 in nine regions. (a) ALL represents simu-
lated results considering interannual variability of all drivers, while
VEG, MET, and CO2 represent simulated results considering only
interannual variability of vegetation, meteorology, and CO2 concen-
trations, respectively. (b) Contributions from individual vegetation
parameters including LAIv (leaf area index of vegetation-covered
surfaces) and PFT (plant functional type). (c) Contributions from
individual meteorological factors including T2m (surface 2 m tem-
perature), RAD (surface solar radiation), and SM (soil moisture).
(d) Trends in individual influencing factors including vegetation
parameters, meteorological factors, and CO2 concentrations. Tree,
shrub, grass, and crop represent the cover for the four plant func-
tional types (PFTs). The single, double, and triple asterisks denote
90 %, 95 %, and 99 % confidence intervals (CIs) using the Mann–
Kendall test, respectively.

year have little effect on the magnitude and sign of our esti-
mation results. We show that during 2001–2020, global iso-
prene emissions decrease by a trend of −0.07 % per year,
with changes in the meteorological factors, vegetation, and
CO2 concentrations contributing to a trend of 0.15 % per
year, −0.03 % per year, and −0.20 % per year, respectively.
Some previous studies (e.g., Chen et al., 2018; Opacka et al.,
2021; Sindelarova et al., 2022) also investigated the trends
in isoprene emissions during 2000s and 2010s and obtained
similar results regarding the positive trends due to meteoro-
logical changes and negative trends due to vegetation change.
Chen et al. (2018) showed that the isoprene emission trend
was −0.1 % per year between 2000 and 2015. Sindelarova
et al. (2022) used time-varying ERA5 meteorological data
and a static CLM4 land cover map to calculate the isoprene
emission for 2000–2019 and suggested an isoprene emis-
sion trend of 0.35 % per year. When replacing the static land

cover map with the annually varying ESA-CCI data, Sinde-
larova et al. (2022) also found that the emission trend de-
creases to 0.24 % per year. Opacka et al. (2021) found that
the MEGAN-MOHYCAN model driven by the time-varying
ERA-Interim meteorological field yielded an isoprene emis-
sion trend of 0.94 % per year for 2001–2016, while time-
varying vegetation parameters can offset the positive trend
by 0.04 % per year (based on MODIS land cover data) or
0.33 % per year (based on modified MODIS land cover data).
The differences in the magnitude of trends due to meteoro-
logical changes or vegetation changes may be ascribed to
the difference in the input data (meteorology and vegeta-
tion) and emission parameterizations. In fact, driven by the
ERA5, ERA-Interim, and MERRA-2 meteorological fields,
the model simulates a trend in isoprene emission from 0.15 %
to 0.94 % per year (a factor of 6 difference). Different vegeta-
tion data lead to the simulated isoprene emission trends dif-
fering from −0.03 % to −0.33 % per year (a factor of 11 dif-
ference). In addition, different model parameterizations can
lead to large discrepancies in emission changes. For example,
based on the same vegetation data, Li et al. (2022) showed
that isoprene emission induced by vegetation changes in-
creased by about 20.6 % over China between 2001 to 2018,
which is larger than that in our study (12.0 %). The difference
can be explained by the fact that we use different vegetation
emission factors and vegetation activity factors from Li et
al. (2022).

Vegetation cover tends to increase in a large part of global
land areas and decrease in smaller areas such as South Amer-
ica (i.e., the Amazon) and Southeast Asia (Fig. 6a). The
trends in global isoprene emission due to vegetation cover
change are largely determined by the decreasing trends in
the Amazon and Southeast Asia due to the large contribu-
tions from these regions to global total isoprene emissions
(Figs. 3a, 8f). The decrease in isoprene emissions in the
Amazon and Southeast Asia is mainly due to the change
in PFT, such as from the original tropical broadleaf ever-
green forest to broadleaf deciduous trees with agricultural
economic benefits (Figs. 7, 9). In some areas, such as Europe,
East Asia, and South Asia, the increased forest coverage due
to afforestation contributes significantly to the increase in
isoprene emissions, which is similar to the results from Chen
et al. (2018). However, Sindelarova et al. (2022) simulated
little changes in isoprene emissions in Europe, mainly due
to differences in the satellite PFT data used in their and our
studies.

