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Abstract. Desert dust is an important atmospheric aerosol that affects the Earth’s climate, biogeochemistry, and
air quality. However, current Earth system models (ESMs) struggle to accurately capture the impact of dust on the
Earth’s climate and ecosystems, in part because these models lack several essential aeolian processes that couple
dust with climate and land surface processes. In this study, we address this issue by implementing several new
parameterizations of aeolian processes detailed in our companion paper in the Community Earth System Model
version 2 (CESM2). These processes include (1) incorporating a simplified soil particle size representation to
calculate the dust emission threshold friction velocity, (2) accounting for the drag partition effect of rocks and
vegetation in reducing wind stress on erodible soils, (3) accounting for the intermittency of dust emissions due to
unresolved turbulent wind fluctuations, and (4) correcting the spatial variability of simulated dust emissions from
native to higher spatial resolutions on spatiotemporal dust variability. Our results show that the modified dust
emission scheme significantly reduces the model bias against observations compared with the default scheme
and improves the correlation against observations of multiple key dust variables such as dust aerosol optical
depth (DAOD), surface particulate matter (PM) concentration, and deposition flux. Our scheme’s dust also cor-
relates strongly with various meteorological and land surface variables, implying higher sensitivity of dust to
future climate change than other schemes’ dust. These findings highlight the importance of including additional
aeolian processes for improving the performance of ESM aerosol simulations and potentially enhancing model
assessments of how dust impacts climate and ecosystem changes.
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1 Introduction

Desert dust is responsible for over half of the atmospheric
mass loading of particulate matter (PM) (Kinne et al., 2006;
Kok et al., 2017) and produces multiple impacts on the Earth
system. Dust contributes to the aerosol radiative effect and
forcings directly by absorbing and scattering solar and terres-
trial radiation (Di Biagio et al., 2020; Ke et al., 2022; Ade-
biyi et al., 2023; Kok et al., 2023) and indirectly by regu-
lating liquid and ice cloud formation (e.g., McGraw et al.,
2020; Froyd et al., 2022). Furthermore, dust provides es-
sential nutrients such as iron and phosphorus to terrestrial
and ocean ecosystems, thereby promoting biogeochemical
activities and enhancing ecosystem carbon uptake (e.g., Ma-
howald et al., 2010; Hamilton et al., 2020). However, dust
also causes pulmonary and cardiovascular diseases, posing a
threat to human health (e.g., Esmaeil et al., 2014; Goudie,
2014; Achakulwisut et al., 2019). Despite its significance,
global climate models (GCMs) and Earth system models
(ESMs) still face challenges in accurately simulating the spa-
tiotemporal distribution of dust aerosols (Zhao et al., 2022),
leading to significant uncertainties in the assessments of their
climatic impacts (Klose et al., 2021; Li et al., 2021). Current
models also struggle to simulate the impacts of past and fu-
ture climate and land use changes on dust emissions (Kok et
al., 2023). Therefore, it is critical to improve dust simulations
to better predict future dust changes and better simulate dust
impacts on climate and climate change.

The difficulty that GCMs and ESMs face in capturing
the spatiotemporal variability of atmospheric dust can be at-
tributed to two main factors. First, current dust emission pa-
rameterizations in ESMs are likely conceptually incomplete.
There is still a limited understanding of dust emission me-
chanics, and several aeolian processes are not yet included in
model parameterizations. For instance, the wind drag parti-
tion effects due to the presence of nonerodible roughness ele-
ments, interparticle forces involved in soil crusts (Rodriguez-
Caballero et al., 2018), and human impacts such as agricul-
ture (e.g., Kandakji et al., 2020; Xia et al., 2022) on dust
emission are not accounted for in many existing ESM dust
parameterizations. As a result, many ESMs use preferential
source masks (e.g., Ginoux et al., 2001; Zender et al., 2003a)
to eliminate dust from marginal regions. Second, the exist-
ing dust emission parameterizations are not well constrained
due to inadequate information and constraints on relevant pa-
rameters. For example, past studies show that the dust emis-
sion threshold wind speed should be modeled using a median
soil particle diameter Dp (Martin and Kok, 2019). Leung et
al. (2023) used previous soil data studies to show that the
median Dp is about ∼ 130 µm, in contrast to the existing
parameter range of 75–500 µm (e.g., Zender et al., 2003a;
Laurent et al., 2008). Furthermore, many meteorological and
land surface variables such as wind speed and soil moisture,
which dust emissions are heavily dependent on (Zender et
al., 2003a), contain biases and are challenging to model well

in ESMs. There is a need to improve dust emission modeling
in ESMs by incorporating more physical aeolian processes
and setting more accurate parameter constraints.

Additionally, dust modeling in GCMs and ESMs suffers
from a grid resolution-dependence problem, especially since
dust emissions depend nonlinearly on meteorological and
land surface fields (Feng et al., 2022). Coarse GCMs with
horizontal resolutions of 100 km cannot capture local-scale
(∼ 1 km scale) wind maxima or other small-scale meteo-
rological processes such as mesoscale convective systems
(MCSs) and low-level jets, leading to an underestimation of
emissions over specific regions (Ridley et al., 2013; Gliß et
al., 2021; Meng et al., 2021). This scale-dependence prob-
lem is exacerbated by dust emission being a threshold pro-
cess that scales with friction velocity u∗ to a power of∼ 2–4,
resulting in dust emission schemes being further sensitive to
inaccuracies in wind speed and other input data (such as soil
moisture and vegetation cover). Although some ESMs em-
ploy a Weibull distribution to address the subgrid spatial vari-
ability of winds (e.g., Menut, 2018), it is challenging to rep-
resent the shape parameter k of the Weibull distribution be-
cause of a lack of fine-resolution global wind datasets to cal-
ibrate a global distribution of k (Tai et al., 2021). Moreover,
many GCMs simply do not employ any subgrid wind distri-
bution to address the scale-dependence problem. In addition,
other meteorological and land surface variables such as soil
moisture and vegetation contribute to the scale-dependence
problem of dust emissions. To improve the accuracy of sim-
ulations and to make ESM dust emission simulations self-
consistent across different horizontal grid resolutions, it is
crucial to address and mitigate this scale-dependence prob-
lem.

In our companion paper (Leung et al., 2023), we presented
four improvements to enhance the physical realism of dust
emission parameterizations in ESMs. These include (1) a re-
vised soil median diameter to better estimate the dust emis-
sion threshold, (2) a drag partition scheme considering the
impacts of both rocks and vegetation in reducing soil ero-
sion by winds, (3) a dust emission intermittency parameteri-
zation accounting for boundary-layer turbulent wind fluctua-
tions that initiate and cease dust emissions, and (4) an upscal-
ing approach to correct the spatial variability of dust emis-
sions from native-resolution ESMs to match that of high-
resolution dust emission simulations, with the collective aim
of these improvements to better capture the subgrid spatial
variations of dust emissions. Our implemented scheme con-
tains updated and more comprehensive dust emission pro-
cesses. We will examine in this study how including more
aeolian processes will benefit dust modeling performance.

In this study, we integrate the improved dust emission
scheme from Leung et al. (2023) into a premier ESM, the
Community Earth System Model version 2 (CESM2). We
describe the default and updated dust emission modules
in Sects. 2 and 3, respectively. In Sect. 4, we provide an
overview of the observational and reanalysis datasets used
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to assess the effectiveness of our new scheme, including
datasets of dust aerosol optical depth (DAOD), dust PM con-
centration, and dust deposition flux. In Sect. 5, we then eval-
uate the new dust emission scheme by comparing the sim-
ulations against observations. We summarize our study in
Sect. 6.

2 Description of CESM2 and its default dust scheme

In this section, we summarize the default schemes and set-
tings in CESM2. Section 2.1 describes the default dust
emission scheme in the Community Land Model version 5
(CLM5), the land component of CESM2, including the dust
emission threshold scheme (Sect. 2.1.1) and the emission
flux parameterization (Sect. 2.1.2). Section 2.2 summarizes
the atmospheric dust simulation in the Community Atmo-
sphere Model version 6 (CAM6), the atmospheric compo-
nent of CESM2, including transport, size distribution, and
deposition. Section 2.3 describes the CESM2 configuration
in this study.

2.1 Default CESM2 dust emission scheme

2.1.1 Dust emission threshold scheme

Recent findings indicated that the dust emission process is a
double-threshold mechanics problem (Kok et al., 2012; Co-
mola et al., 2019). The fluid threshold, or static threshold u∗ft,
is the threshold friction velocity above which winds initiate
emissions, whereas the impact threshold, or dynamic thresh-
old u∗it, is the threshold friction velocity below which winds
are too weak to sustain emissions (Kok et al., 2012). Without
considering the soil moisture effect fm on enhancement of
the fluid threshold (Eq. 1), u∗it is ∼ 80 % of the “dry” fluid
threshold u∗ft0 (Sect. 3.4; Kok et al., 2012; Comola et al.,
2019). However, if substantial soil moisture is present (e.g.,
over semiarid regions), the difference between u∗it and u∗ft
could be very large (see Fig. S3a–b) since u∗it is not a func-
tion of soil moisture (see Eq. 11). Nevertheless, most dust
emission schemes in global and regional models employ u∗ft
as the single threshold for both the initiation and termination
of dust emission flux in models (Menut et al., 2013; Klose
et al., 2021; Tai et al., 2021; Li et al., 2022a; LeGrand et al.,
2023), which could be problematic (see Sect. 3.4). The cur-
rent u∗ft parameterization scheme assumes that u∗ft is depen-
dent on the particle size distribution (PSD) and the amount of
moisture in the soil (Iversen and White, 1982; Marticorena
and Bergametti, 1995; Zender et al., 2003a). u∗ft is modeled
as follows:

u∗ft = u∗ft0(Dpρa)fm(w), (1)

where u∗ft0 is the “dry” fluid threshold friction velocity
(m s−1) with no soil moisture on a smooth and bare sur-
face. u∗ft0 is a function of Dp, which in this study will be

the median diameter of a mixed soil, and ρa is the air den-
sity (kg m−3). fm is the correction factor for the presence
of gravimetric soil moisture w (kg water/kg soil); fm ≥ 1
(mainly over semiarid regions), such that soil moisture pro-
tects soil particles from being lifted. u∗ft is the “wet” fluid
threshold accounting for the moisture effect. We note that
other factors can also affect u∗ft, such as salt concentra-
tion, electrostatics (Kok and Renno, 2009), and surface crusts
(Rodriguez-Caballero et al., 2022), but most of these fac-
tors are not included in most modeling studies because they
are not well understood and modeled (Shao et al., 2011;
Foroutan et al., 2017).

The variables in Eq. (1) are computed as follows. First,
u∗ft0 is parameterized in CLM following the Iversen and
White (1982; hereafter I&W82) scheme (Oleson et al.,
2013) as a function of Dp and ρa. CLM5 uses a global
soil diameter of Dp = 75 µm that corresponds to the lowest
emission threshold (Zender et al., 2003), and thus the
spatiotemporal variability of u∗ft0 purely follows that of
ρa. Then, CLM5 calculates fm, the effect of soil mois-
ture on enhancing u∗ft following Fécan et al. (1999). fm
is a function of the difference between the gravimetric
soil moisture w (kg water/kg soil) and a threshold value
wt. fm > 1 once gravimetric moisture is bigger than wt,
leading to an increase in u∗ft (see Oleson et al., 2013;
see also the CLM5 technical documentation at GitHub:
https://escomp.github.io/ctsm-docs/versions/master/html/
tech_note/Dust/CLM50_Tech_Note_Dust.html, last access:
20 February 2023):

fm =
√

1+ 1.21[100(w−wt) ]0.68 for w >wt, (2a)

wt = 0.01a(17fclay+ 14f 2
clay)= 0.01a(

0.17(%clay)+ 0.0014(%clay)2
)
, (2b)

where fclay ∈ [0,1] is the clay fraction, % clay= 100fclay
is the clay percentage, and a is a tunable constant typically
around 0.5–2 (a = 1 was adopted in Kok et al., 2014b) that
was set to 1/fclay for tuning purposes in CLM5 (Oleson et
al., 2013). The threshold moisture wt increases with fclay,
since clay efficiently adsorbs water such that more moisture
is required to enhance u∗ft. Note that we express w as a frac-
tion (kg water/kg soil), while previous dust modeling studies
usually expressed gravimetric soil moisture w′ in percentage
(i.e., w′ = 100w; Fécan et al., 1999). Equation (2) is thus
identical to those in other dust modeling studies (e.g., Kok et
al., 2014b; Foroutan et al., 2017). CLM5 currently uses the
soil texture dataset from the Food and Agriculture Organiza-
tion (FAO) for fclay but will likely update to more recently
developed datasets (e.g., SoilGrids; Hengl et al., 2017) in the
future.
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2.1.2 Dust emission flux calculation

After obtaining u∗ft, there are multiple published dust emis-
sion equations that relate the global dust emission flux to a
given u∗ft and friction velocity u∗ (Gillette and Passi, 1988;
Shao et al., 1996; Ginoux et al., 2001; Zender et al., 2003a;
Klose et al., 2014). The default CLM5 uses the Zender et
al. (2003a) scheme (hereafter Z03), also known as the DEAD
scheme. Z03 is based on the Marticorena and Bergametti
(1995) scheme and the White (1979) equation for saltation,
which are used by many other global models (e.g., Foroutan
et al., 2017; Meng et al., 2021; Klose et al., 2021; Wu et al.,
2021). The Z03 dust emission equation has the form of

Fd = STCMBϕfbare
ρa

g
u3
∗s

(
1−

u 2
∗t

u2
∗s

)(
1+

u∗t

u∗s

)
for u∗s > u∗t, (3)

where u∗s is the soil surface friction velocity (m s−1; u∗s =
u∗ in the default CESM2; Oleson et al., 2013), Fd is the dust
emission flux (kg m2 s−1), u∗t is the dust emission thresh-
old (m s−1; u∗t = u∗ft in Z03), T = 5×10−4 is a proportion-
ality constant in CLM5 (Oleson et al., 2013), CMB = 2.61
is the saltation constant (Oleson et al., 2013), and ϕ is the
sandblasting efficiency (m−1). S is the source function used
to characterize the preferential source regions where fluvial
sediment accumulates and to scale down the emission flux
out of desert regions (Zender et al., 2003b). fbare is the bare
land fractional area; CLM5 uses a simple parameterization
in which fbare is a function of vegetation area index (VAI)
defined as the sum of the leaf area index (LAI) and the stem
area index (SAI), so that dust emission scales down linearly
with VAI and drops to zero when VAI > VAIthr (= 0.3; Ma-
howald et al., 2010; Kok et al., 2014b):

fbare ∝ (1− fv), (4)

where fv = VAI/VAIthr is the vegetation cover fraction.
Other factors also considered to decrease the bareness of the
land include the grid fraction of a lake, snow cover, and the
soil liquid content (see Oleson et al., 2013; see also Eq. (13)
in Zender et al., 2003a).

