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Abstract. China’s Shanxi Province accounts for 12 % of global coal output and therefore is responsible for a
very large fraction of the total global methane (CH4) emissions, as well as being a large source of uncertainty
due to the lack of in situ and field measurements. This work introduces the first comprehensive attempt to com-
pute the coal mine methane (CMM) emissions throughout Shanxi, using a mixture of bottom-up and top-down
approaches. First, public and private data from 636 individual coal mines in Shanxi Province were analyzed
following the IPCC Tier 2 approach, using three to five sets of observed emission factors and rank information
based on methods issued by the National Coal Mine Safety Administration and the National Energy Administra-
tion, to compile a range of bottom-up CMM on a mine-by-mine basis. An eddy covariance tower is set up near
the output flue of a well-characterized high-rank coal mine in Changzhi and used to produce an average observed
CH4 flux over two 2-month-long periods (Winter 2021 and Autumn 2022). The observed half-hourly CH4 flux
variability is found to be roughly stable over the entire observed time and is subsequently used to produce a set
of scaling factors (ratio correction) to update the preliminary bottom-up coal mine methane emissions to account
for both bias and high-frequency temporal variability. The resulting emissions dataset has been compared against
commonly used global CMM datasets including EDGAR and GFEI v2, and there are three unique scientific con-
clusions. First, their total CH4 emissions over Shanxi lie between this work’s 50th percentile and 70th percentile
range, meaning they are slightly high. Second, both datasets have a very large amount of emissions which occur
where there are no coal mines and no CH4-emitting industry, indicating that there are significant spatial dispari-
ties, with the overlapped portion of CMM emissions where mines exist consistently close to the 30th percentile
of this work’s emissions, meaning they underestimate CMM in general on a mine-by-mine basis. Third, some
of the mines have average emissions values which are more than the 90th percentile of the computed mine-by-
mine emissions, while many are far below the 10th percentile, showing that there is a significant issue with the
sampling not capturing the observed temporal variability. It is hoped that this mine-by-mine and high-frequency
approximation of CMM emissions can both improve top-down observation campaigns and provide quantitative
support and identification of mitigation opportunities.
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1 Introduction

Methane (CH4) is the second-most-significant long-lived
greenhouse gas (GHG) in terms of net global radiative forc-
ing after carbon dioxide (CO2), with a radiative forcing of
0.54± 0.11 W m−2, about a quarter of the value for CO2
(Forster, 2021). Due to its relatively shorter atmospheric life-
time, efforts to control methane emissions will lead to a more
rapid reduction in the current increase in global radiative
forcing and help provide more time for solutions that ad-
dress CO2 and ultra long-lived GHGs (Nisbet et al., 2020).
The major sources that contribute to global CH4 emissions
include fossil fuel extraction (coal, oil, and gas), leakage
(piping, transport, and at the end user’s side), rice paddies,
swamps, peatlands, rubbish decay, and animal husbandry,
with anthropogenic sources compromising roughly 50 %–
65 % of the total (Schwietzke et al., 2016).

For these reasons, developing an accurate, precise, and
comprehensive inventory of methane emissions is fundamen-
tal to addressing climate change (United States Environ-
mental Protection Agency, 2023; The Global Emissions Ini-
tiative, 2023; European et al., 2021; Saunois et al., 2020).
Coal mining has been determined to be the fourth largest
source of anthropogenic methane emissions, with global coal
mine methane (CMM) emissions estimates ranging from 29–
61 Tg yr−1 (Saunois et al., 2020). According to Hmiel et
al. (2020), anthropogenic fossil CH4 emissions now account
for about 30 % of the global CH4 source and nearly half
of anthropogenic emissions. Based on these results, an im-
proved understanding of the emissions of anthropogenic fos-
sil CH4 emissions, in particular CMM emissions, will prove
critical to the overall goal of emission reductions and climate
mitigation (Christensen et al., 2019; Perez-Dominguez et al.,
2021; Ou et al., 2021).

One of the current approaches for determining emis-
sions is based on bottom-up aggregation, where observa-
tions, laboratory experiments, or process-based models of
emissions are made over a finite number of locations, which
are subsequently scaled up to larger spatial and/or tempo-
ral scales. These measurements can include specific sources
natural wetlands, cropland, and anthropogenic sources. The
extracted values are sometimes of related substances, not the
species directly wanted, in which case various different scal-
ing factors are applied to link the concentrations or emissions
to each other. Such inventories used in global models are
typically constructed from estimates of economic, industrial,
residential, transport, power, and other anthropogenic activi-
ties combined with emissions factors (Bond et al., 2004; Eu-
ropean et al., 2021; Crippa et al., 2021a; Oreggioni et al.,
2021).

Presently, CMM emissions are produced according to
procedures agreed upon under the United Nations Frame-
work Convention on Climate Change (UNFCCC). First, na-
tional GHG inventories are produced following one or more
of three different tier-based approaches (IPCC, 2019). The

Tier 1 approach requires that countries choose from a global
average range of emission factors and use country-specific
activity data to calculate total emissions, resulting in high
levels of uncertainty and large representation error (a factor
of 2 or more). The Tier 2 approach uses country- or basin-
specific emission factors that represent the average values
over the coal mines considered, resulting in emissions with
moderate amounts of error (at least 50 %–75 %), including
representation errors associated with variance in coal mine
size, operations, and CH4 geology (William Irving, 2000;
Hiller et al., 2014; Maasakkers et al., 2016; Peng et al., 2016;
Sheng et al., 2017; Hoesly et al., 2018; Mcduffie et al., 2020;
Scarpelli et al., 2020, 2022; Deng et al., 2022; Sadavarte et
al., 2022; Singh et al., 2022). Presently, most countries pro-
duce coal mine CH4 inventories following one of these two
approaches. The Tier 3 approach requires both local mea-
surements and facility-level data, with the results expected to
be more representative in terms of spatial location and inven-
tory categories, as well as likely having both higher accuracy
and precision. However, due to the size of the resources re-
quired, as well as the lack of availability of such facility-level
data in most cases, few inventories are currently compiled us-
ing this approach (Allen et al., 2013; Miller et al., 2013; Chen
et al., 2017).

Brandt et al. (2014) reviewed 20 years of literature and
found that emissions inventories across all scales consistently
underestimate observed CH4 emissions fluxes. To compen-
sate for these discrepancies, there is some work which has
proposed a hybrid approach that falls somewhere between
Tiers 2 and 3. This approach specifically adapts mine-specific
or basin-specific emission factors based on a small set of
observations and then extends these values over their entire
study area (Ju et al., 2016; Wang et al., 2013). However, these
works are few and far between, and there is no consistent
study bounding the uncertainty of these approaches.

