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 86 

Elements MDL (ng.m-3) Values > MDL (%)  

As 0.11 29.3 

Bi 0.23 0.6 

Br 0.18 99.8 

Ca 0.52 99.5 

Cd 4.4 14.4 

Co 0.24 8.1 

Cr 0.2 12.0 

Cu 0.14 63.3 

Fe 0.3 100 

Ga 0.1 0 

Ge 0.1 0 

Hg 0.21 0.2 

K 2 100 

Mn 0.25 20.6 

Mo 0.84 1.5 

Ni 0.17 86.6 

Pb 0.22 84.8 

Sb 9 18.0 

Se 0.14 46.4 

Sn 7.1 12.8 

Ti 0.28 76.0 

Tl 0.2 0 

V 0.21 76.7 

Y 0.48 5.8 

Zn 0.12 100 

Table S1. List of elements measured with the Xact, their respective MDLs and the percent of 87 

measurements above the MDL. 88 

 89 



Sect. S1: Error matrix downweights for PMFmetals 90 

Polissar et al. (1998) (Polissar et al., 1998a) first introduced an uncertainty of 5/6 × MDL for data below 91 

MDL (set to MDL/2). The purpose was to provide relative errors for these values 2 to 5 times greater 92 

than the maximum relative errors of the data exceeding the MDLs. Here, several uncertainties values 93 

were tested for data below MDL by conducted a panel of PMF runs with 2 to 8 factors. The errors were 94 

calculated by applying a downweight coefficient (𝛼) to the previous formula from Polissar et al. (1998) 95 

(Polissar et al., 1998a): 96 

𝜎𝑖,𝑗 = 𝛼 ×
5

6
𝑀𝐷𝐿𝑖   if 𝑥𝑖,𝑗 < 𝑀𝐷𝐿𝑖          (S1) 97 

 For all the elements 𝑖, 𝛼 was set to 6, 10 and 14 in order to obtain a ratio of 2, 3.5 and 5, respectively, 98 

with the maximum relative error found in the dataset, i.e. 476% for Sn (the value corresponds to the 95th 99 

percentile instead of the max value to avoid outlier effects). Another test consisted in applying a 100 

dependant 𝛼 based on the maximum relative error (95th percentile) for each element 𝑖 (𝑟𝑃95): 101 

𝛼𝑖 = 2 × 𝑟𝑃95           (S2) 102 

Where 2 was used to determine the same ratio between the relative error of data below the MDLs from 103 

Polissar et al. (1998) equation (167 %, considering the 
5

6
𝑀𝐷𝐿

1

2
𝑀𝐷𝐿⁄  calculation) and the maximum 104 

relative error for the data greater than the MDLs (50%) found in Polissar et al. (1998) (Polissar et al., 105 

1998a) dataset. A last test was performed with 𝛼=1 (i.e. no downweight) for the comparison. Each PMF 106 

analysis was also conducted with and without 1/S2N downweight (Visser et al., 2015). The tests were 107 

performed on the WFP dataset and the results were synthetized in Table S2. Here we focus on the 5F-108 

solutions results as they resolved unmixed factors and represented a statistically relevant number of 109 

factor (see section 2.4.2 in the main text). 110 

For all PMF solutions, applying the 1/S2N downweight provided lower scaled residuals as shown by 111 

the narrower width of fits. The solutions with 𝛼=1 (i.e. no errors downweight for data <MDLs) were 112 

discarded due to less satisfactory mass reconstructions and residuals and higher average unexplained 113 

variations. The unexplained variation is a dimensionless quantity which indicates how much variation 114 

(in time or in each variable) is not explained by the factors (Canonaco et al., 2013). Thus, the unexplained 115 

variation of the 𝑖th point for the factor 𝑘th is: 116 

𝑈𝐸𝑉𝑖𝑘 =
∑ (|𝑒𝑖𝑗|/𝜎𝑖𝑗)𝑚

𝑗=1

∑ ((∑ |𝑔𝑖𝑘∙𝑓𝑘𝑗|
𝑝
𝑘=1 +𝑒𝑖𝑗)/𝜎𝑖𝑗)𝑚

𝑗=1

                           (S3) 117 

𝑈𝐸𝑉 is further calculated for data with S2N>2 (UEVreal) or for noisy data (UEVnoisy).  118 