2.2 Atmospheric dust simulation

The land model (CLM5) simulates the dust emission as a
function of soil and land properties (following Sect. 2.1),
and the atmospheric model (CAM6) then takes the emission
fluxes from the land model and simulates the transport, depo-
sition, and microphysics (e.g., coagulation) of dust aerosols.
The tropospheric modal aerosol model (MAM4) in CAM6
contains four aerosol modes (Liu et al., 2016): the Aitken
mode (dust, sulfate, secondary organic matter, and sea salt),
the accumulation mode (sulfate, secondary organic matter,
primary organic matter, black carbon, sea salt, and dust), the
coarse mode (dust, sea salt, and sulfate), and the primary

carbon mode (primary organic matter and black carbon).
The size distribution of each mode is assumed to be log-
normal with fixed geometric standard deviations (GSDs) for
each mode as 1.6 (Aitken), 1.6 (accumulation), 1.2 (coarse),
and 1.6 (primary carbon). The geometric median diameters
(GMDs) of the aerosol modes are then simulated accord-
ingly. The emitted dust size distribution is derived from a
parameterization based on brittle fragmentation theory (Kok,
2011) with respective ratios of 0.1 %, 1.0 %, and 98.9 %
for the Aitken, accumulation, and coarse modes (Li et al.,
2022a). Note that the coarse mode in CAM6 includes dust
up to a diameter of ∼ 10 µm and therefore misses the super-
coarse dust ranging between 10 and 50 µm, and recent stud-
ies have therefore attempted to add more modes or parti-
cle bins to CAM (e.g., Ke et al., 2022; Meng et al., 2022).
CAM6 then uses a tracer advection scheme to transport dust
aerosols (Neale et al., 2012). Aerosols in each mode are
transported as an internal mixture of the species present, with
its physical properties (e.g., optical properties and density)
predicted based on the volume fraction of each species, while
aerosol species from different modes are externally mixed.
CAM6 simulates the removal of aerosols via dry deposition
and wet deposition. Dry deposition includes turbulent and
gravitational settling, as described in Zender et al. (2003a).
Wet deposition includes in-cloud and below-cloud scaveng-
ing (Neale et al., 2012) of aerosols. The below-cloud pre-
cipitation provides rain and snow scavenging as a first-order
process, which is the product of aerosol mass mixing ra-
tio, precipitation flux, and scavenging coefficient (Dana and
Hales, 1976). The in-cloud scavenging calculation assumes
that aerosols inside the cloud water are removed by precipita-
tion, in proportion to the fraction of cloud water converted to
rain through coalescence and accretion (Neale et al., 2012).
The wet deposition rate depends on various factors, includ-
ing the prescribed dust hygroscopicity (0.068; Scanza et al.,
2015) and the scavenging coefficient (0.1; Neale et al., 2012).

2.3 Coupled model configuration

The above dust emission equations are embedded in the
CESM2.1 (hereafter CESM2; Danabasoglu et al., 2020),
a coupled ESM with multiple Earth system components,
including atmosphere, land, ocean, or sea ice. We use a
component set (FHIST) of CESM2 that couples the land
model component (CLM5) with the atmospheric compo-
nent (CAM6), while the other components (ocean, sea ice,
glacier or land ice) are not active. The dust emission equa-
tions are simulated in CLM5. The meteorological and land
surface variables that dust emission depends on, such as u∗,
w, and ρa, are simulated by CLM5 and CAM6. The veg-
etation phenology in this configuration is prescribed from
remote-sensing data (satellite phenology) in CLM5. We im-
plement the new parameterizations described in Sect. 3 in
CLM5 and evaluate the simulation performance with these
new additional physics in Sect. 5. In the model configura-
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tion that we utilize in this study, atmospheric variables (e.g.,
wind and temperature) are simulated with a 30 min time step
and are nudged every 3 h toward the assimilated meteorology
from the Modern Era Retrospective analysis for Research
and Applications v2 (MERRA-2; Gelaro et al., 2017) ob-
tained from the Global Modeling and Assimilation Office
(GMAO). CAM6 has a default vertical resolution of 32 lev-
els, and in this study, both CLM5 and CAM6 use a default
horizontal resolution of 0.9◦×1.25◦ with a default time step
of 30 min. In this study, simulations are performed for 2003–
2008, with 2003 discarded as a spinup year and 2004–2008
used for analysis purposes. We choose this time period be-
cause most of the observed and reanalysis datasets used for
evaluation (described in Sect. 4) contain data over 2004–
2008.

3 Modifications to the CESM2 dust emission
scheme

In this section, we summarize the main improvements to the
dust emission scheme proposed in Leung et al. (2023) and
describe the new dust-related variables that these changes
create.

3.1 A new physical dust emission equation

In this study, we first replace the Z03 dust emission equa-
tion with a more physical dust emission equation from Kok
et al. (2014b; hereafter K14), which has been adopted by
a number of other global and regional models (Evan et al.,
2015; Ito and Kok, 2017; Mailler et al., 2017; Li et al., 2021;
Tai et al., 2021) as the base dust emission scheme for ad-
ditional modifications in Sect. 3.2–3.5. One key difference
between K14 and Z03 is that Z03 uses a spatial source func-
tion S to tune the dust emission flux to capture the magnitude
of observed dust concentrations. S essentially quantifies the
soil erodibility, defined as the efficiency of a soil in produc-
ing dust aerosols under a given wind stress (Zender et al.,
2003b). The need for this source function indicates that Z03
is unable to capture the physical processes that determine soil
erodibility across the globe. The largest difference between
Z03 and K14 (and our scheme in Leung et al., 2023) is that
Kok et al. (2014a) argued that soil erodibility (Cd in K14)
can be directly related to soil aridity as characterized by the
standardized fluid threshold,

u∗st = u∗ft
√
ρa/ρa0, (5a)

because more erodible soils generally tend to have lower u∗ft
and moisture values. u∗st is a pure function of moisture w
since

√
ρa cancels the ρ−0.5

a dependence in u∗ft0 (in I&W82
or Eq. 6 below). Note that u∗st is only a proxy of u∗ft and is
not used as a real emission threshold (i.e., u∗st should not be
used as u∗t in Eq. 5c). Then, the soil erodibility coefficient
(or dust emission coefficient) in K14 is a pure function of

u∗st:

Cd = Cd0 exp
(
−Ce

u∗st− u∗st0

u∗st0

)
, (5b)

where Cd0 = (4.4±0.5)×10−5, Ce = 2.0±0.3, and u∗st0 =

0.16 m s−1 are constants. The soil erodibility Cd increases
with the dryness of the soil and is a pure function of the
standardized fluid threshold u∗st (and thus u∗ft) and the soil
moisture effect fm. Following Kok et al. (2014b), the dust
emission flux (kg m−2 s−1) is

Fd = ηCtuneCdfbarefclay′
ρa
(
u2
∗s− u

2
∗t
)

u∗st

(
u∗s

u∗t

)κ
for u∗s > u∗t, (5c)

where u∗s is the soil surface friction velocity (u∗ in K14,
to be detailed in Sect. 3.3), u∗t = u∗ft was assumed by K14,
κ = Cκ

(u∗st−u∗st0)
u∗st0

is the fragmentation exponent as a function
of u∗st quantifying the sensitivity of Fd to u∗, Cκ = 2.7±1.0
is a constant, Ctune = 0.05 is the proportionality constant
(previously set in Kok et al., 2014b, to scale their global K14
emission to the same global Z03 emission), fclay′ is the soil
clay fraction fclay but capped at 0.2 (i.e., fclay′ ∈ [0, 0.2]),
and η is the intermittency factor (1 in K14, to be detailed in
Sect. 3.4). The biggest difference between Z03 and K14 is
that the spatiotemporal variability of the K14 dust emissions
is much more sensitive to the emission threshold u∗ft and the
moisture w than Z03 (since, from Eq. 5b, Cd increases ex-
ponentially with u∗st). K14 showed improvements compared
with Z03 when evaluated against ground-based dust AOD
measurements (Kok et al., 2014b; Li et al., 2022a). As with
Z03, VAIthr was set to 0.3 in the K14 scheme. In the Leung
et al. (2023) scheme, however, we set VAIthr = 1, mainly be-
cause observations show that dust is emitted from semiarid
regions with VAI> 0.3 (e.g., Okin, 2008). Using VAIthr = 1
will thus enable emissions from more marginal dust source
regions, which reduces the spatial contrast of dust emissions
between hyperarid and semiarid regions.

3.2 A revised dust emission threshold description

Based on the K14 scheme, the first proposed change by Le-
ung et al. (2023) is to update a new representation of the
effects of soil particle sizes to the modeling of the emis-
sion threshold. This includes simplifying the dust emission
threshold parameterization and updating the soil particle di-
ameter in the threshold scheme.

Following Leung et al. (2023), we first employ an alterna-
tive dust emission threshold scheme by Shao and Lu (2000;
hereafter S&L00), which is derived from a more physical ap-
proach, is computationally much simpler than I&W82, and
produces a u∗ft0 that is slightly more sensitive to Dp. S&L00
is given as

u∗ft0 =
√
A(ρpgDp+ γ /Dp)ρ−0.5

a , (6)
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where A= 0.0123 and γ = 1.65× 10−4 kg s−2 are empiri-
cal constants accounting for the magnitudes of interparti-
cle forces. S&L00 has a parabolic shape as a function of
Dp, and Dp ∼ 80 µm corresponds to the smallest u∗ft0 of
around 0.2 m s−1 (contingent on the values of ρp, γ , and ρa).
For larger sizes soil particles are heavier to lift; for smaller
sizes soil particles are more strongly bound by interparticle
forces. The S&L00 threshold scheme largely simplifies the
I&W82 scheme by dropping the u∗ft dependence on the par-
ticle Reynolds number Rep and avoids the need to use an iter-
ative method to calculate u∗ft (Oleson et al., 2013). We thus
replace I&W82 with S&L00 in this study for CLM5 (fol-
lowing Leung et al., 2023). Then, u∗ft is modeled following
Eqs. (1)–(2) with the soil moisture effect.

For the soil moisture effect, instead of using a = 1 follow-
ing K14, we assign a = 2 for our scheme for the soil mois-
ture effect in this paper. We use a slightly larger a than K14
and our previous study (Leung et al., 2023), mainly because
CLM5 in CESM2 has higher soil moisture across most of
the globe than other soil moisture data, such as MERRA-2 or
NOAH-MP (Gelaro et al., 2017) and CESM1 or CLM4 (see
a global soil moisture comparison in Fig. S1). However, our
choice of a in this paper is generally smaller than the choice
of a = 1/fclay in CESM2’s default Z03 scheme. Given that
fclay from the FAO database typically ranges between 0.1 and
0.4, using a = 1/fclay gives bigger values of a ranging from
2.5 to 10, generally mitigating the soil moisture effect on dust
emissions in Z03. For our experiments using the K14 and
Z03 schemes (Sect. 5), we will maintain all the default pa-
rameter values in CLM5 (e.g., a = 1 in K14 and a = 1/fclay
in Z03) and use a = 2 for our scheme in this paper.

Then, we follow Leung et al. (2023) and employ a glob-
ally constant soil median diameterDp of 127 µm for S&L00.
The default CLM5 followed Zender et al. (2003a) and used
a globally constant soil particle diameter of Dp = 75 µm in
I&W82, based on the argument that it is the optimal parti-
cle size that is the easiest to lift (Dp = 75 µm corresponds
to the smallest u∗ft0 in I&W82; see the discussions in Kok
et al., 2012). However, Martin and Kok (2019) showed that,
for mixed sandy soils (i.e., soils with multiple sizes of soil
particles mixed together), u∗ft should be a function of the
median particle diameter of the soil PSD instead of the op-
timal particle size that produces the smallest u∗ft possible;
we thus assume here that u∗ft for soils containing fine parti-
cles is also determined by the median particle diameter be-
cause emission of dust aerosols from these soils is driven by
impacts of saltating sand particles (e.g., Shao et al., 1993).
Leung et al. (2023) then used soil PSD observations from a
suite of 14 in situ soil studies (47 data points) to show that
the median Dp values of the soil PSD measurements over
arid regions were within the range of 40–250 µm. Regression
analysis showed insignificant relationships between Dp and
other soil textures and properties, which indicated that the
limited variability of the soil dataset did not allow us to pre-
cisely define the globalDp distribution and thus its impact on

the global distribution of the emission thresholds. Thus, Le-
ung et al. (2023) simplified and approximated the global me-
dian Dp by taking the mean across all the Dp observations,
which was 127 µm. Leung et al. (2023) also showed that the
Dp uncertainty range of 40–250 µm translates to a u∗ft0 range
of 0.204–0.268 m s−1 using S&L00, much smaller than the
magnitude of u∗ft, which goes beyond 1 m s−1. Thus, Leung
et al. (2023) argued that it was reasonable to simplify and
approximate the global median Dp by taking a mean across
all the Dp observations, which was 127 µm. In this study, we
introduce the use of Dp = 127 µm as a global constant for
the threshold schemes because it is conceptually more cor-
rect than using the optimal diameter of Dp = 75 µm; how-
ever, the resulting value of u∗ft0 using the S&L00 scheme
is 0.215 m s−1, which is similar to u∗ft0 = 0.204 m s−1 using
Dp = 75 µm with the I&W82 scheme in Z03.

