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S1 WRF-Chem model setup and validation 

S1.1 Model setup 

WRF-Chem v4.2 was employed to analyze the causes of PM2.5 pollution in Chengdu. Multiple two-way nested simulations 

were conducted at 27-, 9-, and 3-km resolutions. The 27-km grid domain (D01, 128×108) almost entirely covered China, and 

the 9-km grid domain (D02, 115×91) mainly covered Sichuan Province. The 3-km grid domain (D03, 61×52) included all 5 

areas of Chengdu (Fig. S1). There were 35 layers along the vertical direction, and the atmospheric pressure at the top of the 

model layer was 50 hPa. The initial and boundary conditions of the meteorological field were provided by the National Centers 

for Environmental Prediction (NCEP) reanalysis data with a resolution of 1°×1°. The chemical initial and boundary conditions 

relied on the output results of the Community Atmosphere Model with Chemistry (CAM-Chem). The underlying surface data 

were derived from 2013 MODIS data (Liu et al., 2018). The physical parameterization schemes included the Purdue Lin 10 

microphysics scheme (Chen and Sun, 2002), YSU planetary boundary layer scheme (Hong et al., 2006), Grell 3D ensemble 

cumulus parameterization scheme (Grell, 1993; Grell and Devenyi, 2002), Dudhia shortwave scheme (Dudhia, 1989), RRTM 

longwave scheme (Mlawer et al., 1997), Unified Noah Land Surface Model (Tewari et al., 2004), revised MM5 surface layer 

scheme (Jimenez et al., 2012) and single-layer urban scheme (Chen et al., 2011). The chemical schemes adopted in the 

simulations included the MOZART gas-phase chemical mechanism (Emmons et al., 2010), which yields the advantage of 15 

photochemical pollution simulation, MOSAIC with a 4-bin aerosol process (Zaveri et al., 2008) and the TUV photolysis 

mechanism (Madronich, 1987). The simulation period ran from 23 January to 7 February, for a total of 16 days, with the first 

3 days being used as the spin-up time for the model. 

The Multi-resolution emission inventory for China (MEIC) in 2017 was employed for anthropogenic emissions. In addition, 

biogenic emissions were provided by MEGAN (Guenther et al., 2006), and dust emissions relied on the GOCART scheme 20 

(Ginoux et al., 2004). 

 

Figure S1: WRF-Chem simulation domain settings. 
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S1.2 Model validation 

Model performance validation is a key step in all air quality model applications, i.e., to evaluate whether the model results can 25 

suitably reproduce the magnitude and spatiotemporal variation in the observed target pollutants (Huang et al., 2021). In this 

study, PM2.5 concentration at the bottom of the vertical layer of the WRF-Chem model were compared to the observed values 

to verify the accuracy and reliability of the simulation results. The correlation coefficient (R), normalized mean bias (NMB) 

and normalized mean error (NME) were considered to evaluate the simulation results under the baseline scenario. R can reflect 

the model ability to capture temporal variations in observations, and NMB and NME can reflect the model ability in capturing 30 

the magnitude of observations (Huang et al., 2021). The equations to calculate these performance metrics are as follows:  

𝑅 =
∑[(𝑃𝑖−�̅�)×𝑂𝑖−�̅�)]

√∑(𝑃𝑖−�̅�)
2×∑(𝑂𝑖−�̅�)

2
          (1) 

NMB =
∑(𝑃𝑖−𝑂𝑖)

∑𝑂𝑖
× 100          (2) 

NME =
∑|𝑃𝑖−𝑂𝑖|

∑ 𝑂𝑖
× 100          (3) 

where Pi is the simulated value of hour i, and Oi is the observed value of hour i. The results of hourly PM2.5 concentration 35 

evaluation are shown in Fig. S2.  

 

Figure S2: Temporal variation in the simulated and observed surface PM2.5 concentration at the Chengdu station. 

We found that the R value between the simulated and observed PM2.5 concentrations was equal to 0.73 at the Chengdu station. 

this indicates a good correlation between the simulated and observed values. In addition, the rapid increase of PM2.5 40 

concentration during the two haze processes was also well reproduced. The simulated and observed NMB and NME values 

were −24.2% and 27.1%, respectively, indicating that the model underestimates the PM2.5 concentrations. The R, NMB and 

NME of this study are consistent with the suggested parameter value intervals in Huang et al (2021), indicating that the 

simulation results can better respond to the current situation of PM2.5 pollution in Chengdu, and the simulation results in this 

study can be used for the analysis of the causes of PM2.5 pollution in Chengdu. 45 
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Figure S3: The clustering results of air masses during the study period and the corresponding PM2.5 mass concentration 

for each cluster, and the bar chart shows the composition of air masses at different periods. 

 50 

S2 Definition of different haze alarms 

“Yellow” haze alarm: It is predicted that the daily average of air quality index (AQI) > 200 (or PM2.5 mass concentration >115 

μg m−3) will last for 2 days (48 hours) or more, and did not meet higher level warning standards.  