Another approach to estimating emissions is the so-called
top-down approach, which involves using in situ atmospheric
observations from individual measurements, observation net-
works, and satellites, etc., in connection with atmospheric
transport models, climate models, and even simplified box
models which attempt to simulate the transport and in situ
chemical and physical processing. These results are inverted
or maximally optimized, deriving an inference of the emis-
sions and some range of uncertainty, which depends on both
the observations themselves and the model used (Ehhalt,
1974; Blake et al., 1982; Buchwitz et al., 2005; Chen and
Prinn, 2006; Krings et al., 2013; Turner et al., 2015; Varon
et al., 2020; Kostinek et al., 2021; Sadavarte et al., 2021;
Sanchez-Garcia et al., 2022). The approach generally takes
one of two different forms: the first, where a small number
of long-term, high-frequency surface flux measurements in
space are used to invert the emissions based on a combination
of atmospheric variability and atmospheric transport (An-
drews et al., 2014), and the second, where remotely sensed
columns from satellite or aircraft are analyzed and used to
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compute the change in the observed variability spatially over
a singe or set of a few well-defined point sources (Duren et
al., 2019; Frankenberg et al., 2016).

The second set of approaches may allow individual point
sources to be inverted with a high degree of certainty but
also must be analyzed carefully and the results treated with
extreme caution (Varon et al., 2020). First, they need to
carefully account for clouds, aerosols, and other undesir-
able co-contaminants which are present in the field of view
when the observations are made (Gifford, 1968; Wolfe et al.,
2002; Mears and Wentz, 2005; Delwart et al., 2008; Marland,
2008). Second, they require independent validation, which is
site specific (Cressot et al., 2014; Wecht et al., 2012). Third,
their overpass frequency is generally not as high as surface
measurements, and therefore they may not be sufficiently
representative of the actual distribution of emissions in space
and time (Vaughn et al., 2018).

While there has been a considerable amount of work using
observations in situ to approximation the emissions with re-
spect to short-lived species including NOx (Li et al., 2023),
CO (Shan et al., 2019; Feng et al., 2020; Lin et al., 2020),
and BC (Bond et al., 2004; Cohen and Wang, 2014), such
work with respect to CH4 from coal mines is only much
more recent. An overview of results at the global scale using
top-down approaches has constrained the global fossil fuel
emissions of CH4 falling within the range of 81–131 Tg yr−1

(Zhang et al., 2013; Arad et al., 2014; Fiehn et al., 2020;
Varon et al., 2020; Hendel et al., 2021; Kostinek et al., 2021;
Krautwurst et al., 2021; Sadavarte et al., 2021; Luther et al.,
2022; Swolkien et al., 2022). On the regional scale, the es-
timation of methane emissions is far less precise, in terms
of both magnitude and uncertainty range, especially so at
higher temporal frequency (Oberschelp et al., 2019; Lu et
al., 2023). Due to the large magnitude of the uncertainties
and the lack of precision at high temporal and spatial reso-
lution, works which calculate observed trends frequently can
not even agree on the magnitude of the sign of the trend, with
some studies finding an increase in CMM emissions (Jackson
et al., 2020; Stavert et al., 2022), and others show a decline in
CMM emissions (Gao et al., 2021). Direct comparisons be-
tween top-down and bottom-up emissions datasets are also
quite substantial in terms of magnitude, space, time, and
emissions type/sector, leading to ongoing active academic
debate (Allen, 2016).

This study proposes a new tailored approach which is
based on the strengths of both bottom-up and top-down ap-
proaches. First, this work develops a bottom-up set of emis-
sions values on a mine-by-mine basis using different tech-
nology and uncertainty parameters over the coal-rich Shanxi
Province. Second, this work uses eddy covariance observa-
tions of actual CH4 fluxes at high temporal resolution over
many months from a single site located within a coal min-
ing company near the exit ventilation shaft. This work then
develops a ratio correction factor between the computed and
observed coal mine emissions at this mine and then applies

this set of ratio corrections to every individual mine, con-
sidering the uncertainty and probability distributions of both
the observations and each individual mine’s technical emis-
sions distribution. This work specifically focuses on Shanxi
Province due to two facts: first, it accounts for 12 % of global
mining output and therefore is a significant source of CMM
CH4, and second, there is relatively open and high-quality
data available at the mine-by-mine level. This work aims to
produce an emissions dataset on a mine-by-mine basis that
is inclusive of the variable geography, surface versus under-
ground mining approaches, and both active and abandoned
mine status. A comprehensive dataset of estimates of CMM
emissions on a mine-by-mine, type-by-type, and day-by-day
basis is derived, including robust uncertainty analysis.

2 Data and methods

An overview of the methods used in this work is provided
in Fig. 1. Measurements of activity data and rank (a qualita-
tive measure of the air flow coming out from the mine) on
a mine-by-mine basis are gathered. Different sets of emis-
sions are computed using an approach based on bottom-up
technology and geology on a mine-by-mine basis. Simulta-
neously, 55 d of continuous measurements, taken over two
separate periods in 2021 and 2022, using a high-frequency
eddy covariance flux tower, is conducted over different sea-
sons of the year at one of the coal mines in the region, which
was specifically selected due to its high-quality data and be-
ing of typical rank. High-frequency statistics from the flux
observations are used to both scale the uncertainty range and
compute the bias of the average annual CMM emissions from
the mine. There is an explicit consideration of the uncertain-
ties from both the bottom-up and top-down emissions ap-
proaches. These correction factors are then applied to the
other 635 mines in Shanxi. Emissions in terms of average
conditions, temporal variation, and extreme events are quan-
tified. Comparisons are done with other existing bottom-up
approaches in terms of space and time, revealing errors and
biases in terms of the locations and magnitudes of known,
misidentified, and previously missing sources.

2.1 Geographic boundaries of study region

Shanxi Province in China is one of the major coal-producing
regions in the world, currently accounting for 12.0 % of the
total global coal output. A map of Shanxi Province and 636
individual coal mines identified in this work is displayed
in Fig. 2. The overall geospatial distribution includes both
open-pit and underground coal mines, as well as both those
mines which are actively in use and others which have al-
ready been abandoned.
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Figure 1. Overview of the methods used in this work.

2.2 Coal mine emissions data

Each mine’s location is verified using aerial imagery from
ESRI Basemap and Google Earth. The specific geolocation
using WGS-84 is presented in Fig. 2.

The bottom-up emissions are computed following the
IPCC guidelines for national greenhouse gas inventories’
Tier 2 methodology, specifically including a factor of hu-
man activity (AD), a coefficient that quantifies the amount of
emission per unit of activity (EFs), and a conversion factor
(CF) to transform the emissions into units of mass of CH4.
Emissions are conceptually computed following Eq. (1),
where EFs (m3 t−1) is the volume of CH4 emitted per tonne
of coal mined and is a function of the activity data used, AD
(t yr−1) is the amount of coal produced by each individual
mine, and CF is a conversion factor considering the local at-
mospheric pressure and ideal gas equation (Boettcher et al.,
2019).