The remaining tests gave comparable explained variations, mass reconstitutions and residuals. The 119 

uncertainties calculated with 𝛼𝑖 = 2 × 𝑟𝑃95 (test n°12 in Table S2) were finally selected as error inputs 120 

for the data below the MDLs since this solutions resolved 5 unmixed factors with the best mean and 121 

median diurnal patterns for each identified source.   122 

 123 

Tests N° 
Unexplained Variations Σfactors vs Σmetals  Sc residuals 

F5 

EV_Noise 

F5 

EV_Real 

F5 

EV_Sum 
F5 Slope F5 R² F5 center 

F5 

width 

noDW_noS2N 1 0.215 0.049 0.264 0.987 0.958 0.094 0.337 

noDW_S2N 2 0.221 0.042 0.263 0.987 0.959 0.059 0.201 

DW6_ALL_noS2N 3 0.187 0.048 0.235 0.989 0.973 -0.023 0.137 

DW6_ALL_S2N 4 0.203 0.033 0.236 1.004 0.985 -0.002 0.014 

DW6_SPEC_noS2N 5 0.187 0.041 0.228 1.000 0.979 -0.010 0.089 

DW6_SPEC_S2N 6 0.203 0.033 0.236 1.003 0.986 -0.002 0.014 

DW10_ALL_noS2N 7 0.187 0.040 0.227 1.010 0.993 -0.020 0.074 

DW10_ALL_S2N 8 0.201 0.033 0.234 1.015 1.000 -0.002 0.005 

DW10_SPEC_noS2N 9 0.187 0.040 0.227 1.010 0.993 -0.020 0.073 

DW10_SPEC_S2N 10 0.201 0.033 0.234 1.014 1.000 -0.002 0.005 

Roll_DW_ALL_noS2N 11 0.188 0.041 0.229 1.007 0.988 -0.013 0.091 

Roll_DW_ALL_S2N 12 0.203 0.034 0.237 1.010 0.995 -0.001 0.005 

Roll_DW_SPEC_noS2N 13 0.187 0.041 0.228 1.006 0.988 -0.013 0.091 

Roll_DW_SPEC_S2N 14 0.203 0.034 0.237 1.011 0.995 -0.002 0.011 

DW14_ALL_noS2N 15 0.189 0.040 0.229 1.016 1.000 -0.023 0.063 

DW14_ALL_S2N 16 0.204 0.032 0.236 1.017 0.999 -0.002 0.005 

DW14_SPEC_noS2N 17 0.189 0.040 0.229 1.016 1.000 -0.023 0.063 

DW14_SPEC_S2N 18 0.203 0.033 0.236 1.023 1.000 -0.001 0.003 

Table S2. Summary of statistics for the different PMF tests carried out on the WFP datasets of metals. 124 

18 downweight conditions were tested for the PMF inputs. The matrix including a S2N downweight 125 

and errors below MDLs downweighted with 𝜶𝒊 = 𝟐 × 𝒓𝑷𝟗𝟓 (test n°12) was selected as final inputs. 126 
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 129 



 130 

Figure S2. (a) Changes in ∆Q/Qexp, ∆UEVreal and ∆UEVnoisy for n-(n+1)-factor PMFmetals runs and (b) 131 

Q/Qexp, UEVreal and UEVnoisy for PMFmetals runs from 1 to 8 factors. These PMF runs are performed for the 132 

WFP dataset. The box plots located in the blue dashed-line area represent the values for the finalized 6-133 

factors bootstrap solution using the total metals dataset. 134 

 135 
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 137 

Figure S3. (a) Factors time series and (b) profiles from the PMF solution using the FDP dataset. The 138 

regional background factor profile was constrained with an a-value of 0.1.   139 
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Sect. S2: Criteria selection for PMFmetals 141 

A first type of criterion was the use of the dominant element in the related factor. Thus, the Bi, Ca, Zn, 142 