“Orange” haze alarm: It is predicted that the daily average of AQI > 200 will last for 3 days (72 hours) or more, or PM2.5 

mass concentration >115 μg m−3 will last for 3 days (72 hours) or more, and PM2.5 concentration >150 μg m−3 will last for 1 55 

day (24 hours) or more, and did not meet higher level warning standards.       

“Red” haze alarm: It is predicted that the daily average of AQI > 200 will last for 4 days (96 hours) or more, and that the 

daily average of AQI > 300 will last for 2 days (48 hours) or more; Or it is predicted that the daily average of AQI will reach 

500. 

For detailed information on emergency response measures during different alarm periods, such as health protection guidance 60 

measures, initiative emission reduction measures and mandatory emission reduction measures, please refer to the Chengdu 

Ecological Environment Bureau (https://sthj.chengdu.gov.cn/cdhbj). 

https://sthj.chengdu.gov.cn/cdhbj
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Figure S4: The diurnal variation of T and RH in different periods.  65 

 

 

Figure S5: Average meteorological conditions in different periods. 

 

T
 (

℃
)

R
H

 (
%

)

Time Time



5 
 

 70 

Figure S6: WCWT maps of different PM2.5 chemical components during (a) NP-1, (b) Haze-1 and (c) Haze-2 period 

(CD: Chengdu; SC: Sichuan Province; SX:Shaanxi Province; CQ:Chongqing; GZ:Guizhou Province; GX:Guangxi 

Province; YN: Yunnan Province). 

 

 75 

Figure S7: Pollutant parameters in different periods. 
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Figure S8: The diurnal variation of O3 in different periods. 

 80 

S3 Introduction to PMF factors 

The source factors of PM2.5 were apportioned by applying the PMF receptor model. The identification of the sources was based 

on certain chemical tracers that are generally presumed to be emitted by specific sources and are present in significant amounts 

in the collected samples. At the same time, it is necessary to consider the local pollution characteristics of Chengdu. Ultimately, 

six factors were identified in this study, and the source characteristics of all these factors are shown in Fig. S9. 85 
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Figure S9: PMF source profiles for PM2.5 samples in terms of concentrations and percentages. 

Factor 1 was heavily weighted by Na+, Mg2+, Ca2+, Al and Si, accounting for 41.1%, 67.2%, 50.9%, 65.8% and 49.8%, 

respectively, which was defined as the dust source (Sun et al., 2022; Zhang et al., 2023). Factor 2 was mainly weighted by K+ 

(51.0%) and Na+ (26.3%), which were identified as indicators of biomass burning (Zhang et al., 2016). Factor 3 was identified 90 

by a high loading of Cl− (64.8%), Pb (46.5%) and SO2 (42.9%), and a moderately loading of OM, EC, Cd, NO2 and CO, which 

were regarded as signals of coal combustion (Zhang et al., 2012; Zhang et al., 2016; Cai et al., 2017). Factor 4 had a high 

abundance of Mn, Co, Zn and Pb, which are related to industrial processes (Chen et al., 2017; Dall'osto et al., 2008). Factor 5 

can be considered as vehicular emissions, being mostly loaded with OM (32.9%), EC (42.9%), NO2 (62.3%) and some metal 

elements released during the operation of motor vehicles, such as Mn, Fe, Cu and Zn (de Miranda et al., 2018; Chen et al., 95 

2017). A high loading of NO3
− (51.9%), SO4

2− (59.6%) and NH4
+ (57.6%), along with a moderate abundance of OM (30.6%), 

is apparent in Factor 6, which is typical of the secondary sources profile (Zhang et al., 2023; Huang et al., 2021). 

 

 

Figure S10: Relative contributions of local sources and regional transmission to PM2.5 during different periods. 100 

 

Table S1. Air quality and meteorological conditions of different cities in China in the same time period and the 

interannual changes in Chengdu. 
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NO2 (μg m−3) 27.1±18.7 32.0±18.4 26.2±14.4 54.4±27.0 49.6±20.0 49.7±13.0 43.5±19.2 

SO2 (μg m−3) 3.2±2.1 7.4±1.6 5.7±0.7 14.3±6.1 16.1±12.1 8.5±3.3 3.6±1.4 

O3 (μg m−3) 41.5±21.0 60.9±22.7 54.7±36.5 39.0±28.5 16.0±16.9 38.5±19.8 44.1±34.5 

CO (mg m−3) 0.5±0.3 0.7±0.2 0.7±0.2 1.1±0.5 1.5±0.4 1.0±0.2 0.9±0.2 

T (oC) −0.5±5.1 4.8±4.6 14.8±5.3 3.3±4.0 5.9±2.6 3.0±2.5 11.0±3.0 

RH (%) 31.4±15.8 64.1±21.7 69.7±24.4 32.7±14.0 80.5±15.0 75.4±20.8 62.4±11.6 

WS (m s−1) 2.0±1.4 2.2±1.5 2.2±1.6 1.7±1.1 1.7±1.1 1.5±1.0 0.5±0.4 
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