Emissions= AD ·EFs ·CF (1)

Following the procedures in China, information on the AD
is provided on a company-by-company basis, while EFs are
computed based on the mine rank. The rank of a mine is
determined from the underground observations of the gas
and the airspeed of ventilation, the type of gas, and mea-

surements of risk. All coal mines currently in active use
in Shanxi Province post detailed information on both their
AD and rank, which is available for download at http://nyj.
shanxi.gov.cn/mkscnldxgscysxxgg/ggl (last access: 2 De-
cember 2021) (there is no English version available), follow-
ing the approach of the National Mine Safety Administra-
tion (2018). In this work, the values of AD are directly used,
while four different ranks are used, consisting of “low gas
mine”, “high gas mine”, “gas outburst mine”, and “Default”.
Each of these ranks corresponds to a specific range of values
of emissions factors, as explained in more detail below. Al-
though individual coal mines are required to report the coal
mine rank results, only 406 mines analyzed in this work have
reported this data, with the authors setting the remaining 230
coal mines to have a “default” rank.

The emission factors depend strongly on the type of coal
extracted (for example, but not limited to, brown coal, hard
coal, and sea coal), the way in which it is extracted (under-
ground mining versus surface mining), the geological under-
ground structure (which varies based on region-specific ob-
servations) and basin uplift history, and the technologies used
to extract the coal, among other factors (Zhou et al., 2021).
To better constrain the range of emission factors, a literature
review was conducted to obtain a range of observed values of
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Figure 2. Top left: location of Shanxi within Asia. Right: map of Shanxi with all individual coal mines given as yellow triangles. Bottom
left: visible image of an individual coal mine (map from ESRI).

EFs as a function of mine rank and type. For surface mines,
the EFs were used from Zheng et al. (2005). For underground
mines, a set of two to five different values were used, with
two papers providing EFs over each of the four ranks (Wang
et al., 2013; Gao et al., 2021) and three additional papers pro-
viding EFs only over the first three ranks used in this work
(Huang et al., 2019; Sheng et al., 2019; Wang et al., 2019), as
displayed in Table S1 in the Supplement. This work aims to
be technology neutral, and therefore all five values of EFs are
considered equally likely for each mine over each of the first
three categories of rank. At the mines of default rank, since
there are only two different EF values given, a third value
is calculated based on the weighted EF values of the low-
rank and high-rank mines, with details presented in Table S1.
Subsequently all three of these EFs are considered equally
likely for each mine in the default rank. The approach used
in this work is consistent with previous studies that have been
used to derive bottom-up CMM emissions, although there is
no previous work that includes as large a number of ranks
and different values of EF as employed herein (Huang et al.,
2019; Sheng et al., 2019; Wang et al., 2019; Liu et al., 2021).
For the purposes of sensitivity analysis this work also calcu-
lates the total methane emissions assuming that each mine of
default rank also may have EF values the same as high-rank
mines, in turn providing an upper bound on the emissions
estimation, as compared to the more conservative approach

applied herein (Kirchgessner et al., 2000; Wang et al., 2013;
Li et al., 2014).

2.3 Methane flux tower data

Measurements of high-frequency CH4 flux were made at
the XiaHuo Village (xhv) coal mine in Zhangzi District,
Changzhi, Shanxi Province, China, using an eddy covariance
approach (Goulden et al., 1996) with a CSAT-3 anemome-
ter and LI-7700 and generic open-path gas analyzers. The
LI-7700 was selected due to its success in constraining CH4
emissions over terrestrial landscapes (Mcdermitt et al., 2010;
Alberto et al., 2014; Peltola et al., 2014; Song et al., 2015;
Ge et al., 2018). The observations from LI-7700 are based
on a single-mode tunable near-infrared laser capable of oper-
ating at ambient temperature. The CH4 is computed using
wavelength modulation spectroscopy (Silver, 1992) across
the 1650 nm band and demodulates the resulting signal at
twice the frequency. The demodulated signal is compared
with a reference signal shape to determine CH4 concentra-
tion (Xu et al., 2010).

The location of the flux tower was placed near the air
shaft outflow of a mine that was selected because it is a
known source with emissions that are somewhat represen-
tative of other “high” ranked mines in Shanxi and there-
fore would be expected to have both a strong signal and
also be a fairly near the middle of the distribution of total
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coal mines within Shanxi. The Webb, Pearman, and Leun-
ing (WPL)-corrected fluxes are used to compute the emis-
sions flux at 10 Hz frequency, following Webb et al. (1980)
and Mcdermitt et al. (2010). These fluxes are subsequently
downscaled to half-hourly frequency by averaging over each
continuous 30 min block from 24 October to 21 December
2021 and again from 15 August to 13 September 2022. How-
ever, some of the observations were uncertain, had irregu-
larities, or otherwise were not trustworthy. When data were
not of sufficiently high quality to support the flux calcula-
tion via the WPL correction, the data from that entire day
were discarded. In total, there are 1544 half-hourly measure-
ments available in 2021 and 667 half-hourly measurements
available in 2022, with 55 entire days of data remaining for
subsequent analysis.

The absolute value (direction independent) flux, positive
only flux, and negative only flux all appear to have simi-
lar probability density functions (PDFs), with the only dif-
ference being a very minor offset in the positive flux direc-
tion. This is consistent with both positive and negative fluxes
being actual fluxes associated with the near-surface turbu-
lent flow (Bonan, 2015). Given that there are no other strong
sources or sinks of CH4 within 1500 m except for the coal
mine itself, and the coal mine is located at the surface and
without buoyancy, both positive fluxes and the absolute value
of negative fluxes are retained for this analysis. Therefore,
the probability distribution computed using all fluxes on a
30 min average basis is considered from this point forward.

2.4 Ratio correction

There have been multiple studies which have estimated emis-
sions using both top-down and bottom-up approaches and
cross-validated the results (Zhang et al., 2018; Long et al.,
2021; Ma et al., 2021), but there are few that combine these
two methods in tandem (Ho et al., 2019). There are also
some hybrid modeling approaches that combine character-
istics identified with top-down and bottom-up models but
which do not actually use either (Jaccard et al., 2004; Ouyang
et al., 2023). This work attempts a new way to perform such
a hybrid approach: computing bottom-up emissions follow-
ing those standard approaches, generating a correction fac-
tor between the bottom up emissions and a high-frequency
top-down flux observation at a well known and characterized
site, and then using this correction factor to apply to all of
the other bottom-up emissions datasets to account for both
changes in the mean and statistics and high-frequency varia-
tion.