3.3 A wind drag partition scheme for reduced wind
stress due to rocks and vegetation

The second modification we proposed in Leung et al. (2023)
is to include the effect of wind drag partitioning due to the
presence of surface obstacles or roughness elements, such as
vegetation, rocks, pebbles, and gravel, which protect the soil
surface from wind erosion by absorbing part of the surface
wind momentum. We account for the drag partitioning in the
soil surface friction velocity u∗s:

u∗s = u∗Feff, (7)

where Feff ∈ [0,1] is the drag partition factor, the fraction of
wind drag available for wind erosion, which is reduced by
wind momentum absorption by surface obstacles (rocks and
plants). In the following, we describe the Leung et al. (2023)
drag partition scheme, which combines the effects of surface
roughness due to rocks (Marticorena and Bergametti, 1995)
and vegetation (Okin, 2008) to parameterize Feff.

Leung et al. (2023) and previous studies (e.g., Menut et
al., 2013; Klose et al., 2021) used the aeolian roughness
length z0a to represent the roughness of rocks. z0a repre-
sents small-scale objects or obstacles of length scales of 1–
10 m and is different from the typical aerodynamic momen-
tum roughness length z0 that represents the orography, ter-
rain, and large-scale canopy roughness (Prigent et al., 2012;
Menut et al., 2013). Leung et al. (2023) used the global aeo-
lian z0a dataset from Prigent et al. (2005) (hereafter Pr05),
which contains the climatological z0a (12 monthly values
per grid) derived from the backscatter coefficient at 5.3 GHz
measured by the European Remote Sensing (ERS) satellite.
Because z0a quantifies the roughness of both rocks and veg-
etation, we take the minimum value out of 12 months for all
the grids to obtain an aeolian z0a map to eliminate the effect
of vegetation as much as possible. Furthermore, we apply this
map over regions with VAI< 1, where the backscatter sig-
nal is mainly generated by rocks with a lower contribution
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from vegetation roughness. Then, Marticorena and Berga-
metti (1995; hereafter M&B95) previously derived a parame-
terization to quantify the drag partition effect feff,r ∈ [0,1] of
obstacles as a function of z0a, which drops from one to zero
as nonerodible roughness elements become more abundant
over a surface (Darmenova et al., 2009):

feff,r = 1−
ln
(
z0a
z0s

)
ln
[
b1

(
X
z0s

)b2
] , (8)

where z0s = 2Dp/30 is the smooth roughness length (Sher-
man, 1992; Farrell and Sherman, 2006; Pierre et al., 2014b;
Klose et al., 2021), and b1 = 0.7 and b2 = 0.8 are empiri-
cal constants (Darmenova et al., 2009). X is the distance
downstream from the location of an obstacle, a length pa-
rameter that roughly scales with the internal boundary-layer
(IBL) height δ (Marticorena and Bergametti, 1995). Previ-
ous studies used different X values, from X = 0.1 m for
small, dense blocks (0.025 m in height) in wind tunnel exper-
iments (Marshall, 1971; Marticorena and Bergametti, 1995)
to X = 122 m for shrubs (MacKinnon et al., 2004). X thus
should vary with land type and implicitly with space and time
(e.g., Foroutan et al., 2017), but most dust modeling studies
have thus far used a globally constant of X for simplicity.
Leung et al. (2023) used X ∼ δ ∼ 10 m for rocks, which is
within the range of parameter choices, assuming the obsta-
cles are a few meters apart and the IBL usually gets to a few
meters high. We thus use the Pr05 global z0a to obtain the
rock drag partitioning feff,r, as shown in Fig. S2a for CLM5.

For vegetation drag partitioning, Leung et al. (2023) used
the Okin (2008; hereafter O08) formulation, later simplified
by Pierre et al. (2014; hereafter P14) for GCMs, for modeling
vegetation drag partitioning as a single function of VAI. feff,v
drops with increasing VAI:

feff,v =
K + f0c

K + c
, (9a)

K = 2
(

1
fv
− 1

)
, (9b)

where feff,v ∈ [f0,1] is the area-averaged plant drag par-
titioning, K (dimensionless) is the normalized mean gap
length between obstacles (plants), and f0 = 0.32 and c = 4.8
are constants (Leung et al., 2023). As the land gets more
densely covered by vegetation, K→ 0 and feff,v→ f0. The
normalized mean gap length between obstacles K is a func-
tion of vegetation cover fraction fv = VAI/VAIthr (Leung et
al., 2023), which is more valid for small VAI (plants are fur-
ther apart and do not overlap each other). We thus only apply
this model over dust emission regions (VAI≤ VAIthr). VAI
is thus the only input for Eq. (9). Using VAI (=LAI+SAI)
that includes both leaf and stem areas, this scheme accounts
for drag partitioning due to both green and brown vegetation.
Figure S2b shows the resulting 2004–2008 mean global feff,v
map in CLM5.

After obtaining both the static feff,r map for rocks and
the time-varying feff,v map for vegetation, we combine the
two drag partition sources to capture and represent the total
drag partition effect for dust emission. Leung et al. (2023)
obtained the fractions of a grid consisting of areas domi-
nated by rocks and areas dominated by plants from the Eu-
ropean Space Agency Climate Change Initiative (ESA CCI)
dataset (ESA, 2017; https://www.esa-landcover-cci.org/?q=
node/164, last access: 21 June 2022). The land cover prod-
uct classifies the land cover of the whole globe into 37 cat-
egories (Li et al., 2018), with relevant land cover over arid
regions such as shrub, herbaceous, sparse vegetation, crop-
land, grassland, as well as consolidated (gravels and rocks)
and unconsolidated (soil) bare land. Leung et al. (2023) pro-
posed parameterizing the total dust emission flux Fd for each
grid box as a function of its fractional rock area Ar and frac-
tional vegetation area Av:

Fd = Fd (u∗Feff)= ArFd,r+AvFd,v

= ArFd
(
u∗feff,r

)
+AvFd(u∗feff,v), (10a)

where Feff is the hybrid drag partition factor. Leung et
al. (2023) further formulated the hybrid drag partition fac-
tor Feff that encapsulates both rock and vegetation partition
effects for these ESMs:

F 3
eff = Ar f

3
eff,r+Av f

3
eff,v, (10b)

where Feff is simply the weighted mean of drag partition ef-
fects, and the exponent of 3 is the dust emission exponent
(κ + 2) of ∼ 3 over deserts. An advantage of this weighted
mean approach is that it produces a very smooth transition of
the drag partition effect from a rock-dominated regime (e.g.,
the Sahara) to a plant-dominated regime (e.g., the Sahel), fol-
lowing the transition in land cover. We use Eq. (10) to obtain
the global time-varying Feff. Figure 1a shows the 2004–2008
mean of Feff in CLM5, with more grassy areas resembling
feff,v (e.g., the Southern Hemisphere, the USA, or the Ti-
betan Plateau) and barer areas resembling feff,r (e.g., the Dust
Belt).

3.4 A dust emission intermittency scheme

Our third modification is to account for the effects of
boundary-layer turbulent fluctuations on dust emission inter-
mittency. Dust emission intermittency exists because salta-
tion is driven by high-frequency turbulent surface winds
(with frequencies of ∼ 1 min or less), which exhibit strong
spatiotemporal fluctuations in speed and direction. Instanta-
neous winds can thus pass within timescales much shorter
than a model time step (e.g., the CESM2 time step is about
∼ 30 min with a ∼ 100 km grid size) across both the fluid
(static) threshold u∗ft for initiating saltation and the impact
(dynamic) threshold u∗it for ceasing saltation (Martin and
Kok, 2018). Consequently, saltation can be highly intermit-
tent (Comola et al., 2019), with pronounced variability in
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timescales of seconds to hours (Dupont et al., 2013). How-
ever, existing dust emission parameterizations describe salta-
tion as uniform in time and space and driven by a constant
downward momentum flux within a model time step (typi-
cally 30 min for CESM2). Neglecting intermittent dust emis-
sions in current models thus likely degrades the accuracy of
dust emission simulations for arid regions during low-wind
periods (when u∗s < u∗ft), but especially for marginal dust
source regions since u∗ft values are much greater than u∗it in
high-moisture regions (using u∗ft to model dust will strongly
underestimate dust emissions).

Since ESMs cannot explicitly resolve high-frequency tur-
bulent fluctuations, C19 employed turbulent statistics to es-
timate the effect of high-frequency turbulent winds on gen-
erating dust emissions within a time step. Note that the C19
scheme focuses on incorporating the effect of turbulent wind
fluctuations on the saltation-driven dust emission; it does not
address the convective turbulent dust emission (CTDE) with
direct aerodynamic lifting of dust particles from the land sur-
face, as addressed by other studies (e.g., Klose et al., 2014).
Here we briefly describe the C19 scheme that accounts for
the turbulence effect on intermittent dust emissions. C19 first
formulates u∗it as a linear function of u∗ft0 (Kok et al., 2012)
from S&L00:

u∗it = Bitu∗ft0, (11a)

where Bit = 0.82 is assumed to be a global constant. Dust
emission intermittency happens when u∗s lies between both
thresholds (u∗it < u∗s < u∗ft). If u∗s within a model time step
has a value between u∗it and u∗ft, there will be small and fluc-
tuating emission fluxes in reality, while LSMs using a u∗ft
scheme would predict zero emission within a model time
step, thereby underestimating the emissions. Many field-
based studies showed that saltation flux is sustained as long
as the wind speed is above the dynamic threshold, i.e., u∗s >
u∗it (Sørensen, 2004; Durán et al., 2011; Ho et al., 2011;
Martin and Kok, 2017). Therefore, it is important for climate
models to employ u∗it instead of u∗ft in the dust emission
equation. C19 thus updates K14 by setting all u∗t terms in
Eq. (5c) as u∗it instead of u∗ft:

Fd = ηCtuneCdfbarefclay’
ρa
(
u2
∗s− u

2
∗it
)

u∗it

(
u∗s

u∗it

)κ
for u∗s > u∗it, (11b)

where Cd = Cd (u∗st), κ = κ (u∗st), and u∗st = u∗ft
√
ρa/ρa0

are the same standardized fluid threshold as in K14. Note
that the denominator u∗st in Eq. (5c) is replaced with u∗it in
Eq. (11b) (following Leung et al., 2023). Because u∗it < u∗ft,
employing u∗it in the dust emission equation in Eq. (11b) al-
lows more small emission fluxes over the marginal source
regions that are otherwise missed by employing u∗ft as the
threshold. Also, we follow Leung et al. (2023) to cap κ at 3
in Eq. (5c) since a large κ (e.g.,> 10) combined with a small

u∗it will occasionally produce unrealistically high emissions
over semiarid regions (which would not happen when using
K14 with a large u∗ft over semiarid regions). The intermit-
tency factor η ∈ [0,1] denotes the fraction of time within an
ESM time step (e.g., 30 min for CESM2) when saltation and
dust emission are active (see a complete description of η in
Leung et al., 2023):

η = η(u∗s,σũs ,u∗it,u∗ft). (11c)

η is formulated as a function of the time-step (30 min) mean
u∗s, u∗it, and u∗ft as well as the time-step standard deviation
σũs of instantaneous wind ũs at the typical saltation height
of zsal = 0.1 m (Leung et al., 2023). The instantaneous fluc-
tuation σũs is dependent on the wind shear and buoyancy
of that time step as quantified using the similarity theory
(Panofsky et al., 1977; Comola et al., 2019; Leung et al.,
2023). u∗s and σũs together control how frequently the in-
stantaneous ũs will sweep across the thresholds in a time
step. The relationship between u∗s and η was illustrated in
Fig. 6a of Leung et al. (2023). Basically, η approaches 1
when u∗s− σũs � u∗ft (continuous emission as the instan-
taneous wind distribution does not cross the threshold), 0
when u∗s+ σũs � u∗it (no emission), and values between
0 and 1 when u∗it < u∗s < u∗ft (intermittent emission as ũs
sweeps through the thresholds that initiate and terminate dust
emission). Figure 1b shows the 2004–2008 averaged inter-
mittency factor η. Figure S3 shows the 2004–2008 aver-
aged global distribution of u∗it, u∗ft, and u∗ft/u∗it(= fm/Bit),
which shows the spatial pattern of the moisture effect fm.