V and Fe intensity in profiles were monitored for the Firework, Dust resuspension, Tire/brake wear, 143 

Shipping and Industrial factors, respectively. Then we inspected the r Pearson correlation with MOOA 144 

for the regional background. A last criterion was the r Pearson correlation based on the multilinear 145 

regression analysis of both shipping and industrial vs SO2 concentrations. The statistical acceptance of 146 

a run was based on the comparison between the criterion scores of a factor and the second highest scores 147 

from the remaining factors (Fig. S4). For all criteria the second highest scores were much lower in every 148 

run, with some rejected scores for the firework criterion. In total 25% of the runs were discarded based 149 

on this criterion, and the remaining runs were averaged into a unique solution.     150 

 151 

Figure S4. Criteria scores for the 100 bootstrapped runs from the PMFmetals. Each graph represents one 152 

criterion for the different factors. The blue markers are for the factor criterion scores and the black 153 

markers represent the second highest scores attributed to one of the remaining factors.   154 
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Scenario and regression model selection for OP apportionment 156 

Three scenarii in the construction of the matrix of the source factors contribution to PM mass identified 157 

by the three PMF have been considered to make the best use of the results from the different PMF: 158 

• Scenario 1: OP apportionment from independent variables with the OA factors from PMForganics (83 159 

observations), following: 160 

𝑂𝑃 = 𝐺 × 𝛽𝑔 + 𝜀                            (S4) 161 

• Scenario 2: OP apportionment from independent variables considering only the metals factors from 162 

PMFmetals (90 observations), following: 163 

𝑂𝑃 = 𝐻 × 𝛽ℎ + 𝜀                   (S5) 164 

• Scenario 3: OP apportionment taking as independent variables PM1 factors from PMFPM1 (78 165 

observations), following (Eq. S6). In this configuration, the firework episode has been removed from 166 

the data as the sources from the PMFPM1 analysis have been determined without including the 167 

firework metal factor.  168 

𝑂𝑃 = 𝐼 × 𝛽𝑖 + 𝜀                   (S6) 169 

In (Eq. S4, S5, S6), OP vector (px1) is the observed OP expressed in volume unit, G matrix (g x (p+1)) of 170 

g sources (plus the intercept) is determined by PMForganics, H matrix (h x (p+1)) of h sources (plus the 171 

intercept) is determined by PMFmetal, I matrix (i x (p+1)) of i sources (plus the intercept) is determined 172 

by PMFPM1, and ε vector (px1) is the discrepancy between the model and the observations.  173 

Three models were tested for the three scenarii (e.g. 9 solutions): weighted least squares linear 174 

regression (WLS), weighted robust multiple linear regression with an iterative M-estimator, and partial 175 

least square regression (PLS): 176 

• WLS regression considers the uncertainties σ of the OP measurements by minimizing the weighted 177 

sum of squares function (WSS): 178 

𝑊𝑆𝑆 (𝛽) = ∑ 𝑤𝑖
𝑝
𝑖=1 (𝑦𝑖 −  ∑ 𝑥𝑖𝑗

𝑛
𝑗=1 ∗ 𝛽𝑗)

2
, 𝑤𝑖 =  

1

𝜎𝑖
                                                    (S7) 179 

where 𝑦𝑖  is the measured OP (p observations), 𝑥𝑖𝑗  is the values of n sources determined by PMF and 𝜎𝑖 180 

is the OP uncertainties. This method already used in this purpose in previous studies (Borlaza et al., 181 

2021; Weber et al., 2018, 2021) well suited to extracting maximum information from small data sets. 182 

Ordinary Least Squares (OLS) is a simple special case of WLS where σ = 1. 183 

• Linear weighted robust regression methods by M-estimator minimizes the function ρ:  184 

𝑀 (𝛽) = ∑ 𝜌(𝑤𝑖
𝑝
𝑖=1 (𝑦𝑖  ∑ 𝑥𝑖𝑗

𝑛
𝑗=1 ∗ 𝛽𝑗))                                                                                                         (S8) 185 