A correction factor is computed based on the ratio of each
individual half-hourly average computed flux (Qj ) and the
average emissions of that mine Emj . A random sampling of
the correction factor is used to generate a PDF of the cor-
rection on a half-hourly basis, applied to each local mine’s
Emj . Statistics of this factor allow the uncertainty range to
be analyzed with respect to temporal variability as well as an

objective way to offset and correct any possible bias in both
the mean state and its shape as it is distributed over time.

This ratio, Qj/Emj , was then used to scale the emissions
of each individual mine. In particular, the annual average
emissions of all other coal mines Emi were then multiplied
by Qj/Emj ·Emi point by point, to yield the emissions dis-
tribution of each mine i in a probabilistic manner. Since each
mine has three to five different possible bottom up emissions
inventory values, each of the minimum, maximum, and me-
dian cases is scaled. These different initial emissions values,
correspondingly E1j , E2j , and E3j , are then applied indi-
vidually for applications in the rest of this work. The new
probability distributions of emissions were gathered mine by
mine and condition by condition and outputted with the cor-
responding flux values (Qi), specifically calculated for the
probability distribution at steps of 10 % from 0.1–0.9 in Ta-
ble S2.

2.5 Statistical methods

To obtain the probabilistic distribution of emissions for each
coal mine, a 10 000 member bootstrap was applied (Felsen-
stein, 1985). This entails first sampling randomly along the
domain from [0,1], corresponding to the cumulative proba-
bility. This value was then applied to the PDF of observed
CH4 emissions and then applied mine by mine to compute
and apply the ratio correction factor based on the follow-
ing piecewise procedure. When the random value falls within
the range [0.0,0.2], the 10 % ratio is selected; when the ran-
dom value falls within the range [0.2,0.4], the 30 % ratio
is selected; when the random value falls within the range
[0.4,0.6], the 50 % ratio is selected; when the random value
falls within the range [0.6,0.8], the 70 % ratio is selected; and
otherwise the 90 % ratio is selected.

The resulting distributions were then analyzed over groups
of mines based on their bottom-up annual emissions amounts
as a function of coal mine rank. Confidence intervals for the
fluxes at the different percentiles for each individual coal
mine and each grouped set of coal mines by rank and their
95 % confidence interval using the bias-corrected and accel-
erated percentile (Bca) method were computed and are given
at https://doi.org/10.6084/m9.figshare.23265644.

2.6 Limitations

The data used to generate the bottom-up emissions are from
2019, while the eddy covariance measurements are made in
2021 and 2022. The EFs are constant from year to year, al-
though there may be interannual variations occurring on a
mine-by-mine basis, especially given the unique economic
conditions which occurred on the ground in China in 2021
and 2022. There are also uncertainties associated with the
variability of the geological conditions encountered as min-
ing expands into new parts of the coal field, and individ-
ual mine companies introduce differing new technologies.
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Since the difference between the high-frequency measured
CH4 fluxes in 2021 and 2022 is very small, and the mines
herein have similar geological conditions, this work assumed
the observed changes represent the actual observed temporal
variation well.

The length of the total dataset was designed to be suffi-
ciently representative of high-frequency variations, such as
the effects of different anthropogenic activities occurring at
during different times of day and on different day basis, and
changes in activities occurring as policies and changes in de-
mand for coal occur. The methods employed here are not suf-
ficiently long to analyze interannual or intraannual variation.

Despite data limitations, the datasets represent an impor-
tant step forward regarding the spatial and temporal vari-
ability of fluxes among individual coal mines. As described
herein, many mines are either missing from inventories en-
tirely or found to be located in the wrong place. Second,
the data computed in this week are more frequent than the
3-monthly observations made to follow the current policies,
which are therefore likely missing with respect to monthly–
annual temporal scales of bottom-up emissions processes.
This is likely even larger in terms of undersampling-induced
biases when using various remotely sensed platforms. How-
ever, the length of the dataset and the difficulty of placing a
flux tower safely very close to a CH4 methane output shaft
may also lead to a lack of sufficiently broad representation
of true emissions, in particular, not successfully sampling all
of the extremely high emissions events. For all of these rea-
sons, the results found herein are already likely to be slightly
less broad and therefore on average slightly lower than the
emissions actually occurring in the real world.

Further limitations stem from the fact that while this work
has obtained measurements and locations from 636 differ-
ent coal mines companies, only 406 contain gas emission
rank data. Of these 406 mines containing coal ranks, 259,
122, and 25 mines are respectively defined as being low
rank, high rank, and outburst rank. There are also 13 surface
mines. According to the China Energy Statistical Yearbook
and the Shanxi Energy Balance Sheet, Shanxi Province pro-
duced 920.3 Tg of raw coal in 2019, with a total of 915.8 Tg
collected. The missing 4.5 Tg of raw coal production implies
that there are sites where the geographic location of mines
and/or companies are not yet accessible. A part of this con-
fusion may also stem from the fact that 50 coal mines were
shut down in 2019 due to various environmental and safety
concerns. On top of this, there is one abandoned coal mine
that exists in the data. There is likely to be some CMM asso-
ciated with these sites but which may be outside of the ranges
applied in this work to properly analyze.

Figure 3. Statistical distribution of bottom-up CH4 emissions cal-
culated across all mines classified as (a) low rank, (b) high rank,
and (c) outburst rank. From top to bottom, each box-and-whisker
plot corresponds to EF 1 through EF 5 respectively.

3 Results and discussion

3.1 Initial bottom-up CMM emissions

Using emission factors from Gao et al. (2021), Sheng et
al. (2019), Huang et al. (2019), Wang et al. (2013, 2019),
and Zheng et al. (2005), in combination with the IPCC Tier 2
approach, the bottom-up emissions from each individual coal
mine were calculated. The box plots of the emissions calcu-
lated at three different ranks and under five different EFs are
shown in Fig. 3. First, it is observed that the central 50 %
of emissions values is not always consistent. Under low-rank
conditions, the emissions from EF3 are lower than the group
consisting of EF1, EF4, and EF5, while EF2 is higher than
the other groups. Under high-rank conditions, the grouping
of the central 50 % of emissions is slightly tighter, with the
EF3 emissions lower than but not statistically outside the
group consisting of EF2, EF4, and EF5, although it is statis-
tically lower than EF1. The central 50 % of emissions from
EF1 is higher than EF3 but is not outside the range of the
others. Under the outburst rank, although EF3 and EF4 are
higher than the others, none are statistically located outside
of the central 50 % data of the others. The CMM emissions
are quite broad across each rank, with a range from 0.15–
36.4 Gg yr−1 at low rank, from 2.41–153 Gg yr−1 at high
rank, and from 6.58–140 Gg yr−1 at outburst rank. All statis-
tics are provided in Fig. 3.