3.5 An upscaling correction map for coarse-grid
simulations

The final modification in Leung et al. (2023) intends to ad-
dress the long-standing issue of grid-resolution dependence
of ESM-modeled dust emissions (Ridley et al., 2013; Feng
et al., 2022; Meng et al., 2022). The grid-scale dependence
issue exists because ESMs normally use coarse grid boxes
of ∼ 100 km to simulate dust emission, which depends on
local-scale processes with typical length scales smaller than
1 km (Marsham et al., 2012; Heinold et al., 2013; Ridley
et al., 2013). ESMs with horizontal grid resolutions of ∼
100 km likely fail to capture locally high emissions because
the coarse meteorological and land surface fields used in
the emission schemes are smoothed and do not accurately
represent the subgrid variability of dust emissions within a
100 km grid (Feng et al., 2022). It is generally believed that,
the higher the horizontal resolution of an ESM, the better it
simulates the local spatial variability of emissions and cap-
tures the locally high emission peaks (Ridley et al., 2013).
Moreover, dust emission has nonlinear dependencies on mul-
tiple variables, especially u∗s (Fd ∝ u

κ+2
∗s ∼ u

3
∗s, typically

over deserts); as such, capturing the subgrid high wind peaks
will result in more emissions in a high-resolution simulation
since the sensitivity ∂Fd/∂u∗ is much stronger toward the
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higher end of u∗. Thus, simulating dust at finer horizontal
resolutions will generally result in higher global dust emis-
sion fluxes (Ridley et al., 2013). The grid-scale dependence
problem here thus means that the simulated global dust emis-
sion maps are grid-resolution-dependent and possess differ-
ent magnitudes and spatiotemporal variabilities across res-
olutions. Linearly interpolating the input variables, such as
u∗s, to calculate dust emissions would be inaccurate, as this
is different from an area-weighted average of high-resolution
dust emissions per se (Ridley et al., 2013). There is a need
to better upscale low-resolution dust emissions to match the
variability of high-resolution emissions, such that dust emis-
sion simulations tend to be less resolution-dependent. In ad-
dition, upscaling the coarse-resolution dust emission simula-
tions can have the advantage of reducing the computational
expense while achieving performances similar to those of
high-resolution simulations.

To mitigate the scale dependence of dust emission simula-
tions, Leung et al. (2023) proposed rescaling the spatial vari-
ability of the modeled dust emissions at ESM native grid res-
olution by a map of correction factors to account for the spa-
tial variability of higher-resolution dust emissions. We follow
the approach in Leung et al. (2023) to yield a map of scaling
factors K̃c for CESM2 that corrects the spatial variability of
the 0.9◦× 1.25◦ emissions Fd,c to that of the 0.47◦× 0.62◦

emissions Fd,f. We conduct a 0.47◦× 0.62◦ simulation and
a 0.9◦× 1.25◦ simulation for the year 2006 to yield a fine-
resolution emission map Fd,f and a coarse-resolution emis-
sion map Fd,c. We normalize both emissions to have the same
global total emission (following Leung et al., 2023) to focus
on the main differences in their spatial variability instead of
their magnitude differences. Then, dividing the annual Fd,f
map by the annual Fd,c map for all grid cells results in an
annual scaling map K̃c that accounts for the changes in the
spatial variability of dust emissions between high- and low-
resolution simulations due to the subgrid variability of all
meteorological and land surface variables in the emission
scheme:

K̃c (long, lat)= Fd,f (long, lat)/Fd,c (long, lat) , (12)

where (long, lat) indicates the longitude and latitude of each
grid cell. K̃c could then be multiplied by Fd,c in CLM5
in the native 0.9◦× 1.25◦ simulation to adjust the spatial
variability of Fd,c to Fd,f during the native grid simulation,
such that the subsequent dust cycle simulation in CAM6 can
yield improved spatial representation of dust variables such
as DAOD.

Leung et al. (2023) proposed this method with the an-
nual K̃c scaling instead of seasonal scaling because, while
dust emissions exhibit seasonality and interannual variabil-
ity (e.g., see Fig. S10 in Leung et al., 2023), the mis-
match between Fd,f and Fd,c is largely due to subgrid spa-
tial heterogeneity such as local topography and soil proper-
ties, which are slowly varying variables and partially shared

across different model configurations. K̃c in Fig. 1c thus cap-
tures the main characteristics of this subgrid variability, even
though the ability of K̃c to represent higher-resolution emis-
sions could be improved even further if K̃c were derived
specifically for each season, year, or model configuration. In
Sect. 5.6 of this paper, we will adjust the spatial distribution
of the CESM2 dust emissions for 2004–2008 by multiplying
the 0.9◦× 1.25◦ dust emissions by the annual K̃c map from
2006.

The resulting annual K̃c map in Fig. 1c shows the dif-
ference in spatial variability between the high- and low-
resolution emission simulations. The higher-resolution run
tends to produce more dust over the semiarid and marginal
source regions (red color), producing > 3–5 times more
emissions than in the lower-resolution run. The reason is that
lower-resolution runs employ coarse-resolution winds that
smooth out small-scale wind peaks, and marginal source re-
gions have relatively high emission thresholds such that the
spatially averaged wind speed could easily be lower than the
emission thresholds, leading to zero emissions for the entire
coarse grid. Therefore, low-resolution models will generally
underestimate emissions from marginal sources and create
emission biases over hyperarid and other prominent source
regions. Since high-resolution simulations typically pick up
more emissions from marginal sources, the ratios over ma-
jor sources (e.g., the Sahara) are slightly smaller than 1 (light
blue), as compensation to match the same global total emis-
sion.

Leung et al. (2023) suggested that modeled dust emissions
should be multiplied by the K̃c map to adjust the spatial vari-
ability of dust emissions and to mitigate coarse model bias
due to grid resolution. The degree of how much local-scale
dust variability that the scaling map in Fig. 1c can capture
is limited by the spatial resolutions and accuracies of the
available input datasets, since some of the input fields (e.g.,
MERRA-2 meteorological fields) have a native horizontal
resolution of ∼ 0.5◦ that represents the highest local-scale
variability of dust emissions that the K̃c map can capture. The
emission increase over marginal sources may be even larger
if the scaling factors were calculated using higher-resolution
inputs such as 0.25◦× 0.25◦ or finer (e.g., using ERA5 me-
teorology).

Finally, we note that the upscaling approach is differ-
ent from other process-based formulations of saltation pro-
cesses in Sect. 3.1–3.4, in that Sect. 3.5 is an empirical for-
mulation. The need to employ this scale-aware adjustment
will gradually mitigate increasing ESM horizontal grid res-
olution, but the importance of the process-based modifica-
tions remains regardless of grid resolutions. Since ESMs
nowadays at 0.47◦× 0.62◦ typically cannot fully resolve
smaller-scale meteorological features that drive dust emis-
sion (e.g., mesoscale convections and low-level jets), the K̃c
derived from 0.47◦× 0.62◦Fd,f will only remedy the scale-
dependence issue due to the smoothed meteorological inputs
in coarser models but will also not represent emissions in-
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Figure 1. Implementations of proposed modifications in Leung et al. (2023) to the Community Land Model version 5 (CLM5). (a) Simu-
lated hybrid drag partition effect Feff on wind friction velocity considering the land surface roughness due to rocks and green vegetation.
(b) Fraction of time that dust emission is active (intermittency factor η), averaging across all time steps when the emission flux Fd > 0. Note
that the color bar in panel (b) is inverted compared with panel (a) to show the contrasts in η between hyperarid and non-arid regions more
clearly. (c) Correction map K̃c for 0.9◦× 1.25◦ dust emission from the standalone dust emission model obtained in Leung et al. (2023).

duced by those finer-scale meteorological features. As ESMs
resolve the small-scale meteorology better in the future, Fd,f
and K̃c will become more capable of capturing emissions
generated by the small-scale meteorology.

4 Observational and reanalysis datasets for
evaluating the dust emission schemes

To evaluate the CESM dust cycle simulations using different
dust schemes, we employ multiple observational and reanal-
ysis datasets of atmospheric dust over various spatial scales
for comparisons. This section briefly summarizes the inde-
pendent datasets that we use to evaluate the CESM dust sim-
ulations.

4.1 Ridley et al. (2016) regional mean DAOD

We first employ a regional mean dust optical depth (DOD)
dataset, constrained by Ridley et al. (2016) and compiled by
Adebiyi et al. (2020) and Kok et al. (2021) (see Fig. 4 be-
low). This is an observational–modeling constraint dataset
on the regional mean DAOD at 550 nm. Ridley et al. (2016)
used various satellite AOD retrievals, including the Multi-
angle Imaging Spectroradiometer (MISR) and the Moderate
Resolution Imaging Spectroradiometer (MODIS), all bias-
corrected by the more accurate ground-based AOD mea-
surements by the Aerosol Robotic Network (AERONET).
They then obtained the fraction of AOD due to dust using
an ensemble of state-of-the-art global and region models and
combined the retrieved satellite AOD and the modeled dust

fraction to the total AOD to yield the DAOD. To reduce
data uncertainties, Ridley et al. (2016) only chose 15 ma-
jor dusty regions where dust contributed a significant portion
of the total AOD (see Fig. S5 for the defined dusty regions)
and obtained the regional mean DAOD instead of yielding
grid-by-grid DAOD. Additionally, averaging across space
and time (2004–2008) enables error quantification of the re-
gional mean DAOD. Nonetheless, Ridley’s DAOD values
over the Southern Hemisphere (SH) are subject to more bi-
ases than those over the Northern Hemisphere (NH), mainly
because the dust fraction contributing to the total AOD is
much smaller over the SH. Following Kok et al. (2021), we
thus instead use the regional mean DAOD values estimated
by Adebiyi et al. (2020), which are based on reanalysis prod-
ucts, with smaller uncertainties over the three SH sources.
Also, the regional mean DAOD over North America was ob-
tained from Adebiyi et al. (2020). This dataset represents
seasonal DAOD values averaged over 2004–2008; the Rid-
ley and Adebiyi regional DAOD values are listed in Table 2
of Kok et al. (2021). We will compare this dataset with our
gridded DAOD simulations, averaged across years and grids
to regional mean, for evaluation purposes.

4.2 AERONET and AERONET–SDA (spectral
deconvolution algorithm) AOD

Additional observational dust properties are provided by
AERONET (Holben et al., 1998; Dubovik and King, 2000;
Dubovik et al., 2000). For AOD, we consider the AOD
v3 Direct Sun Algorithm level-2 (pre-field- and post-field-
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calibrated, cloud-cleared, and manually inspected) data. We
selected 39 stations following Kok et al. (2014b) and Al-
bani et al. (2014), based on the filtering criterion that only
the dust-dominant AERONET sites are picked (see Fig. S11
in Kok et al., 2014b, for all the selected sites). These “dusty”
stations are mostly located over the Sahara (as seen in Fig. 5).
We further employ the AERONET coarse-mode AOD data
as retrieved by the SDA (O’Neill et al., 2003), which were
also used by other studies to represent DAOD (O’Neill et al.,
2003; Capelle et al., 2018). Following Capelle et al. (2018),
for some stations that do not contain level-2 data (not quality-
controlled and/or cloud-cleared), we use level-1.5 data for
those sites instead. AERONET takes multiple measurements
within an hour during the daytime, with sub-hourly data
available on the AERONET website. The website also com-
piles daily mean AOD data for the stations. We thus take
the daily mean AERONET–SDA values, which are helpful
for examining the spatiotemporal variability of the model
simulations. The 2004–2008 mean AERONET–SDA coarse-
mode AOD values are shown in Fig. 5a–d as overlaid points
and more clearly in Fig. S6. The locations of the sites can be
found in Table S1.

4.3 MIDAS (MODIS Dust Aerosol) DAOD

In addition to the ground-based AOD observations, we em-
ploy a globally gridded reanalysis DAOD product provided
by Gkikas et al. (2021), i.e., the MIDAS dataset. MIDAS
combines quality-filtered MODIS or Aqua AOD collec-
tion 6.1 level 2 at 550 nm with DAOD : AOD ratios from
MERRA-2 reanalysis to yield DAOD on the MODIS native
grid. The resulting dataset has a fine spatial resolution of
0.1◦× 0.1◦ and contains daily DAOD and AOD over 2003–
2017. The uncertainties in the Aqua AOD and MERRA-2
dust fraction are incorporated into the final MIDAS DAOD
uncertainty. MIDAS DAOD highly complements AERONET
AOD by providing global coverage of DAOD, with gridded
AOD in high agreement with AERONET AOD (Fig. 3 of
Gkikas et al., 2021). Another advantage of this dataset is that
Gkikas et al. (2021) analyzed both land and ocean AOD, and
thus MIDAS also provides DAOD over ocean surfaces. We
will use the MIDAS dataset to examine the day-to-day vari-
ability of our gridded DAOD simulations. To match the hor-
izontal resolution of CESM2, we regridded MIDAS DAOD
from 0.1◦× 0.1◦ to 0.9◦× 1.25◦ (see Fig. 3d).

4.4 In situ PM concentration and deposition flux
measurements

We also use site measurements of dust PM (e.g., Prospero
and Nees, 1986; Prospero and Savoie, 1989) and dust de-
position flux (e.g., Ginoux et al., 2001; Tegen et al., 2002;
Lawrence and Neff, 2009; Mahowald et al., 2009; Albani
et al., 2014) as climatological datasets to evaluate the spa-
tial variability of dust PM and deposition flux simulations

(see the Data availability section). Previous studies compiled
dust PM measurements using high-volume filter collectors
at the University of Miami Ocean Aerosol Network as well
as station data that were previously compiled on annual av-
erages (Mahowald et al., 2009; Zuidema et al., 2019). The
dust deposition flux climatology used here was compiled by
Albani et al. (2014) and used in later studies (e.g., Li et al.,
2022a). Since CESM2 only simulated dust < 10 µm, Li et
al. (2022a) processed the data to estimate concentration and
deposition only below the size cutoff using the reported pa-
rameters. The upper panels of Figs. 8–9 show the site dust
PM10 (dust particulate matter of diameter > 10 µm) concen-
trations (µg m−3) and dust deposition fluxes (kg m−2 yr−1) as
overlaid points.