In this study, we use the latest version of MEGAN, which
considers more refined factors compared to its predeces-
sors. However, there are still large uncertainties in simulated
BVOC emissions and their trends, such as in the treatment
of drought and heat wave stress and the emission factors of
certain tree species. Previous observations have shown that
isoprene and monoterpene emissions are affected differently
by drought severity (Brilli et al., 2007; Kaser et al., 2022;
Otu-Larbi et al., 2020; Šimpraga et al., 2011). Isoprene emis-
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sions remain unchanged under mild drought but increase un-
der moderate drought with increased leaf temperature due to
changes in stomatal conductance (Kaser et al., 2022). How-
ever, under severe drought, isoprene emissions drop due to
reduced substrate supply (Brilli et al., 2007). The effects of
drought on monoterpenes are similar to those of isoprene
(Lavoir et al., 2009; Ormeño et al., 2007). Therefore, these
processes need to be better described in the model (Wang et
al., 2022). In addition, more BVOC flux observations are ur-
gently needed for model validations. In particular, the vege-
tation emission factors for tree species may be largely biased
due to a scarcity of available observations and need to be fur-
ther refined.

5 Conclusions

In this study, the time-varying meteorological data and satel-
lite observations are used to drive the latest BVOC emission
model MEGANv3.2 to simulate global BVOC emissions for
the past 20 years. The contributions from different factors to
the trends in BVOC emissions from global to regional scales
are quantified.

Compared with site observations, the model can simulate
isoprene emissions within a factor of 10 at most stations
but systematically overestimates the monoterpene emissions.
Compared to space-borne isoprene retrievals, the model can
capture high isoprene emission regions such as South Amer-
ica and Central Africa. There are large seasonal variations
in isoprene emissions, which are mainly determined by tem-
perature and vegetation variations. The relative contribution
of isoprene (monoterpene) emissions to BVOC emissions
tends to decrease (increase) with latitudes, which is mainly
ascribed to the meridional variations of PFT cover and corre-
sponding emission factors.

Isoprene emissions increase significantly in Europe, East
Asia, and South Asia (at rates of 0.37 % per year–0.66 % per
year), with changes in both vegetation and meteorological
factors contributing almost equally to the trends. For dif-
ferent meteorological factors, isoprene emission trends are
mainly driven by the increase in temperature in Europe and
by the increase in soil moisture in East and South Asia.
In South America and Southeast Asia, shifts in PFT cover
lead to a significant decrease in the BVOC emissions, which
cancels out nearly half of the increasing trends induced by
the changes in meteorological parameters. In addition, de-
spite the increase in global mean temperature, there is a de-
crease in temperature in Central Africa, resulting in a sig-
nificantly decreasing trend in isoprene emission in this re-
gion (−0.74 % per year). The dominant factors of monoter-
pene emission trends are similar to those of isoprene emis-
sions, while monoterpene emissions show a stronger increas-
ing trend or a weaker decreasing trend in most regions. In ad-
dition, monoterpene emissions are more sensitive to changes

in LAIv, resulting in more pronounced increasing trends in
greening hotspots.

Overall, our study highlights the significant BVOC emis-
sion trends both globally and regionally. More importantly,
the results from this study clarify the contributions from dif-
ferent drivers and deepen our understanding of long-term
BVOC emission trends at regional to global scales. Changes
in BVOC emissions may have important impacts on ozone
and atmospheric particle formation, which consequently im-
pact the atmospheric chemistry, radiation, and climate. These
interactions involving BVOCs will be investigated by us-
ing a coupled meteorology–chemistry with the BVOC emis-
sion model.

Code availability. The MEGANv3.2 source code is available
at https://bai.ess.uci.edu/megan/data-and-code (last access: 21
November 2022; UCI BAI, 2019).

Data availability. The model output of MEGANv3.2 is archived
at https://doi.org/10.57760/sciencedb.iap.00008 (Wang et al.,
2024). The LAI data from Yuan et al. (2011) are down-
loaded from http://globalchange.bnu.edu.cn/research/laiv6 (last
access: 21 November 2022). The MODIS MCD12C1 land
cover product Version 6 and MODIS MOD44B VCF Ver-
sion 6 datasets are available on the website of the Land
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https://doi.org/10.5067/MODIS/MOD44B.006 (DiMiceli et al.,
2015) and https://doi.org/10.5067/MODIS/MCD12C1.006 (Friedl
and Sulla-Menashe, 2015). The MERRA-2 data are obtained
from https://goldsmr4.gesdisc.eosdis.nasa.gov/data/MERRA2/ (last
access: 21 November 2022; Gelaro et al., 2017). The glob-
ally averaged CO2 concentration data are obtained from
https://doi.org/10.15138/9N0H-ZH07 (last access: 13 March 2024;
Lan et al., 2024). The IASB-TD-OMI data are obtained from
https://emissions.aeronomie.be/index.php/omi-based/biogenic (last
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