On a Shanxi-wide basis, the range of bottom-up emis-
sions, with the 10th to 90th percentile range of 0.35–1.82
to 13.8–29.6 Gg yr−1, was found to be broader than other
works which have estimated CMM, which range from a low
of 4.41 Tg yr−1 to a high of 7.77 Tg yr−1 (Wang et al., 2013,
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Figure 4. Cumulative probability distribution of 30 min eddy co-
variance flux measurements (µg m−2 s−1), where red is October
2021, yellow is November 2021, blue is December 2021, and grey
is August 2022. All observations are included in this plot.

2019; Huang et al., 2019; Sheng et al., 2019; Gao et al.,
2021). The results also are found to be broader than the
most widely used bottom-up emission inventories produced
using global-scale data for CH4: EDGAR (Oreggioni et al.,
2021; Janssens-Maenhout et al., 2019) v6 (Crippa, 2021) and
GFEI (Scarpelli et al., 2022, 2020) v2 (Scarpelli and Jacob,
2021), which have a 10th and 90th percentile range of 0.77
to 30.1 Gg yr−1 and 0.02 to 12.9 Gg yr−1 in Shanxi respec-
tively.

The reasons that this work’s results are broader than pre-
vious works are in part because this work uses multiple in-
dependent input databases, while Sheng et al. (2019) and
Gao et al. (2021) calculated emissions factors derived from
the State Administration of Coal Mine Safety (SACMS),
Wang et al. (2019) calculated data from the China High Res-
olution Emission Gridded Database (CHRED), and Huang
et al. (2019) derived their emission factors from Yuan et
al. (2006), which in turn were calculated form the same un-
derlying national level statistics, with data of large key enter-
prises in China used as supporting data. The reason that EF3
is statistically lower than every other EFs at low rank and is
statistically lower than EF1 at high rank may be in part for
two reasons: first, this work does not consider a separate fac-
tor for abandoned mines and open-pit mines, while second,
this work uses a unified gas level statistic for low- and high-
rank mines (Wang et al., 2013). As discussed later in this
work, there is further divergence induced by both geospatial
and temporal differences between EDGAR and GFEI on the
one hand and the high-resolution maps with scaled high- fre-
quency methane measurements on the other hand, as demon-
strated by the maximum and minimum values of EDGAR
being (0. and 712.) and GFEI being (0. and 200.) Gg yr−1 re-

Figure 5. Probability density functions of eddy covariance fluxes
(in µg m−2 s−1) are given as different colored bars over differ-
ent times: orange is October 2021, green is November 2021, blue
is December 2021, and red is August 2022. Bottom-up emis-
sions fluxes in µg m−2 s−1 for E1, minimum flux; E2, median
flux; and E3, maximum flux, are given as light-blue, yellow, and
red dashed–dotted vertical lines respectively. Fluxes higher than
200 µg m−2 s−1 are not shown.

spectively, far outside of the range of the results herein, even
at the highest emitting mine.

3.2 Eddy covariance emissions

The cumulative distribution functions (CDFs) of 30 min
eddy covariance observations on a month-by-month basis are
given in Fig. 4. First, it is observed that the flux in December
2021 is always lower than in the other months, by an average
value of 20.4 µg m−2 s−1. The other 3 months have similar
mean and median values, with there being only small dif-
ferences in different probability regions. Specifically in the
percentile range around 44.8 %, the flux in August 2022 is
at most 2.62 µg m−2 s−1 lower than in October 2021, and the
flux in the percentile range near 68.9 % in November 2021
is at most 5.60 µg m−2 s−1 lower than in October 2021. Even
considering the absolute shift between December 2021 and
the other months, the magnitude is relatively small compared
with both the median and variance. Therefore, the sampling
time is assumed to be sufficient to represent the actual vari-
ability in the observed CMM flux over the duration when the
observations were made.

The observed fluxes are presented as a PDF along with the
three bottom-up emissions estimations for the same (xhv),
presented in Fig. 5. The three vertical lines respectively
correspond to the minimum (E1), median (E2), and maxi-
mum (E3) bottom-up emission values calculated in Sect. 3.1,
which are respectively 13.6, 26.3, and 31.1 µg m−2 s−1.
While the distribution is clearly skewed, it is not biased, with
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the boxes covering E1, E2, and E3 representing the central
15.5 % of data, 53.5 % of the data falling into the single box
below E1, and 31.0 % of the data within the remaining boxes
above the ceiling of the bottom-up measurements. Similar to
Frankenberg et al. (2016), this work’s observations have a
long tail and are approximately lognormally distributed.

The bottom-up approach slightly overestimates the median
of the emissions distribution (11.7 µg m−2 s−1), although it
also simultaneously underestimates the mean of the emis-
sions on a mass basis (50.4 µg m−2 s−1) due to the top 14.4 %
of emissions being an order of magnitude higher than the
median range. This means that an insufficiently large sam-
ple, such as that which may be made by infrequent over-
passes by high-resolution satellites or highly intensive but
short-duration field campaigns, risks leading to a biased over-
all representation of the emissions. Since the data are suffi-
ciently representative of the overall distribution of bottom-up
sources on a daily scale, the randomly sampled variability of
the measurements as a whole is assumed to be a measure of
the true variability in time, and this relationship is then ap-
plied on a day-to-day basis to scale the annually distributed
emissions for further analysis.

The rest of this work outlines the use and impact that scal-
ing the annualized emissions and its uncertainty range on a
mine-by-mine basis have using the high-frequency variance
in time applied in a probabilistic manner. These scaled emis-
sions impact both the magnitude and variability of E1, E2,
and E3 to make them consistent with the statistics and vari-
ability of the observations, leading to a new dataset of emis-
sions constructed of all coal mines in Shanxi that shares the
same probabilistic variability observed at xhv. This is reason-
able given that the high-frequency variability is likely linked
to the common geology, economic, and technological con-
ditions found throughout the province and not due to other
external sources, different policies, or differences in how the
coal is mined and/or processed.

3.3 Constrained CMM emissions

The ratio correction factors were applied to every coal mine
after conversion of units from Gg yr−1 to µg m−2 s−1, by as-
suming the area to be that of the property owned by each
coal mining company. In the case where individual mines
do not contain sufficient information needed to successfully
convert units, this work uses average unit conversion values,
computed grouping the remaining mines by their rank, with
149 of the total of 636 coal mines falling into this category.
For those mines with sufficient information, bootstrap simu-
lation was used to obtain the confidence interval (CI) around
the mean. This work then randomly selected data from the
central 95 % of the CI corresponding to the rank of the coal
mine.

Figure 6 shows the CDF of emissions fluxes as a function
of different ranks and technology levels. Each rank has three
curves (Qj , j = 1, 2, 3), corresponding to the base cases E1,

Figure 6. CDFs of emissions as a function of different ranks
(µg m−2 s−1). Rank and Qj (j = 1, 2, 3), which are defined and
described in Sect. 2.2 and 2.4 respectively.