5 Model evaluation

In this section, we evaluate the performance of the differ-
ent dust emission schemes in CESM2 – Z03, K14, and our
scheme – by comparing the spatial and temporal variabil-
ity of the modeled dust against observations and reanalysis
datasets. We first evaluate in Sect. 5.1–5.4 the use of our
process-based dust emission scheme (in Sect. 3.1–3.4) with-
out the use of the empirical upscaling method. Section 5.5
then briefly examines a sensitivity test of separating the ef-
fects of drag partition and intermittency on the resulting dust
cycle simulations. Then, we also evaluate in Sect. 5.6 the
effects of additionally using the empirical scaling map K̃c
(Sect. 3.5) to rescale our scheme’s emissions on the result-
ing CESM2 atmospheric dust simulation, in order to clearly
separate the effects of the process-based modification and the
scale-aware adjustment.

We note that global dust simulations typically employ a
global tuning factor that scales the global dust emission to
a reasonable level that matches observations, since thus far
there are no known a priori physical principles that govern
the order of magnitude of global total dust emission in the
dust emission schemes. Past studies (e.g., Klose et al., 2021;
Li et al., 2022a) scaled the global dust emissions to produce
a global mean modeled DAOD of 0.03± 0.01 (95 % confi-
dence interval), which is a global constraint given by Ridley
et al. (2016). In this section, we thus also scale our dust sim-
ulations with a global tuning factor in the CAM6 namelist
variable (dust_emis_fact) like past studies (e.g., Li et al.,
2022a) did. Here we scaled the simulations with K14 and our
new scheme such that their simulated global mean DAOD in
CESM2 is 0.03. We did not need to scale the Z03 simula-
tion since the default CESM2–Z03 dust simulation already
yielded a global mean DAOD of 0.03 during the CESM2
benchmarking.
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Figure 2. CESM2/CLM5 dust emissions averaged across 2004–2008 for (a) Z03, (b) K14, and (c) our new scheme (Leung et al., 2023).
All the emissions are normalized such that the corresponding CAM6 dust aerosol optical depth (DAOD) is 0.03±0.01 (following the global
DAOD constraint obtained by Ridley et al., 2016). The global total emissions (Tg yr−1) to yield a global mean DAOD of 0.03 are indicated
in each panel.

5.1 CESM2 dust emissions using different emission
schemes

Figure 2 shows the dust emissions (for dust PM10) that arise
from Z03, K14, and the Leung et al. (2023) scheme for 2004–
2008. The emission maps are normalized such that the global
mean DAOD is 0.03± 0.01 following Ridley et al. (2016).
The global sums of emission fluxes for each scheme are indi-
cated at the bottom of the panels (Tg yr−1). They have differ-
ent magnitudes because dust emissions originating from dif-
ferent geographical locations can be subject to different de-
position rates (e.g., tropical dust particles experience stronger
wet scavenging). Note that the global total emissions in other
ESMs could be larger than those from our runs if they ac-
count for dust particles > 10 µm. Even if they scale their
emissions to yield a global DAOD of 0.03, they will yield
larger global emissions than ours, mainly because coarse
dust particles have smaller optical thicknesses than fine dust
(Adebiyi et al., 2023).

The spatial variability of the emissions for Z03 (Fig. 2a)
is controlled by the geomorphic source function S developed
by Zender et al. (2003b). S was a continuous function when
formulated by Zender, but in CESM2 the source function is
truncated for all values of S smaller than 0.1 (see also Fig. 2
in Li et al., 2022a), resulting in a rather spatially discrete and
disjointed pattern of emissions. The Z03 scheme captures
some major and marginal dust sources, such as the Bodélé
Depression in Chad, El Djouf in Mali and Mauritania, the
Namib in Namibia, the Nubian Desert in Sudan and Egypt,
the Taklamakan Desert in China, Patagonia in Argentina, the
Karakum and Kyzylkum deserts in central Asia, and the Strz-

elecki Desert in Australia. It does not fully capture some
other major and secondary sources, such as the Rub’ al Khali
in Saudi Arabia and deserts in the USA. Several other regions
like the Nubian Desert in Sudan and Egypt appear as promi-
nent sources, which is not supported by satellite retrievals
(Fig. 3d).

K14 emissions (Fig. 2b) show a much more continuous
spatial pattern. K14 successfully captures emissions not only
over major sources such as the Sahara and the Arabian Penin-
sula, but also emissions over semiarid regions and secondary
sources such as the United States and central Asian deserts.
Without the constraint of soil erodibility S in Z03, K14 pro-
duces much higher emissions over Australia because of the
low moisture effect and over the Horn of Africa (HoA) be-
cause of its very high u∗ compared with other hyperarid re-
gions (see Fig. S4), especially during boreal summertime. In
the CESM2 simulation of K14, some major sources like the
Taklamakan Desert have comparable or smaller emissions
than some semiarid regions such as the deserts in Australia,
which could be a result of bias of input meteorological fields
or not including enough aeolian physics in the K14 parame-
terization.

Our scheme (Fig. 2c) adds extra aeolian physics on top of
K14. While using Dp has little effect on the spatial variabil-
ity of the dust emission thresholds and the emission fluxes,
the drag partition effect Feff modifies u∗s and highlights the
major sources over the Bodélé Depression, El Djouf, and the
Rub’ al Khali. Feff suppresses emissions from most semi-
arid regions with higher surface roughnesses. The intermit-
tency effect increases emissions from remote regions such as
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Figure 3. Global DAOD averaged across 2004–2008 from CESM2 and MIDAS. (a–c) CESM DAOD for (a) Z03, (b) K14, and (c) our new
scheme (Leung et al., 2023). (d) MIDAS DAOD (Gkikas et al., 2021). All the maps have a global mean of 0.03± 0.01, consistent with the
global DAOD constraint obtained by Ridley et al. (2016).

the northern USA, northern Canada, and Siberia and possibly
overemphasizes emissions over the Tibetan Plateau.

5.2 DAOD spatial variability

Here we compare the spatial distributions of DAOD maps
simulated by CAM6 using Z03 (Fig. 3a), K14 (Fig. 3b),
and our scheme (Fig. 3c) as well as those derived from
MIDAS (Fig. 3d), averaged across 2004–2008. Figure 3d
shows the MIDAS DAOD, with its peak over the Bodélé
Depression of the Sahel of ∼ 0.6. DAOD is also moderately
high over El Djouf and the southwestern Sahara (∼ 0.3–0.4).
The annual MIDAS DAOD has several local peaks of > 0.3
(yellow color) over the Arabian Desert, the Thar Desert in
India, and the Taklamakan Desert in northwestern China.
There are some modest DAOD levels over central China,
e.g., < 0.2 over the Sichuan Basin and the North China
Plain (NCP), which are metropolitan regions of high anthro-
pogenic aerosol pollution (e.g., Leung et al., 2018). This indi-
cates that MIDAS might occasionally not be able to truncate
all anthropogenic aerosol signals from the MODIS and Aqua
AOD data product.

Figure 3a shows the Z03 DAOD simulated by CAM6. The
spatial pattern of Z03 DAOD in CAM6 is largely shaped by
the Z03 source function (soil erodibility map S). It has mul-
tiple high DAOD regions (> 1), including the Bodélé De-
pression, the Nubian Desert in Sudan, the eastern Arabian
Peninsula, the Taklamakan Desert, the Strzelecki Desert in
Australia, and some small peaks over southern Africa and
South America. The DAOD values over these regions are all
scaled up by the source function S and are unreasonably high
compared with the MIDAS DAOD. The source function also

generates DAOD peaks that are absent in observations, e.g.,
the Nubian Desert in Sudan.

Figure 3b shows the K14 DAOD simulated by CAM6.
Without the source function, K14 has reduced DAOD over
many source regions. K14 calculates the time-varying soil
erodibility Cd, which indicates the most erodible region to be
the Bodélé Depression, El Djouf, and the southern Sahara,
resulting in the high DAOD (∼ 0.6–0.7) over the southern
Sahara. The western Sahel has a larger area of high DAOD
(∼ 0.6) over Mali and Niger, which is different from MI-
DAS and indicates a higher DAOD peak over the Bodélé
Depression than El Djouf. Due to the equatorial easterlies,
dust advection toward the west leads to a DAOD of 0.4–0.5
over a significant part of the tropical Atlantic Ocean. DAOD
is also ∼ 0.3–0.4 over most of the Arabian Peninsula. Over
Australia, the western region becomes the most erodible re-
gion because of low simulated soil moisture, which is not
in agreement with observations that indicate the Strzelecki
Desert (central Australia) has the highest DAOD across Aus-
tralia (annual mean ∼ 0.084).

Our new scheme’s DAOD (Fig. 3c) shares a similar spatial
variability with K14 DAOD. The main differences between
K14 and our scheme’s DAOD are the relatively lower DAOD
levels over the Mali–Niger region where El Djouf is located
because the drag partition effect reduces emissions over most
of the Mali–Niger region (Fig. 3c). Figure S7 shows the dif-
ference between our scheme’s DAOD and K14 DAOD. Com-
paring against MIDAS DAOD, our scheme and K14 overesti-
mate dust over Australia and the HoA, which is possibly due
to the biases in the meteorological variables (e.g., u∗ and w)
of CESM2. K14 and our scheme both overestimate DAOD
over Sudan compared with the MIDAS DAOD because the
dust emission equation is very sensitive to the low CESM
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Figure 4. Ridley et al. (2016) regional mean DAOD vs. modeled CESM2 DAOD using (a) Z03, (b) K14, (c) our scheme, and (d) MIDAS
DAOD (Gkikas et al., 2021) for 2004–2008 over 15 dusty regions (see Fig. S5) defined following Kok et al. (2021). The top panels show
annual mean DAOD scatterplots, with dashed lines as 1 : 1 lines and solid lines as the reduced major axis (RMA) regression lines. The
bottom panels show seasonal mean DAOD scatterplots for the three schemes, with thin lines as 1 : 1 lines and thick lines as the RMA
regression lines. Seasons are defined as DJF (December–January–February), MAM (March–April–May), JJA (June–July–August), and SON
(September–October–November).

soil moisture there, but our DAOD’s high bias is smaller than
K14 DAOD. Both K14 and our scheme underestimate DAOD
levels over the Taklamakan and Thar deserts, which is also
seen in other studies employing K14, e.g., Li et al. (2022a)
and Klose et al. (2021). None of the schemes captures the
DAOD levels over the Thar Desert as shown by MIDAS. The
overall improvement of our scheme’s DAOD is that it bet-
ter captures the DAOD values over El Djouf and reduces the
DAOD overestimations over the Arabian Peninsula and Su-
dan. Our scheme also has higher DAOD levels over semiarid
regions.

Next, we compare Ridley et al. (2016) regional mean
DAOD with CAM6-simulated DAOD using Z03, K14, and
our scheme in Fig. 4. Simulated regional DAOD is region-
ally averaged following the definition of 15 dusty regions
(see Fig. S5 in Kok et al., 2021). The upper and lower panels
show the annual and seasonal mean regional DAODs, respec-
tively. Our scheme’s DAOD (Fig. 4c) shows the highest cor-
relations with Ridley’s DAOD (annual R2

= 0.82; seasonal
R2
= 0.76), matching the regional DAOD distribution best,

whereas Z03 DAOD (Fig. 4a) produces the lowest correla-
tions (annual R2

= 0.44; seasonal R2
= 0.42) and the high-

est root-mean-square error (RMSE). Z03 overestimates an-
nual DAOD over Bodélé, Sudan, and Australia but underes-
timates DAOD over Mali, Niger, and western Africa, which
are primarily controlled by the strength of the source func-
tion S. K14 (Fig. 4b) shares a similar performance to our

scheme matching against Ridley’s regional DAOD values
(annual R2

= 0.77; seasonal R2
= 0.67), but K14 overes-

timates the high regional DAOD values (e.g., Mali, Niger,
Bodélé, and Sudan). K14 also tends to overestimate winter-
time and springtime dust over the tropical Atlantic and west-
ern Africa. Both K14 and our scheme underestimate DAOD
levels over the Taklamakan and Gobi deserts as well as the
Thar Desert (Fig. 4b and c), mostly due to underestimations
of dust in the springtime (MAM; green color). Finally, MI-
DAS DAOD (Fig. 4d) has the highest consistency with Ri-
dley’s annual and seasonal mean DAOD (annual R2

= 0.96;
seasonal R2

= 0.95).
Our new scheme has the reduced major axis (RMA) re-

gression slopes closest to the 1 : 1 line (annual slope= 0.92,
seasonal slope= 0.82), demonstrating the smallest fitting
bias among the three schemes. K14 DAOD has larger re-
gional DAOD over Mali, Niger, and El Djouf (Fig. 3b) and
RMA regression slopes moderately smaller than 1 (annual
slope= 0.72, seasonal slope= 0.67). Z03 in CESM2 is pre-
tuned but also overestimates dust over major source regions
(Fig. 3a), and the RMA slopes also deviate from 1 (annual
slope= 0.81, seasonal slope= 0.78).