𝜌𝑘(𝑥) = {

  𝑥2

2
                         𝑖𝑓 |𝑥| < 𝑘 = 1.5

𝑘 (|𝑥| −  
𝑘

2
)                        𝑖𝑓 |𝑥] ≥  𝑘 = 1.5              

                   (S9) 186 

Based on similar work in Grange et al. (2022), Huber’s function ρ and k=1.5 were used in this study. 187 

This technique is adapted to data sets presenting particular events(de Menezes et al., 2021), as fireworks 188 

on 13th and 14th of July -National day of France- in our data set. Indeed, the regression by successive 189 

iterations implies lower weights on outliers, which tends to underestimate these points. We can note 190 

WLS regression is a simple special case where ρ(x) = x².  191 

• PLS regression is a method that reduces the predictors to a smaller set of uncorrelated components 192 

and performs least squares regression on these components. It is especially useful when dependent 193 

variables are highly correlated. Moreover, unlike multiple regression, PLS does not imply that the 194 

predictors are fixed but can be measured with error, making PLS more robust to measurement 195 

uncertainties. 196 

 197 

OP apportionment from PMForganics (scenario 1) and PMFmetals (scenario 2) 198 

M-estimator inversion model’s results issued from PMForganics (scenario 1) and PMFmetals (scenario 2) 199 

alone are respectively presented in Table S 3a. and Table S 3b. β coefficients (i.e intrinsic OP, see 2.5) 200 

obtained by M-estimator model from PMFmetals display values an order of magnitude higher than those 201 

issued from PMForganics inversion. This stress the importance of metals in OP apportionment, for both 202 

assays. Among the organic factors, only the Sh-IndOA factor seems to be slightly more sensitive to 203 

OPvDTT. The Firework factor constrains a significant part of the data, implying a fairly high Pearson’s 204 

correlation coefficient between OPmodel and OPobserved. Nevertheless, R²adjusted of both M-estimator 205 

inversion models in scenario 1 (only organic fraction of PM is considered) indicated that the percentage 206 

of OPAA and OPDTT variance explained by the models is weak. On the other hand, several studies 207 

highlighted the role of Secondary Organic Aerosol (SOA) in the oxidative potential indicating that 208 

apportion OP from the metallic data alone is an incomplete step. Finally, the bootstrap method (see 2.5) 209 

applied to the four M-estimator models in these two scenarii did not achieve their convergence and are 210 

therefore not robust. Overall, this confirms that OP reflects the overall redox-activity of wide spectra of 211 

multispecies of organics, inorganics, metals and synergistic/antagonistic reactions between these 212 

compounds, and assess the importance to consider all these chemical compounds in the OP 213 

apportionment process. 214 
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 217 
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 219 

 220 

 221 

 222 

Figure S5. (a) NOx, SO2 and O3 concentration and (b) wind speed and direction during OP measurement 223 

period. 224 

  225 

Table S3. Intrinsic OPAA and OPDTT (OPm) provided by weighted robust linear regression with an M-estimator 

expressed in nmol.min-1.µg-1 of sources provided by (a) PMForganics (scenario 1) and (b) PMFmetals (scenario 2) 

over the OP sampling campaign (n = 90). Values are the mean ± standard deviation from bootstraps runs for 

both OP assays. The model parameters R²adjusted and Pearson’s correlation between model OP and observed 

OP are mentioned on the right. 



 226 

Figure S6. (a) Comparison between time series of PM1 measured by FIDAS and time series of particulate 227 

fraction reconstituted by the sum of chemical components (rs = 0.47, p <0.001); (b) Contribution to PM1 228 

of chemical components (%) measured from 11th July 2018 to 25th July 2018 (included firework episode, 229 

n=91) by ToF-ACSM, Xact and aethalometer online analyzers. 230 
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 240 

Figure S7. (a) Average mass spectra profiles, (b) time-series, (c) pie chart contributions and (d) mean 241 

diurnal cycles (solid lines and error bars indicate the standard deviation) for the 5 factors from the 242 