E2, and E3, with details and statistics of constrained CMM
fluxes presented in Table S2. As can be seen across each rank
(except for Outburst) that E1 always has the lowest emis-
sions, E2 always has intermediate emissions, and E3 always
has the highest relative emissions. With respect to the rank,
while low is always lower than default, and default is lower
than high or outburst, high and outburst are not always lower
or higher than each other. While these findings are gener-
ally consistent with the idea that the rank of a coal mine
is related to its emissions, there are exceptions to this gen-
eral rule. Since the current treatment of default rank is a lin-
ear weighting of low-rank and high-rank functions, this it-
self can be further modified in terms of how many different
coal mines there are in each respective weight, allowing the
end user of the emissions to rapidly override the assumptions
made herein and use the default rank to define any new rank
that the user may want.

PDFs of emissions across all mines on a mine-by-mine
basis are analyzed for different ranks in Fig. 7. First, it is
clear that the low-rank fluxes are lower than the observations.
Second, fluxes at both high and outburst ranks generally are
found to be larger than the flux observations. However when
only considering the set of super-high emissions (herein con-
sidered to be larger than 100 µg m−2 s−1), these conditions
consist of 26.5 % of mines with high rank, 22.1 % mines with
outburst rank, and 14.4 % of the observed fluxes.

3.4 Comparison with existing inventories

The results from this study are compared with multiple ex-
isting community emissions databases of CMM that are built
using the bottom-up approach including EDGAR, GFEI, US-
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Figure 7. PDF of all calculated emissions fluxes across all mines,
separated rank by rank in units of µg m−2 s−1, where light blue is
low rank, yellow is high rank, and red is outburst rank. PDFs of flux
observations less than 200 µg m−2 s−1 are given in dark blue.

EPA Community Emissions Data System (CEDS) (Mcduffie
et al., 2020; Hoesly et al., 2018), and Peking University
Emissions database PKU-CH4 (Liu et al., 2021; Peng et al.,
2016). These different datasets estimate their emissions using
a consistent approach based on country-specific activity data,
emissions factors, and technological abatement when avail-
able and claim to cover all major source sectors, including
fossil fuels, and therefore should be capable of representing
CMM emissions. The notable differences include EDGAR
mostly applying a Tier 1 approach, GFEI applying a hybrid
Tier 1 and Tier 2 approach depending on data availability,
and CEDS scaling pre-existing emissions to match country-
specific inventories already reported to the UNFCCC. For
these reasons, the different databases can differ from each
other in terms of sector-by-sector coverage, geospatial distri-
bution, temporal averaging, uncertainty range, and how the
emissions are mapped, among other differences.

EDGAR is a bottom-up global database of anthropogenic
emissions of greenhouse gases and air pollutants that pro-
vides estimates based on data reported by European mem-
ber states or by parties under the UNFCCC, using the IPCC
methodology. EDGAR provides emissions of CH4 at 0.1°×
0.1° spatial resolution and both monthly and annual time res-
olution over the domain studied (Crippa, 2021). GFEI allo-
cates methane emissions from oil, gas, and coal at 0.1°×0.1°
spatial resolution using the national emissions reported by
individual countries to the UNFCCC and mapping them to
infrastructure locations (specifically using IPCC sectors 1B1
and 1B2) (Scarpelli and Jacob, 2021). This work makes spe-
cific comparisons between the computed CMM emissions
and results using EDGAR version 6.0 and GFEI version 2.0.
First, all individual mines were summed together on the same

Figure 8. Grid-by-grid difference between EDGAR (a–c) or GFEI
(d–f) and this work’s respective corrected emissions (a, d) R1,
(b, e) R3, and (c, f) R5, with y axis in units of Gg d−1 and x axis
corresponding to each individual grid.

spatial grid used by EDGAR and GFEI at 0.1°× 0.1° on a
grid-by-grid basis, with the results shown in Table 1. Cases
in which this work’s results are both larger than and smaller
than EDGAR and GFEI results are individually analyzed,
and differences in the probability distribution of emissions
corrected by 10 %, 30 %, 50 %, 70 %, and 90 % are individu-
ally included as R1, R3, R5, R7, and R9. Note that all values
are computed in terms of Gg d−1, so as to represent the ac-
tual variability in the observations made herein and to under-
stand more deeply how annual and other long-term averages
may not be precise without appropriate sampling techniques.
While the 90 % values look to be quite large, there are many
accounts in the real world which match these values, includ-
ing flux tower observations (Xu et al., 2014), a 20 d study
of a well blowout from Ohio which was reported to account
for a quarter of the state’s annual methane emissions (Pandey
et al., 2019), and a large single day’s emissions from an un-
dersea gas pipeline explosion (Yu et al., 2022). Therefore,
the 90 % values provide an essential quantification of low-
probability high-emitting events that actually occur in the
real world.

Throughout Shanxi, 201 grids have non-zero CMM emis-
sions both from this work and EDGAR, with respective
R5 and EDGAR emissions of 9.49 and 14.9 Gg d−1, while
227 grids have non-zero CMM both from this work and
GFEI, with respective R5 and GFEI emissions of 10.4 and
7.99 Gg d−1. There are 272 grids where EDGAR has non-
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Table 1. Statistical comparison of emissions in Gg d−1, production in Tg, grid numbers, mine numbers, and rank.

EDGAR EDGAR EDGAR GFEI GFEI GFEI
positive, positive, negative, positive, positive, negative,

this work this work this work this work this work this work
positive negative positive positive negative positive

R1 0.66 0.06 0.72 0.002
R3 3.36 0.33 3.67 0.01
R5 9.49 0.93 10.4 0.03
R7 26.8 2.63 29.3 0.10
R9 122 11.9 133. 0.43

14.9 8.04 7.99 11.7

Production (Tg) 839 77.2 909 7.10
Grids 201 272 30 227 1114 4
Mines 47 5
Rank 22D+ 16L+ 7H+ 2O 2D+3 L

zero CMM, while this work shows no coal mines, with total
emissions of 8.04 Gg d−1. There are 30 grids where this work
has non-zero CMM and EDGAR has no emissions, with a
resulting R5 value of 0.93 Gg d−1. These grids contain 47
mines, of which 22 are default rank, 16 are low rank, 7 are
high rank, and 2 are outburst rank, accounting for a total raw
coal production of 77.2 Tg. There are 1114 grids where GFEI
has non-zero CMM, while this work shows no coal mines,
with a total emissions of 11.7 Gg d−1, between our R5 and
R7 values. There are four grids where this work has non-zero
CMM and GFEI has no emissions, with a resulting R5 value
of 0.03 Gg d−1. These four grids contain five mines, of which
two are default rank and three are low rank, accounting for a
total raw coal production of 7.10 Tg.