All the simulations, regardless of the dust emission
scheme employed, show systematic underestimations for
lower regional DAOD values and overestimations for higher
regional DAOD values, consistent with the findings of Zhao
et al. (2022). The reason for the underestimations of lower re-
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Figure 5. Gridded model or satellite DAOD vs. AERONET–SDA coarse-mode AOD for 2004–2008. The top panels show the global dust
AOD for (a) MIDAS, (b) Z03, (c) K14, and (d) our scheme, overlaid by AERONET sites of coarse-mode AOD observations. (e–h) The
respective scatterplots for AERONET AOD vs. (e) MIDAS DAOD as well as CESM DAOD using (f) Z03, (g) K14, and (h) our scheme. The
15 source regions (labeled with symbols) follow the definition of Fig. S5 adopted from Ridley et al. (2016) and Kok et al. (2021).

gional DAOD values could be that the schemes (mainly Z03
and K14) underestimate dust emissions from marginal source
regions (with lower regional DAOD values), which is par-
tially corrected in our scheme by producing more emissions
from semiarid regions. This could further be because ESMs
overestimate wet depositions of dust over tropical oceans
(Albani et al., 2014; van der Does et al., 2020), for possi-
ble reasons including an overestimated light rain frequency
(Wang et al., 2021) and a higher hygroscopicity due to in-
ternal mixing with other aerosols (Neale et al., 2012). ESMs
also overestimate dry depositions for reasons that remain un-
clear but could include turbulence in dusty layers and an un-
derestimation of the extent to which particle asphericity en-
hances drag (Weinzierl et al., 2017; Huang et al., 2020; Meng
et al., 2022; Drakaki et al., 2022). These factors all contribute
to a shorter lifetime of dust, enhancing the dust concentration
contrasts between sources and downwind or far-field regions.

Next, we evaluate the simulated spatial DAOD vari-
ability against coarse-mode AOD observations at multi-
ple AERONET stations. Figure 5 compares the satellite-
derived MIDAS DAOD and the CESM2 simulations against
the AERONET–SDA coarse-mode AOD. The 39 site loca-
tions we chose (Sect. 4.2) are over arid regions, such that
the coarse-mode aerosols are mostly dust. MIDAS (Fig. 5d
and h) gives the best agreement when compared against
AERONET, yielding the largest coefficient of determination
(R2) of 0.76 and the smallest RMSE of 0.065. RMA regres-
sion gives a slope of 1.11 (blue line), which is close to the
1 : 1 line (black line).

Evaluating the dust emission schemes using the
AERONET AOD measurements gives a similar con-
clusion to using the Ridley DAOD values. The Z03 scheme
(Fig. 5a and e) shows the lowest degree of agreement with
AERONET with an RMSE of 0.21, more than 3 times the
RMSE of MIDAS DAOD. Z03 substantially overestimates
DAOD over Australia (Fig. 5a) because of the large source
function S there (AOD values are < 0.1 for the Australian
AERONET sites). There are also multiple underestimations
of Z03 DAOD of ∼ 0.3 over the Sahel, which can be > 0.5
for AERONET sites (Fig. 5a). Note that, although Z03 has a
relatively decent regional RMA regression slope in Fig. 4a,
Z03 shows much stronger bias against AERONET AOD
with an RMA slope of 0.66, because it strongly overes-
timates DAOD over hyperarid regions. Meanwhile, K14
(Fig. 5b and f) yields a much higher spatial R2 of 0.70 and a
much smaller RMSE of 0.080 against AERONET data. K14
has fewer DAOD underestimations over the Sahara–Sahel
region and reduced DAOD overestimations in the Arabian
Peninsula and Australia (Fig. 5f). The RMA regression
slope of 0.85 shows that K14 simulates the spatial variability
of AERONET AOD relatively well compared with Z03,
different from Fig. 4b, which shows that K14 regionally has
a stronger seasonal DAOD bias than Z03. This suggests that
evaluating dust schemes against regional and local station
data can yield different conclusions regarding biases. Our
new scheme (Fig. 5c and g) reduces the bias generated
by K14, yielding an RMA regression slope of 1.02. Our
scheme’s DAOD yields an R2 of 0.73 and an RMSE of
0.072, marking modest improvements over K14 simulations.
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Figure 6. Grid-by-grid MIDAS DAOD daily Pearson correlation maps with CESM2 DAOD for 2004–2008. (a–c) Correlation maps R of
MIDAS daily DAOD time series vs. CESM2 daily DAOD time series using (a) Z03, (b) K14, and (c) our scheme. The correlation maps focus
on grid boxes with the MIDAS DAOD : AOD ratio > 0.25 only. Pixels with MIDAS annual DAOD uncertainty (defined by Gkikas et al.,
2021) larger than annual mean DAOD (see Fig. 9) are filtered out (Fig. S8 shows the unfiltered correlation maps). The values at the bottom
of the panels show the global mean correlation values (for all grid boxes with MIDAS DAOD : AOD ratio > 0.25). (d–f) Changes (1R) in
correlation maps from (d) Z03 to K14, (e) Z03 to our scheme, and (f) K14 to our scheme.

Overall, our scheme performs the best of the three schemes
in capturing the spatial AOD variability of AERONET sites.

5.3 DAOD day-to-day variability

Apart from examining the spatial variability, we also exam-
ine the temporal variability of CESM2 dust using different
dust emission schemes. Here we use globally gridded daily
MIDAS DAOD across 2004–2008 and multiple stations of
AERONET–SDA coarse-mode daily AOD for evaluations.
For MIDAS DAOD, we calculate grid-by-grid daily Pear-
son correlations between MIDAS and CESM2 DAOD, yield-
ing a global correlation map for each scheme (Fig. 6). We
note that, since MIDAS is a reanalysis dataset, it is itself
also subject to errors due to the MERRA-2 assimilation er-
rors and MODIS instrumental and algorithmic errors. Gkikas
et al. (2021) reported that the day-to-day variability of MI-
DAS DAOD is highly consistent over the Dust Belt (e.g.,
their Fig. 2d) when compared against the Cloud-Aerosol
LIdar with Orthogonal Polarization (CALIOP) satellite re-
trievals of dust (LIVAS; Amiridis et al., 2013; Marinou et
al., 2017). While both MIDAS and CALIOP have uncertain-
ties, we view the day-to-day variability of MIDAS dust as
most accurate over the Dust Belt and thus focus our CESM–
MIDAS comparison in Fig. 6 on the Dust Belt. In Fig. 6, we

show the correlation results over grid boxes with a MIDAS
annual mean DAOD (Fig. 3d) larger than its annual mean
DAOD uncertainty (Fig. 8b in Gkikas et al., 2021), which
largely corresponds to the grid boxes over the Dust Belt (as
shown in Fig. S9b). Grid boxes with a MIDAS mean DAOD
smaller than the mean DAOD uncertainty are masked out in
Fig. 6, and Fig. S8 shows the correlation maps without any
masking. Figure S9 shows the MIDAS global DAOD or AOD
fraction for 2004–2008 (Fig. S9a) and the ratio of MIDAS
mean DAOD to the mean DAOD uncertainty (Fig. S9b). We
also further discuss the daily correlations of CESM-modeled
dust with its driving meteorological and land surface vari-
ables at the end of this subsection (see also Figs. S10 and
S11).

We first examine the correlations between MIDAS DAOD
and our CESM simulations of DAOD. In Fig. 6a, Z03 dust
shows overall strong daily correlations with MIDAS dust
over the Dust Belt and the tropical Atlantic. The correlations
are generally lower over the eastern Sahara than the western
Sahara, likely partially due to the strong extra dust sources
represented by Z03 over Sudan and Egypt, which is absent in
MIDAS DAOD. The predominant easterly trade winds bring
dust signals from Sudan to the central and western Sahara,
likely reducing correlations over dust sources such as the
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Figure 7. AERONET–SDA coarse-mode AOD daily correlations for 2004–2008 over selected sites with CESM DAOD using (a) Z03,
(b) K14, and (c) our study. (d) MIDAS DAOD vs. AERONET–SDA AOD daily correlation. The values at the bottom of the panels represent
the mean correlation across all AERONET stations.

Bodélé Depression. Another possible reason is that the daily
correlations between Z03 dust and the driving meteorologi-
cal fields over the eastern Sahara are generally modest, with
R values of only∼ 0.1–0.2 (see Fig. S10a–c). Another region
of strong correlations occurs over the Arabian Sea, indicated
in Fig. 6a as dominated by dust from the HoA, meaning both
MIDAS and Z03 agree that dust advects from the HoA to
central Asia and regulates dust air quality in downwind re-
gions. Z03 also shows high correlations with MIDAS over
the Thar Desert and moderately high correlations over China,
especially over the Taklamakan Desert. This partially indi-
cates that, although the regional emission strengths of Z03
are likely overestimated as shown in the previous subsection,
the Z03 source mask indeed helps emphasize the true source
origins of dust, which subsequently benefit a more accurate
temporal dust variability over the Taklamakan Desert and its
downwind regions.

K14 dust in Fig. 6b generally shows weaker correlations
with MIDAS dust over the Dust Belt than the other two
schemes. K14 has smaller correlations with MIDAS than Z03
(negative 1R values in Fig. 6d), despite the fact that K14
emissions have stronger daily correlations with the driving
fields than Z03 dust (Fig. S10d–f). One possible reason is that
K14 emissions over most of the Sahara are similarly strong
(Fig. 2b), meaning that K14 is less capable of distinguish-
ing primary emission sources from secondary sources. As a
result, simulated dust signals over downwind regions (west-
ern Africa and the Atlantic) could be contaminated by dust
signals from secondary sources such as Sudan, Western Sa-
hara, and western Mauritania. The same issue likely occurs
over the eastern Sahara since the Arabian Peninsula (upwind
of the eastern Sahara) emits similar orders of magnitude of
dust across most of the peninsula instead of coming primar-

ily from the Rub’ al Khali. Correlations over the Taklamakan
Desert also appear weaker than in Z03 (Fig. 6d), possibly
because of the higher-than-observed dust emissions from the
Karakum–Kyzylkum region in central Asia advected by the
predominant westerlies that contaminate dust signals over
the Taklamakan Desert.

Our scheme in Fig. 6c captures similar correlations to Z03
overall, with higher correlations (R ∼ 0.7–0.8) over west-
ern Africa, the Atlantic, the Arabian Sea, and India. Our
scheme performs modestly better than Z03 over the north-
ern Sahara (the Algerian desert and the Libyan desert) as
well as the Sahel and the Gulf of Guinea (positive 1R val-
ues in Fig. 6e), which is likely a result of dust coming from
more correct source regions. Modestly better performance is
also seen over the Rub’ al Khali, likely due to the wind drag
partition corrections. Additionally, our scheme’s dust emis-
sion correlates better with meteorological drivers than K14
and Z03 (Fig. S10g–i), especially with u∗s, which likely also
helps improve the DAOD correlations with MIDAS DAOD.
Meanwhile, a more significant reduction in correlations oc-
curs over China when comparing K14 and our scheme with
Z03 (Fig. 6e). Our scheme might produce weaker correla-
tions than Z03’s because our scheme with drag partitioning
causes u∗s to exceed the emission thresholds less often, re-
sulting in both weakened annual mean DAOD and weak-
ened seasonality of the DAOD time series. Apart from north-
western China, there are some additional moderate correla-
tion differences over central China (negative |1R| values in
Fig. 6e), which has metropolitan regions with vast anthro-
pogenic aerosols (e.g., Leung et al., 2018). This again indi-
cates that, as discussed in Fig. 3d, MIDAS DAOD might still
contain some anthropogenic aerosol signals in urban regions.
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Figure 8. CESM2 dust PM10 concentration (µg m−3) vs. climatological in situ PM10 measurements (Sect. 4.4) for (a) Z03, (b) K14, and
(c) our study. In the bottom panels, sites are labeled over different continents and oceans with different symbols and colors.

For AERONET data, we calculate daily Pearson corre-
lations between the selected AERONET stations and the
CESM2 grids that contain those stations. The conclusions
are similar to the ones discussed in Fig. 6. For Z03 (Fig. 7a),
strong correlations are generally seen over the Sahara and
central Asia because of a relatively decent representation of
the locations of dust sources. Z03 has a generally weaker rep-
resentation of the temporal dust variability over Australia, as
in K14 and our scheme. For K14 (Fig. 7b), the correlations
over the Sahara tend to be weaker (R around 0–0.4), likely
due to the inadequate representation of dust source locations.
The sites over northern and eastern Australia yield smaller
correlations in K14 than Z03, because the modeled dust sig-
nals over there are contaminated by emissions from the west,
which has higher emissions than the east. Our scheme yields
overall the highest correlations across the globe out of all the
schemes. Our scheme’s dust highly correlates with MIDAS
dust over the Sahara and the Middle East (R ∼ 0.5–0.8). Cor-
relations over the Australian sites in our scheme are also the
highest among all the schemes (R ∼ 0.3–0.5), even though
our scheme generates similar orders of magnitude of emis-
sions across different parts of Australia (in Fig. 2c). One is-
sue is that the correlation over a Mongolian site to the north
of the Gobi is about 0 (the weakened correlation also occurs
in the K14 simulation in Fig. 7b). As discussed in the previ-
ous paragraph, this is likely a result of our scheme’s inability
to generate high dust emissions from the Taklamakan than
the Gobi, such that the DAOD signal over the Mongolian site
is contaminated by the dust from other sources. Meanwhile,

Z03 with high Taklamakan emissions and low Gobi emis-
sions yields a high R of ∼ 0.6 over the Mongolian site.