PMForganics solution. 243 

 244 
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 246 

Figure S8. (a) Pie chart contributions and (b) average diurnal profiles of factors from the PMFmetals 247 

analysis. For the diurnal plots the red dots correspond to the mean, the bands are the median, the bottom 248 

and top of the boxes represent the 25th and 75th percentile respectively, and the ends of the whiskers are 249 

for the 10th and 90th percentiles. 250 
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a) b) 



 252 

Figure S9. NWR plots for the different factors from the PMFmetals analysis. 253 
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Sect. S3: C-value weighting  255 

The instrument weight was controlled by applying a scaling factor (i.e. C-value) to the uncertainties of 256 

each group of components (Slowik et al., 2010): 257 

(𝜎′𝑖,𝑗)𝑠 =
(𝜎𝑖,𝑗)𝑠

𝐶𝑠
             (S10) 258 

𝜎 represents the uncertainties, 𝐶 the scaling value applied to the 𝑠 datasets. Here we distinguished the 259 

PMForganics (ACSM_OA), PMFmetals (Xact), ACSM inorganics (ACSM) and BC (AE33) datasets. A well 260 

balanced solution should show magnitude of scaled residuals independent from the instrument. Since 261 

their scaled residuals were rather in the same range, a C-value of 1 was chosen for ACSM_OA, Xact and 262 

ACSM datasets and resulted in unweighted results. However, we applied a C-value of 5 to the AE33 263 

dataset, meaning that dataset of BC concentrations were upweighted. The overlapping of scaled 264 

residuals from the different instrument datasets is shown in Figure . 265 

 266 

Figure S10. Probability density function of scaled residuals for the standalone ACSM_OA, ACSM,  AE33 267 

and Xact datasets. 268 
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 271 

Figure S11. Box plots of dust resuspension factor concentrations for different relative humidity (RH) 272 

bins in %. The concentrations are enhanced under low RH conditions. The blue diamonds are the mean, 273 

the bars inside the boxes the median, the bottom and top of the boxes are the 25th and 75th percentile, 274 

respectively, and the ends of the whiskers are the 10th and 90th percentiles. 275 

 276 
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Sect. S4: Factors identification and rotational ambiguity exploration for PMFPM1 279 

Seed runs between 1 and 12 factors were examined. The factors interpretability was based on profiles  280 

consistency and our expectations from the factors composition. The summarizes the occurrence of 8 281 

well-identified factors in all runs between 5 and 12 factors. The choice of a 8-factors solution is supported 282 

also by mathematical diagnostics (∆Q/Qexp, , mass  reconstruction, ∆UEV – not presented here) which 283 

showed that realistic solutions can be found up to 5 factors. While some factors are easily resolved in 284 

most of the solutions (e.g. dust resuspension) some others are retrieved from an elevated number of 285 

factor (e.g. shipping and cooking are found in up to 9 factors-solution). 286 

Therefore, the solution was constrained using base case profiles (Table ). The biomass burning, cooking 287 

and industrial factors were constrained as they presented unstable profiles across the different runs. 288 

Constraining the industrial factor allow an improved separation of the shipping factor (see the 289 

discussion below). 290 

 291 

 5F 6F 7F 8F 9F 10F 11F 12F 

Traffic                 

Dust                 

AS-rich                 

ON-rich                 

Industrial                 

Shipping                 

BB                 

Cooking                 

Table S4. Factors identification for the PMFPM1 analyses between 5 and 12 factors. The green cells 292 

represent the base case identification for the related factors. The remaining undefined factors for each 293 

solution corresponded to mixed profiles not attributed to a specific source. The red squares are the base 294 

cases used as reference profile constraints. 295 

To inspect the best combination of a-values for the profile constraints, we performed a-values sensitivity 296 

analyses by scanning a-values from 0 to 0.5 with increment of 0.05, leading to 1330 outcomes. The 297 

goodness of the solutions was examined with a criteria selection list and the scores are presented in the 298 