Mine-by-mine differences between EDGAR, GFEI, and
this work’s CMM are respectively shown in Fig. 8, where
the x axis represents each individual grid that contains non-
zero emissions of both datasets, and the y axis represents the
difference of EDGAR/GFEI – our CMM emissions in units
of Gg d−1. EDGAR has 7 grids with values much smaller
than R1 (in total summing to 0.014 Gg d−1); 66 grids with
values between the R3 and R5 values; and a very small
number of grids, 12, larger than the R9 values. GFEI has
58 grids with values much smaller than R1 (in total sum-
ming to 0.13 Gg d−1); 55 grids with values between the R3
and R5 values; and a very small number of grids, 10, larger
than the R9 values. This work’s Shanxi-wide results have
a bottom-up CMM range of E1 to E3 ranging from 4.41–
7.77 Tg yr−1 and a post-correction CMM emissions range
at R3, R5, and R7 respectively of [1.35,3.81,10.75] Tg yr−1.
While both EDGAR and GFEI summed Shanxi-wide emis-
sions are larger than R5 and smaller than R7 values, this
is not the case when those locations at which there are
no mines are removed. EDGAR has a Shanxi-wide CMM
of 8.38 Tg yr−1, of which the CMM at locations without
mines is 2.94 Tg yr−1. GFEI has a Shanxi-wide CMM of

7.19 Tg yr−1, of which the CMM at locations without mines
is even larger, 4.27 Tg yr−1.

To visualize the spatial differences, maps of the grid-by-
grid annual average emissions from EDGAR and GFEI are
overlapped with the locations of the mines used in this work
in Figs. 9 and 10 respectively. A deeper investigation is done
into two sets of regions: those in which this dataset has emis-
sions and there are no emissions in one or both of EDGAR or
GFEI and those regions in which there are no coal mines, but
one or both of EDGAR and GFEI have emissions. Both sets
of improperly mapped emissions are indicative of systematic
bias or error and can not be corrected merely through scaling
(Cohen et al., 2011).

Throughout Shanxi, GFEI shows no emissions at 5 mines
and extremely low emissions at 5 more mines, while EDGAR
shows no emissions at 47 mines and extremely low emis-
sions at 38 additional mines. One specific and fascinating
detail to investigate is that the grid in which this work’s flux
tower measurements of CH4 were made (where xhv is lo-
cated) happens to be one of these special grids. EDGAR re-
ports zero emissions, and GFEI reports very low emissions,
5.28 µg m−2 s−1, while our E1 value is 13.6 µg m−2 s−1, and
our corrected 30 % ratio is 4.13 µg m−2 s−1.

For this reason, a comparison on a grid-by-grid and mine-
by-mine basis over the entire city of Changzhi is con-
ducted. The Changzhi-wide statistics of (minimum, median,
maximum, and mean) emissions of EDGAR on a grid-
by-grid basis where coal mines exist are 0.12, 5.29, 67.7,
and 13.2 µg m−2 s−1, respectively, while their same statis-
tics within Changzhi on grids which do not have coal emis-
sions are 0.18, 0.55, 36.9, and 4.38 µg m−2 s−1. This work’s
CMM inventory at xhv has values of E1 to E3 ranging from
13.6–31.1 µg m−2 s−1, with the corresponding final 10 %,
30 %, 50 %, 70 %, and 90 % emissions values after ratio cor-
rection being [0.81,4.13,11.7,33.0,150] µg m−2 s−1, respec-
tively. This indicates that the EDGAR emissions in general
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Figure 9. The mapped annual average emissions from EDGAR are overlapped with the locations of the mines used in this work. Note that
the region located inside of the dashed black box is shown in more detail on the top right as an EDGAR CH4 emissions hotspot. However,
there are no actual coal mines anywhere in the box. This is supported by the RGB image (from ESRI) of the actual location, which shows a
residential area.

have both a lower mean and a narrower distribution as com-
pared with the results within Changzhi, as well as a signifi-
cant fraction of urban CH4 emissions misidentified as being
due to fossil fuels.

A map of the grid-by-grid average GFEI CMM emissions
is overlapped with the locations of the mines used in this
work in Fig. 10. As observed, there are some regions which
exist in GFEI which also exist in our dataset, there are other
regions in GFEI which are not identified in our dataset, and
there are regions identified in our dataset which do not exist
in GFEI. As demonstrated in Fig. 8, some of the regions con-
taining mines in this work have effectively almost no emis-
sions as reported by GFEI, indicating that there is likely
a spatial mismatch. The total emissions in regions which
have mines but are not reported by GFEI range from 0.74–
10.1 Gg yr−1 at E1 and from 1.77 to 14.72 Gg yr−1 at E3.

In the subregion shown in Fig. 10, GFEI reports emissions
at six grids, with a range from a minimum of 0.17 Gg yr−1

to a maximum of 0.59 Gg yr−1. This work’s total emissions
over the mines reports emissions at five of these grids, while
there are none reported at the largest GFEI grid within this re-
gion (0.59 Gg yr−1). The emissions calculated by this work’s
approach at the minimum of these GFEI grids (0.17 Gg yr−1)
are computed to have a 30 %, 50 %, and 70 % value of 10.3,
29.2, and 82.3 Gg yr−1, respectively, while the emissions at
the maximum of these GFEI grids (0.58 Gg yr−1) are calcu-
lated to have a 30 %, 50 %, and 70 % value of 12.4, 35.2, and

99.3 Gg yr−1. These findings show that scaling GFEI will not
lead to a good match with the CMM emissions, since the or-
ders of magnitude of the observed mine-by-mine emissions
are not the same as the GFEI emissions, and even using dif-
ferent scaling factors for different rank mines would also be
insufficient.

There are regions identified in this work at which GFEI
and EDGAR both have very high emissions, in which there
is actually a large urban center (eastern Taiyuan) or indus-
trial center (southwestern Linfen and northeastern Xinzhou),
all without any mines. Another work (Li et al., 2023) iden-
tifies industrial boilers as the major source of emissions in
one of these regions, some of which are powered by natural
gas. Whether such a spatial mismatch or mis-identification
has occurred, or a more fundamental error in how the CH4
emissions are partitioned for industrial sources, is unfortu-
nately not provided by the EDGAR or GFEI teams and can
not be investigated further.