As discussed above, our scheme’s dust not only matches
external dust datasets well, but also correlates better with
meteorological drivers in day-to-day variability than Z03
and K14 (in Figs. S10 and S11), for a number of reasons.
First, implementing more aeolian physics (Sect. 3) allows our
scheme to better couple with the simulated boundary-layer
dynamics, vegetation dynamics, and water cycle in CESM2.
For example, our scheme’s emission strongly covaries with
u∗s (Fig. S10g) since the emission’s dependence on u∗s is
not only in the K14 dust emission equation (Eq. 5), but also
in the C19 intermittency scheme (Sect. 3.4), resulting in an
enhanced sensitivity of emissions to winds. Another exam-
ple is that our emission’s dependence on the VAI is not only
in the bare land fraction term (Eq. 4), but also in the vegeta-
tion drag partitioning (Eq. 9), enhancing the dust correlation
with the VAI (Figs. S10h and S11h). The second reason is be-
cause the use of u∗it in the dust emission equation increases
the likelihood of emission Fd > 0 in the Fd time series. Z03
and K14 employing u∗ft have a lot of times with emission
Fd = 0 in the time series, weakening their emissions’ tempo-
ral variability and thus the covariation with u∗s. With more
pronounced temporal fluctuations, our scheme’s Fd is further
sensitive to the variability of u∗s and correlates better with
driving variables other than Z03 and K14. Thus, dust emis-
sion schemes using u∗it will generate emissions that correlate
better with the day-to-day variability of u∗s than schemes
using u∗ft. Third, the implemented aeolian processes allow
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Figure 9. CESM2 dust total (dry+wet) deposition (kg m−2 yr−1) vs. climatological in situ deposition measurements for (a) Z03, (b) K14,
and (c) our study. In the bottom panels, sites are labeled over different continents and oceans with different symbols and colors.

more coupling between the driving fields such as boundary-
layer meteorology and vegetation dynamics. For instance, as
the VAI regulates u∗s through the vegetation drag partition
effect, u∗s carries both the temporal variability of u∗ and the
VAI. u∗s thus almost dictates the temporal behavior of our
scheme’s emission time series, analogous to the concept of
dimensionality reduction (R ∼ 1 in the Sahara; Fig. S10g).
Figures S10 and S11 show that our scheme’s emission and
DAOD are very sensitive to the day-to-day variability of me-
teorological and land surface variables, which means that our
scheme is likely also more sensitive to climate change and
land use and land cover change (LULCC) in longer-term sim-
ulations.

5.4 Comparisons against other measurements of the
dust cycle

We use more datasets of different dust cycle variables from
other independent sources to evaluate our CESM2 dust cy-
cle simulations regarding spatial variability. Figure 8 com-
pares the simulated dust PM10 concentrations (background
colors) using various schemes vs. observed dust PM from
multiple stations (overlaid dots). Z03 has some strong over-
estimations compared with the measurements over the down-
wind regions of dust sources (dark red in the bottom panel of
Fig. 8a), such as over Japan, southern Australia, and South
Africa. Dust concentrations over the source regions are very
high (e.g., the Taklamakan Desert and the Australian desert
in the top panel of Fig. 8a), due to the very localized and high
Z03 emissions over the source regions (Fig. 2a). Our scheme

in Fig. 8c reduces the exaggerations of dust strength in Z03
over Asia, Australia, and other secondary sources, mitigating
the overestimations of dust PM as shown in the bottom panel
of Fig. 8c compared with Fig. 8a. Our scheme mainly overes-
timates dust PM over the Sahara, which is commonly shared
by Z03 and K14 and is consistent with the previous discus-
sion on regional DAOD (Zhao et al., 2022). Due to the insuf-
ficient emissions over the Taklamakan Desert, our scheme
produces ∼ 60 µg m−3 of dust PM there, smaller than the
∼ 100 µg m−3 reported by other observational studies (e.g.,
van Donkelaar et al., 2016; Leung et al., 2018; van Donkelaar
et al., 2021). Our scheme produces higher dust PM than K14
(Fig. 8b) over arid and semiarid regions, including the Gobi,
the United States, and Patagonia. Compared with Z03’s spa-
tial correlation of R = 0.80 (in the log10 space), our scheme
yields a slight increase in the spatial correlation of R = 0.90.
Overall, dust PM concentrations tend to be underestimated
over the downwind regions (e.g., the Pacific and the At-
lantic).

Figure 9 shows the dust deposition evaluation for all
the schemes. All the schemes show that most deposition
fluxes are concentrated over the source regions. Over re-
mote areas (e.g., the central Pacific Ocean and the Southern
Ocean), simulated deposition fluxes are small, with an or-
der of magnitude of ∼ 10−4 kg m−2 yr−1 or smaller (white
color), whereas many measurements over those remote loca-
tions have an order of magnitude of 10−3 kg m−2 yr−1 (light
blue). This shows that the deposition schemes in CAM6
are problematic in that dust typically deposits too quickly;
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Figure 10. Separating the contributions of the hybrid drag partition scheme (a, c, e) and the Comola et al. (2019) intermittency scheme
(b, d, f) to our dust emission scheme (Leung et al., 2023). The rows represent simulated (a, b) dust emission, (c, d) dust aerosol optical depth
(DAOD) with global means of 0.03, and (e, f) daily DAOD correlation with MIDAS DAOD from Gkikas et al. (2021).

switching between dust emission schemes does not address
or mitigate the issue. Generally, the spatial patterns of dust
depositions follow those of the DAOD (comparing Fig. 3
with Fig. 9). Our scheme has a higher correlation ofR = 0.65
(in the log space) compared with R = 0.49 by Z03, but K14
has an even slightly higher R = 0.69. There is some under-
estimation of dust deposition over the downwind regions of
Asia (e.g., the extratropical Pacific), likely due to the under-
estimated Asian dust in K14 and our scheme (but not in Z03
because of its abundant Asian dust). There is also some over-
estimation of dust deposition over the downwind regions of
the Sahara (e.g., the equatorial Atlantic), which could be for
several reasons. There could be an overestimation of dry de-
position due to an incomplete representation of deposition
processes (e.g., Huang et al., 2021; Klose et al., 2021; Li et
al., 2022a; Meng et al., 2022). In particular, the dry depo-
sition scheme in CAM6 (Zhang et al., 2001) was found to
particularly overestimate dry deposition of fine dust (Li et
al., 2022a). In addition, previous studies indicated a possible
overestimated tropical wet scavenging of dust (e.g., Albani
et al., 2014; van der Does et al., 2020). Figure S12 shows the
fraction of wet dust deposition flux in the total dust deposi-
tion flux from CESM2 using our scheme.

5.5 Separating the contributions of drag partition and
intermittency to our new scheme

In this subsection, we briefly discuss a sensitivity experi-
ment to separate the contributions of the hybrid drag parti-
tion scheme and the intermittency scheme to the improve-
ments in dust cycle simulations produced by our new Le-
ung et al. (2023) scheme. We performed the sensitivity ex-
periment by turning off the Comola et al. (2019) intermit-
tency scheme (experiment A using Sect. 3.1–3.3) to examine
the effect of drag partitioning and by turning off the hybrid
drag partition scheme (experiment B using Sect. 3.1–3.2 and
3.4) to examine the effect of intermittency on the resulting
CESM2 dust cycle simulations. Here we focus on discussing
the spatiotemporal variability of the simulated dust emission
and DAOD.

Figure 10 shows the main results of the sensitivity test.
The left column shows experiment A with the effects of drag
partitioning, and the right column shows experiment B with
the intermittency effect. For experiment A, the maps of dust
emission Fd (Fig. 10a) and DAOD (Fig. 10c) show similar
spatial patterns to those from our Leung et al. (2023) scheme
(Figs. 2c and 3c). This means that the drag partition fac-
tor Feff dominates the spatial variability of our new scheme.
It highlights the erodible regions across the globe and acts
as a filter that shapes the spatial variability of u∗s and Fd.
Feff shifts dust sources to more correct locations, such as the
Bodélé Depression and El Djouf in the Sahara, because of
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Figure 11. Effects of using the scaling map K̃c to correct the 0.9◦×1.25◦ CLM5 dust emissions on the CAM6 dust cycle. (a) DAOD spatial
pattern simulated by our scheme after the global dust emission pattern is corrected by K̃c. (b) Corrected DAOD (Fig. 11a) divided by the
uncorrected DAOD (Fig. 3c). Both DAOD maps are rescaled to have the same global mean to emphasize their difference in spatial variability.
(c, d) Corrected DAOD vs. Ridley regional DAOD (c) annually and (d) seasonally. (e) Corrected DAOD vs. AERONET–SDA coarse-mode
AOD. (f) Changes in correlation maps (1R) between corrected DAOD vs. MIDAS DAOD and uncorrected DAOD vs. MIDAS DAOD.

the use of the satellite-derived roughness map. For experi-
ment B, which represents the intermittency effect, Fig. 10b
shows substantially more emission fluxes from semiarid re-
gions than Fig. 10a due to the use of u∗it, which reduces
the dust overestimations over hyperarid regions as previously
discussed in Zhao et al. (2022). The Fd pattern in Fig. 10b is
different from our scheme’s Fd map in Fig. 2c, which means
that Comola’s intermittency scheme is sensitive to u∗s. The
spatial variability of Feff will change that of u∗s, which sub-
sequently changes the spatial variability of intermittency η
(Eq. 11c) and Fd (Eq. 11b). Therefore, η is controlled by Feff,
and the two variables share very similar spatial variabilities,
as shown in Fig. 1a–b. The DAOD pattern (Fig. 10d) also ap-
pears different from our scheme’s DAOD in Fig. 3c. There
is more dust in various semiarid regions, and without using
Feff the moderately high DAOD peaks are not constrained to
the most erodible regions, such as El Djouf in Mauritania.
Fig. 10e–f show the daily DAOD correlation with MIDAS
DAOD, which indicates that both drag partitioning and in-
termittency overall yield similar levels of correlations with
MIDAS dust.

Overall, the sensitivity experiment shows that the drag
partition scheme Feff dictates the spatial variability of our
new scheme’s dust. The drag partition scheme more cor-

rectly simulates the spatial pattern of dust emissions in ma-
jor source regions, while the intermittency scheme more cor-
rectly simulates the balance between dust from major sources
and marginal sources. For the intermittency scheme, the use
of u∗it enhances dust levels over semiarid regions, while η
is in general sensitive to u∗s and the emission thresholds.
Both the temporal variability of Feff and the intermittency
contribute to the temporal variability of our scheme’s dust to
similar degrees.

5.6 Effects of employing a scale-aware adjustment to
correct dust emission

In this subsection, we discuss the effects of using an empiri-
cal correction map (K̃c) to scale our scheme’s dust emissions
simulated in the native 0.9◦× 1.25◦ resolution to be consis-
tent with 0.47◦×0.62◦ emissions of our scheme (Sect. 3.5) in
the simulated dust cycle in CAM6. We focus on the changes
in the DAOD spatial variability; changes in other dust cy-
cle variables are shown in Fig. S13. Figure 11a shows the
global DAOD of our scheme after correction, which is not
visibly very distinct from the uncorrected DAOD in Fig. 3c.
Figure 11b shows the ratio between the corrected DAOD
and uncorrected DAOD, both normalized to the same global
mean, to better visualize their spatial variability discrepan-
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cies. It is worth comparing the map of DAOD discrepancies
(Fig. 11b) with the map of emission discrepancies (Fig. 1c).
The more prominent sources, e.g., the Sahara, have sup-
pressed DAOD compared with other dusty regions (K̃c ∼

0.8–0.9; light blue in Fig. 11b). This is because, as discussed
in Fig. 1c, high-resolution simulations produce more emis-
sions from semiarid regions than low-resolution simulations
but produce similar emission levels from primary sources to
low-resolution simulations, leading to a relative suppression
of dust over primary sources upon scaling to the same global
mean DAOD. Many secondary dust sources have relatively
enhanced dust levels, most noticeably the two American re-
gions (K̃c ∼ 1.2–1.8), but the absolute increases in DAOD
are modest as the baseline DAOD levels over there are low.
The Taklamakan and Gobi region also has a moderate rise in
DAOD (K̃c ∼ 1.3).

Since the high-resolution simulations generally pick up
more emissions over semiarid regions, K̃c tends to reduce
the DAOD regional biases seen in Fig. 4 by enhancing the
underestimated DAOD over semiarid regions and suppress-
ing the overestimated DAOD over major sources. Compared
against the Ridley et al. (2016) regional DAOD (Fig. 11c–
d), northern Africa has reduced DAOD and Southern Hemi-
sphere regions have increased DAOD, hence slightly enhanc-
ing R2 from 0.82 to 0.84 and dropping annual RMSE from
0.053 to 0.048. The annual RMA regression slope changes
modestly from 0.92 (in Fig. 4c) to 0.94. This shows that K̃c
helps reduce the biases of annual and regional mean DAOD
predictions. However, since the errors mainly originate from
seasonal biases, the improvements from using an annual K̃c
map are relatively modest. For instance, in Fig. 11d, the sig-
nificantly underestimated MAM DAODs (in red) in Asia and
the Middle East are still not resolved by using the annual K̃c.
Using a seasonal or monthly K̃c would more effectively re-
duce seasonal DAOD biases.

Although the correction map modestly improves the re-
gional variability of DAOD, it does not necessarily produce
improvements in comparisons against site-level dust obser-
vations. Figure 11e compares AERONET–SDA coarse-mode
AOD with the corrected DAOD of our scheme. Although
the scatterplot has an increased RMA slope from 0.97 (in
Fig. 5h) to 0.99, the R2 value drops from 0.71 to 0.65 and
the RMSE increases from 0.077 to 0.088. This is mainly
due to the small DAOD underestimations over major sources
like Mali, Niger, Bodélé, and Sudan (see the “x” points).
Our rescaled simulation has a reduced Mali–Niger DAOD
that better matches Ridley’s regional DAOD; however, it
loses its local DAOD peaks and matches less well against
AERONET–SDA AOD. There are also DAOD overestima-
tions over the southern Middle East. This evaluation likely
has a bias in geographical location because the errors are
mainly from major sources; if more selected AERONET sta-
tions were in the Taklamakan Desert, the Gobi, and the USA,
this evaluation against AERONET would possibly show bet-
ter results because our rescaling reduces the DAOD underes-

timations over those regions. Overall, this evaluation shows
that, despite the better performance in capturing the regional
DAOD variability using K̃c, it does not necessarily guaran-
tee a better performance in the grid-scale or site-scale spatial
DAOD variability.