Figure . First, the R² correlations between biomass burning, cooking and industrial factors with their 299 

corresponding constraint were monitored. Then, we monitored the intensity of the dominant variable 300 

in the related factor profiles: Dustmetals for dust resuspension, BCFF for traffic, LOOA for ON-rich, SO42- 301 

for AS-rich and Sh-IndOA for shipping. Sh-IndOA was inspected instead of shippingmetals to ensure a 302 

clear separation between shipping and industrial factors since Sh-IndOA is assumed to only be 303 

attributed to these two factors. For the first seven criteria, the scores were much higher than the second 304 

highest scores (not displayed in the graph). Therefore, some runs were only discarded based on the 305 



shipping criterion as we only selected the runs whose Sh-IndOA intensity was in the same range than 306 

the base case profile from the preliminary analyses. Moreover, the selected runs (green markers in 307 

Figure ) showed similar scores intensity for traffic, ON-rich, AS-rich and dust resuspension than those 308 

found in their respective base case profile. In the end, the same criteria list was used for the bootstrap 309 

runs selection. 310 

 311 

Figure S12. Criteria scores for the a-values sensitivity test runs from the PMFPM1. Each graph represents 312 

one criterion per factor. The grey markers are the unselected runs, the blue markers are the selected 313 

runs for the related factor and the green markers are the effectively chosen runs. 314 

 315 

 316 



 317 

Figure S13. Number of accepted solutions based on the PMFPM1 criteria list for the different a-values 318 

explored in the sensitivity test. A-values associated to the greatest number of validated solutions were 319 

chosen for the bootstrap PMF runs (i.e. 0.4 for biomass burning, 0.1 for cooking and 0.05 for industrial 320 

constrained profiles). 321 

  322 



 323 

Figure S14. Relative contributions of PM1 factors profiles and unexplained variations from the PMFPM1 324 

analysis. 325 

 326 

 327 

 328 

 329 

 330 

 331 

 332 

Figure S15. Comparison between the industrial metals profile from our study and ICP-MS profiles for 333 

the PM2.5 fraction in the industrial area of Fos-sur-mer (Sylvestre et al., 2017). Complex n°1 is a cast iron 334 

converter complex, complex n°2 is a ore iron converter complex, complex n°3 is a blast furnace slag 335 

storage and complex n°4 is an ore terminal. 336 

 337 

  338 



 339 

Figure S16. Average diurnal profiles for SO2, Sh-IndOA and the sum of industrial and shipping factors 340 

from the PMFmetals. 341 

 342 



 343 

Figure S17. NWR plots for each factor of the PMFPM1 analysis. 344 

  345 



Sect. S5: PMFPM1 with OA factors + metals + ions + BC dataset: 346 

Among the 8 identified factors, 4 were not systematically resolved across the several preliminary runs 347 

(cooking, biomass burning, industrial and shipping factors). The solution was constrained using base 348 

case profiles from the 10 factors-solution for industrial, the 11 factors-solution  for cooking and shipping, 349 

and the 12 factors-solution for biomass burning. Note that for each run we applied the same C-values 350 

for the instrument weighting than PMF² solution. A bootstrap analysis was performed for 100 runs and 351 

the accepted runs based on the pre-defined list of criteria (the correlation with base case profiles for the 352 

constrained factors and the monitoring of the dominant variable intensity for the unconstrained factors) 353 

were averaged into a definitive solution. 354 

 355 

Figure S18. Average factor profiles for the PMFPM1 solution using OA factors, ACSM inorganic species, 356 

BC and metals as inputs. The sticks represent the normalized contribution of the variable to the factor 357 

(left axis) and markers show the normalized factor contribution to each variable (right axis). 358 

 359 

 360 

 361 

 362 



 R² with PMF² factors Slope with PMF² factors Relative contribution (%) 

Cooking 0.97 1.18 17.4 

Biomass Burning 0.93 0.65 3.3 

Industrial 0.95 0.95 2.5 

Shipping  0.81 0.52 3.6 

Traffic 0.96 1.02 21.5 

Dust resuspension 0.99 1.07 2.6 

ON-rich 1 1.15 23.1 

AS-rich 0.99 0.98 26 

 363 

Table S5. R² and slope values for the comparison of the PMFPM1 (OA factors + metals + ions + BC) factors 364 

with PMF² factors. The relative contributions are also represented (in %). 365 

 366 

Sect. S6: PMFPM1 with organic m/z fragments + metals + ions + BC dataset: 367 

This analysis was conducted by merging all datasets prior to analysis, including the organic fragments 368 