Following the results of Brandt et al. (2014), measure-
ments at all scales show that official inventories underesti-
mate actual CH4 emissions conservatively defined as 1.25–
1.75 times EPA GHGI estimates. For this reason, the R7
value obtained in this work, which is about 1.3–2.4 times
higher than bottom-up estimates in coal mining sector, seems
to be a decent fit. This concept of official inventories un-
derestimating CMM is further highlighted by the issue of
emissions from closed coal mines. Even though the num-
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Figure 10. The mapped annual average emissions from GFEI are overlapped with the locations of the mines used in this work. Note that the
region located inside of the dashed black box is shown in more detail on the top right as a region with almost zero emissions by GFEI CH4
emissions. However, the actual location contains multiple coal mines. For ease of viewing, only 2 of the 25 coal mines are shown on the map
(from ESRI).

ber of coal mines being stopped due to various regulations
is increasing, it seems that the quantification of abandoned
mine methane (AMM) emissions is not considered reason-
able. In this work a single abandoned mine is identified, and
its R3, R5, and R7 emissions are calculated to be 0.48, 1.35,
and 3.81 Gg yr−1, much larger than the China-wide AMM
emissions of 4.7± 0.94 Tg in 2020 produced by Chen et
al. (2022).

While there are many such papers making claims that
top-down estimates of CH4 emissions are slightly lower
than bottom-up approaches at global scale (i.e. Saunois et
al., 2020), there are no actual data available over Shanxi
Province, and therefore, such a comparison is not possible
at the present time. However, Maasakkers et al. (2022) used
TROPOMI data to invert CH4 emissions at a city-level spa-
tial scale and found that the emissions are 1.4 to 2.6 times
larger than reported in commonly used emission inventories.
While this compares reasonably on average with our mine-
by-mine values over the range from R5 to R7, as already
detailed above, a more precise grid-by-grid approach is re-
quired to make a thorough comparison, since otherwise mis-
attribution may play a significant role.

4 Conclusions

This work has compiled a mine-by-mine and high-temporal-
resolution inventory of Shanxi Province’s 2019 CMM emis-
sions. This inventory provides a specific location for each
coal mine, including inactive mines. The technology-based
approach first employed produces a range of emissions from
4.41–7.77 Tg CH4 in 2019. To explore the impact of relax-
ing this assumption, substituting the EF from high gas mines
instead of the more conservative weighted mixture approach
was used to determine an upper-end constraint on the over-
all methane emissions. The total net increase in emissions is
computed to be 1.71(1.67–1.82) Tg over Shanxi as a whole,
leading to a final net total emission of 4.41–9.47 Tg. The
follow-up approach of scaling the observations based on the
PDF analysis of high-frequency eddy covariance methane
measurements was proposed as a correction. This set of ra-
tio correction factors was applied and yielded a set of emis-
sions at the 10 %, 30 %, 50 %, 70 %, and 90 % level of
[0.72,3.69,10.4,29.4,133] GgCH4 d−1. By preparing a PDF,
such extreme events as occasionally observed can also be
analyzed, consistent with the eddy covariance observations
which show a lognormal distribution.

Comparison between our bottom-up inventories with
EDGAR and GFEI reveals that a proper spatial and temporal
comparison is essential. While on a province-wide basis both
EDGAR and GFEI lie between this work’s 50 % and 70 %
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values, with EDGAR closer to our 70 % value than GFEI, this
is not a spatially coherent comparison. While looking only at
the geospatial grids which actually contain coal mines, both
EDGAR and GFEI are found in our 30 % to 50 % range, and
therefore both underestimate the median emissions. Further-
more, in both cases, on a mine-by-mine basis, the values
are generally found to be slightly too low, while there are
also some mines which are an order of magnitude or more
too high. On top of this, both datasets have a considerable
amount of CMM observed in regions which are urban, or
which are commercial, and which do not have any mines.
This indicates that in general the values of EDGAR and GFEI
CMM Shanxi-wide that are slightly too low are due to a few
serious distortions. Specifically, these datasets generally have
a low bias and underestimate CMM on the vast majority of
grids in which there is overlap. The datasets then offset this
bias in two ways: first through a systematic overestimation
of CMM on some grids at the high end of the distribution
and second through including emissions on a large number
of grids which do not actually have any coal mines. For this
reason, it is essential to analyze the total emissions not only
on an overall basis but also in terms of location, magnitude,
and variability, otherwise comparisons with and validation
using remotely sensed products and models become a case
of comparing things that may have the same name but are
actually quite different.

The scaling done in this work is based on 55 d of obser-
vations at a single large coal mine. While the results seem
relatively consistent month to month, the variability may be
found to also exhibit a different characteristic if additional
sites are analyzed. Furthermore, analyzing different types of
sites based not only on production but also based on differ-
ent underlying geological conditions or methods by which
the coal was extracted may also provide deeper insights.
Given that the wind patterns are different in this region dur-
ing different phases of both El Niño and La Niña, as well as
other dynamical regimes (Baldwin et al., 2001), continuing
to measure data over a longer period of time may lead to a
further refinement of the probability distribution of the ob-
served fluxes. On top of this, mining leakage or procedures
may be different in very cold months from very hot months,
and therefore a better representation of the emissions under
different temperature conditions, especially with respect to
how they change the different mining procedures, may also
help to improve the accuracy. The goal is to provide enough
data and cover enough cases, so as to offer the most improved
possible set of observations, so that the more broad and well-
supported range of emissions can be constrained, allowing
for ultimate development of CMM mitigation.

Comparisons with existing CMM emissions are shown
to demonstrate greater spatial and temporal variability, na-
tional and international inventories and carbon accounting,
and more process and model refinement and development.
Although aggregated emissions are generally of the same or-
der of magnitude at the province level, there are quantita-

tive differences observed in terms of spatial heterogeneity,
source type, and temporal variability between our results and
the different inventories. While EDGAR and GFEI have to-
tal CMM emissions which are similar, that is in part because
both add in extra emissions over regions that do not have
mines and have been unidentified in this work clearly as be-
ing urban and/or commercial/industrial. In addition to this,
both datasets underestimate existing CMM on average across
most of the mines but occasionally have a single mine which
has emissions even larger than even the 90 % value calcu-
lated in this work. As a result, without a precise spatial and
temporal distribution, comparisons between top-down esti-
mates from satellite and other attempts at validation of emis-
sions can not be done in a reasonable or consistent manner.
This work therefore provides a platform by which a spatially
and temporally quantifiable set of CMM emissions can be
obtained. It is hoped that this work can inform or support
present and future technical, climate policy, and/or mitiga-
tion efforts to understand and control CMM.

Data availability. The EDGAR v6.0 Greenhouse Gas
Emissions are available at https://doi.org/10.2760/173513
(Crippa et al., 2021b). The GFEI v2 data are avail-
able at https://doi.org/10.7910/DVN/HH4EUM (Scarpelli
and Jacob, 2021). The individual CMM emissions in
Shanxi Province compiled in this study are available at
https://doi.org/10.6084/m9.figshare.23265644 (Qin et al., 2023.).
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