(from m/z 12 to 100), metals, BC fractions, NO3-, SO42-, NH4+ and Cl-. The data inputs were previously 369 

averaged on a similar 1h-time step. This approach could retrieve only 7 sources, and increasing the 370 

number of factors did not lead to physically reasonable solutions. The results were compared to the 371 

PMF² solution.    372 

 We successfully identified similar factors than previous methods, with consistent R² correlations: 373 

shipping (0.77), dust resuspension (0.99), industrial (0.80) and AS-rich (0.97). However, the 374 

identification of the 3 other factors remains challenging. The 5th factor was characterized by an organic 375 

m/z spectra showing a high affinity with the MOOA profile (Figure A2) and some elements which were 376 

present in the regional background profile from the PMFmetals (Br, Sn, K). The 6th factor presented a 377 

moderate correlation with the ON-rich factor from PMF² approach (R²= 0.67) but unexpectedly featured 378 

a high contribution of BCFF which might be due to some mixing of this factor to traffic.   379 

The last factor is interpreted as a result of the mixing of traffic and cooking sources. This lack of clear 380 

separation is attributed to the very similar mass spectra profiles of HOA and COA for the organic 381 

fraction, which are difficult to deconvolve without applying specific constraints (Chazeau et al., 2022; 382 

Chen et al., 2022). The mixing is also evident in the factor’s diurnal evolution with unseparated morning 383 

and mid-day peaks. Furthermore, the biomass burning source was not resolved in this solution.   384 



385 
Figure S19. Factor profiles from the PMF solution using organic m/z fragments, ACSM inorganic 386 

species, BC and metals as inputs. The sticks represent the normalized contribution of the variable to the 387 

factor (left axis) and markers show the normalized factor contribution to each variable (right axis). 388 

 389 

Associations between both OP and sources of PM 390 

Pearson’s correlation coefficients (r) between the source factor contributions identified by the PMFPM1 391 

and both OP assays are presented in Table  S6 with the idea to provide a first estimate of the associated 392 

sources with OP. We note that no source strongly correlates alone to both OP assays, but moderate 393 

correlations (0.3< r<0.5) can be noted for both OP vs. Traffic source (OPvAA: r=0.40, p<0.001 - OPvDTT: 394 

r=0.34, p<0.01) and Shipping source (OPvAA: r=0.32 - OPvDTT: r=0.30, p<0.01). OPvAA also correlates 395 

moderately with Industrial source (r=0.41, p<0.001) and ON-rich source (r=0.32, p<0.01). Finally, OPvDTT 396 

displays a mild correlation with AS-rich source (r=0.36, p<0.01), but this correlation might be attributed 397 

to a collinearity with PM mass (r OPvDTT vs SO42-=0.46, r OPvDTT vs NH4+ = 0.47 - p<0.001). 398 

 399 

Table S6. Pearson’s correlation coefficients between OPvAA and OPvDTT to the PM sources identified by 400 

PMFPM1 model. 401 

  402 

 

 

Biomass 

Burning 
Cooking Industrial 

Dust 

resuspension 
Traffic 

ON-

rich 
Shipping 

AS-

rich 

OPv AA 0.15 0.18 0.41*** 0.13 0.40***  0.32*** 0.32** 0.17 

OPv DTT 0.12 -0.02 0.14 0.14 0.34** 0.19 0.30 0.36** 

***p < 0.001, **p < 0.01 



 403 
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 407 

 

(a) (b) 

Figure S20. Residuals values of WLS models for (a) OPAA and (b) OPDTT. An outlier point (19 July 2018 

03:00) was withdrawn to ensure homoscedasticity of residuals values. 

 

Figure S21. Mean contribution of the sources identified by PMFPM1 over the OP sampling campaign 

(n = 86) to (a) OPAA, (b) OPDTT, (c) PM1. Error bars represents the standard deviation of the data 

distribution. 