Finally, Fig. 11f shows that the annual K̃c has few effects
on the temporal variability of DAOD simulations, which
depicts the correlation map differences 1R between our
scheme’s rescaled DAOD vs. MIDAS DAOD (Rcorrected)
and our scheme’s uncorrected DAOD vs. MIDAS DAOD
(Runcorrected from Fig. 6c). 1R values are statistically in-
significant across the globe (Sect. S1). It is reasonable that
K̃c changes our scheme’s DAOD temporal variability little
because K̃c is a time-invariant map here that is meant to only
change the spatial variability of the simulated dust.

6 Discussion and conclusions

This study has evaluated the new formulation of the dust
emission scheme proposed in Leung et al. (2023) against
measurements and compared its performance against exist-
ing emission schemes in CESM2. The major modifications
implemented in CESM2 are the following: (1) updating the
soil median particle diameter (as an input parameter for the
dust emission threshold calculation) from 75 µm as proposed
by Zender et al. (2003a) to 127 µm; (2) including a param-
eterization for the drag partition effect that accounts for the
impact of not only rocks, but also green and brown vegeta-
tion on reduction of the wind stress available for soil erosion;
(3) implementing the intermittent dust emission parameteri-
zation by Comola et al. (2019) that accounts for the effects of
boundary-layer turbulence on dust emissions; and (4) rescal-
ing the CESM2 native-resolution dust emissions to high-
resolution emissions. Following Leung et al. (2023), these
modifications are (5) implemented on the newer dust emis-
sion parameterization of Kok et al. (2014b; K14) instead of
the default Zender et al. (2003a, b; Z03) scheme in CLM5,
although modifications 1–4 can also be implemented on top
of Z03 or any other emission scheme. The major advances of
Leung et al. (2023) are mainly that the drag partition effect
successfully moves emissions toward important dust sources
(e.g., the Bodélé Depression and El Djouf) and thus gener-
ates a more realistic spatial distribution of dust than Z03 or
K14. Also, the intermittency scheme generates more emis-
sions from semiarid regions and even high-latitude regions,
in agreement with observations.

Our new scheme showed improvements over previous
schemes (Z03 and K14) in terms of both the spatial and tem-
poral variabilities of dust cycle variables. For instance, our
scheme showed improved agreement against the annual and
seasonal regional DAOD quantified by Ridley et al. (2016).
Indeed, our scheme’s annual regional DAOD had an R2 of
0.82 and an RMSE of 0.053 compared with Z03’s R2 of
0.44 and RMSE of 0.080. Evaluating against the AERONET–
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SDA coarse-mode AOD, our scheme’s DAOD yielded an R2

of 0.71 and an RMSE of 0.077 compared with Z03’s R2

of 0.36 and RMSE of 0.15. Our scheme also generated im-
proved spatial distributions of dust PM10 concentrations and
depositions against site measurements of PM10 and deposi-
tion fluxes over Z03 (Figs. 8 and 9). For day-to-day temporal
variability, our scheme’s DAOD also matched the MIDAS
DAOD better over most of the Dust Belt than Z03 DAOD
(Fig. 6e), with larger correlations of on average 1R ∼ 0.15
(p value< 0.05; Sect. S1). Our scheme’s DAOD also showed
high daily correlation values (with a mean of 0.45) against
AERONET–SDA daily AOD time series (Fig. 7). However,
our scheme’s DAOD generally showed worse performance
in representing the day-to-day dust variability over East Asia
(Figs. 6e and 7c), likely because of the significant low bias
of dust (DAOD∼ 0.1) over the Taklamakan Desert such that
dust over East Asia was dominated by other transboundary
dust signals instead of dust from the Taklamakan Desert.
Generally, our scheme better represented the spatial vari-
ability of Ridley’s regional DAOD, the site-level AERONET
DAOD, the site-level dust PM, and the day-to-day temporal
variability of MIDAS DAOD than the default Z03 scheme.
Our scheme’s dust also shows better correlations with driv-
ing meteorological and land surface variables (e.g., u∗s, VAI,
w; Figs. S10 and S11) and is thus likely more sensitive to cli-
mate change and LULCC than other emission schemes’ dust.
Since the more physically based Leung et al. (2023) scheme
showed improvements in the model–observation comparison
(Sect. 5), the developments in Leung et al. (2023) will be
introduced into a future CLM (and CESM) version for the
benefit and use of the dust community and the CESM com-
munity.

Regardless of which dust emission scheme is used, Fig. 4
shows that CESM2 tends to overestimate DAOD over ma-
jor sources (e.g., the Sahara) and underestimate DAOD over
marginal source regions (e.g., SH sources) and downwind
regions (e.g., oceans). This result is consistent with pre-
vious findings across multiple ESMs (Zhao et al., 2022),
likely due to the insufficient dust emissions coming from
the semiarid regions. Theoretically, employing the intermit-
tency scheme helps generate more emissions from semiarid
regions, thereby reducing the DAOD biases and increasing
the RMA slopes toward 1. Our scheme did yield RMA slopes
that most closely match the 1 : 1 line among all the emission
schemes (annual RMA slope= 0.92).

We then tested the proposed modification of rescaling
dust emissions of lower resolutions toward higher resolu-
tions by Leung et al. (2023). We used the 0.9◦× 1.25◦ and
0.47◦× 0.62◦ simulations from CESM2 to construct an an-
nual correction map K̃c (Eq. 12) used to rescale and correct
the CESM2-native 0.9◦× 1.25◦ dust emissions to the spa-
tial variability of the finer-resolution (0.47◦× 0.62◦) emis-
sions. Employing the scaling map K̃c further reduced the
CESM DAOD over hyperarid regions and enhanced DAOD
over secondary sources. Since K̃c is a time-invariant map,

employing K̃c has little effects on improving the seasonal
or day-to-day variability of the CESM DAOD (Fig. 10d and
f). Employing an annual K̃c in dust emissions modestly im-
proved the spatial variability of atmospheric dust but altered
its temporal variability little. This modification differs from
other modifications proposed by Leung et al. (2023) in that
it does not necessarily improve the process representation
of the dust scheme, but the methodology makes the scheme
more scale-aware and consistent toward high-resolution dust
simulations. Our new process-based emission scheme can
still be employed in ESMs and in regionally refined mod-
els (RRMs) with different horizontal resolutions without the
use of a scale-aware adjustment.

Although CESM2 with our updated dust emission scheme
thus shows an improved spatiotemporal pattern of DAOD,
some important biases remain. Our scheme overestimates
DAOD levels over the Horn of Africa (HoA) and Australia.
There are also dust underpredictions over the Taklamakan
Desert. The DAOD hotspot over the HoA (in Fig. 3c) is due
mainly to the very high u∗ in the MERRA-2-nudged CESM2
(> 0.5 m s−1 in Fig. S4), resulting in a high dust emission
flux of ∼ 1–2 kg m−2 yr−1 (Fig. 2c) that is almost as high
as emissions over the Bodélé Depression. The unrealistically
high emissions from the HoA produce a dust plume extend-
ing to the Middle East (e.g., Oman), central Asia, and as far
as the Thar Desert due to the downwind transport. This prob-
lem also occurs in the default K14 and Z03 schemes (Fig. 2a–
b), although Z03 uses a source mask that significantly re-
duces the HoA emissions. As for Australia, the relatively low
soil moisture over the central and western parts of the coun-
try results in somewhat higher emissions in western Australia
than in eastern Australia. Our study therefore shows a modest
annual DAOD peak of∼ 0.2 (Fig. 3c) over western Australia
(e.g., the Great Sandy Desert and the Gibson Desert), which
is different from the smaller eastern peak of∼ 0.1 in MIDAS
or Aqua DAOD (Fig. 3d). In addition, CESM2 shows an an-
nual DAOD of only ∼ 0.1 over the Taklamakan and Gobi
region in China, which is a strong underestimation compared
with the yearly DAOD of ∼ 0.35 from MIDAS or Aqua.
This DAOD low bias occurs because CESM2 simulates over
there a low emission flux (Fig. 2c) as a result of the mod-
erately high soil moisture w and aeolian roughness length
z0a (compared with the Sahara). Furthermore, CESM back-
ground dust levels over downwind regions (e.g., the tropical
Atlantic and the extratropical Pacific) are generally underes-
timated compared with MIDAS DAOD, likely because of the
strong dust depositions and short lifetimes of dust, leading to
dust preferentially depositing over the land.

Although we have attempted to improve the dust emission
model in both CLM5 and CAM6, there are more areas of
dust cycle modeling that warrant further developments. We
summarize several main issues in dust modeling that should
be addressed in future versions of CESM and other ESMs to
further enhance the dust modeling performance in the land
and atmospheric models.
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1. Dust emission physics. There are several mechanisms
that affect the dust emission threshold that are not cur-
rently accounted for in most dust emission modules.
First, soil crusts due to soil microbes can strongly ag-
gregate soil particles and prevent winds from eroding
the soils (Rodriguez-Caballero et al., 2018). Second, the
impact of anthropogenic activities, such as agriculture
or tillage, on dust emission is not explicitly included
in dust emission modules, although new parameteriza-
tions for anthropogenic dust emissions are under devel-
opment (e.g., Xia et al., 2022). Third, apart from salta-
tion bombardment, soil particles can enter the atmo-
sphere through direct aerodynamic entrainment (Klose
and Shao, 2012). Models have been developed to rep-
resent direct particle entrainment into the atmosphere
(Klose and Shao, 2013; Klose et al., 2014).

2. Dust size distribution. Apart from dust emission
physics, there are problems in representing the dust
aerosol size distributions in the atmosphere. Coarse and
super-coarse dust particles are substantially underes-
timated (Adebiyi and Kok, 2020), and recent studies
worked on implementing the coarse and super-coarse
dust size bins (CAM4; Meng et al., 2022) or modes
(Ke et al., 2021; CAM5) in different versions of CAM,
such that CESM2 can represent the impacts of large
dust particles on climates and ecosystems. Recent stud-
ies further found that the geometric standard deviations
(GSDs) of the accumulation and coarse modes in CAM6
are too narrow (Wu et al., 2020; Li et al., 2022a), which
subsequently adversely impacted the dust deposition,
lifetime, and size distribution of the CAM6 simulations.

3. Dust deposition. Dust deposition in ESMs is generally
overestimated, and dust lifetime is underestimated (e.g.,
Albani et al., 2014; van der Does et al., 2020; Huang
et al., 2021) for a few reasons. First, recent studies
found that dust particles are highly aspherical, which
subsequently alters the aerodynamic resistance of dust
and slows down the dry deposition velocity of dust
(Huang et al., 2021). This finding increases the lifetime
of coarser dust particles and also reduces the mass ex-
tinction efficiency (Huang et al., 2023). This effect of
dust asphericity on dry deposition and extinction is be-
ing implemented in climate models (e.g., Klose et al.,
2021; Li et al., 2022a; Meng et al., 2022). Second, the
default dry deposition scheme in CAM6 (Zhang et al.,
2001) is known to overestimate dry deposition of fine
dust, and Li et al. (2022a) employed a newer dust de-
position scheme (Petroff and Zhang, 2010) to resolve
the issue. Third, the modal aerosol model (MAM) of
CESM2 merges dust and other aerosols (e.g., sea salt)
into the same modes (e.g., accumulation and coarse
modes) with internal mixing, such that the wet depo-
sition of dust is likely overestimated (e.g., the Atlantic

Ocean) due to the higher hygroscopicities of other aque-
ous aerosols (Neale et al., 2012). Fourth, studies re-
ported that modeled dust depositions are too high over
the tropical oceans (Albani et al., 2014; van der Does et
al., 2020).

4. Speciation of dust. CESM and other ESMs mostly pa-
rameterize dust as a single mineral (e.g., aluminum sil-
icate; Emmons et al., 2020), which cannot adequately
represent a suite of chemical reactions, radiative ef-
fects, and cloud processes that depend on mineralogy.
Recent studies have initiated the modeling of multiple
dust species (e.g., hematite, quartz, illite, feldspar, or
calcite) and better represented the dust optical prop-
erties and radiative effects (Li et al., 2021, 2022a;
Gonçalves Ageitos et al., 2023). The emergence of
satellite measurements of global soil mineralogy such
as from the Earth Surface Mineral Dust Source Inves-
tigation (EMIT; Green et al., 2020; Thompson et al.,
2020) mission under NASA will help better represent
dust species from specific source regions.

5. Chemistry and cloud processing. Having accurate simu-
lations of the modeled spatiotemporal variability of dust
requires dust chemistry and dust–cloud interactions in
ESMs, because they are crucial for simulating dust ag-
ing and dust removal processes. A correct mineralogical
representation of dust is essential for representing the
role of dust in atmospheric chemistry and aerosol–cloud
interactions. Previous studies have documented multi-
ple chemical reaction pathways via which dust interacts
with tracer gases and aerosols (Gaston, 2020; Adebiyi
et al., 2023; Kok et al., 2023). Dust acts as a source
or sink of multiple chemical species, such as oxidants
(e.g., ozone), aerosol precursors (e.g., sulfur dioxide and
nitric acid), aerosols (e.g., via coagulation), halogens
(e.g., chlorine), and more (Tang et al., 2017; Mitroo et
al., 2019; Gaston, 2020). Furthermore, although many
ESMs include the impacts of dust on ice cloud forma-
tion (Storelvmo, 2017), dust seeding in warm cloud for-
mation is quantified in only a few ESMs (e.g., McGraw
et al., 2020) as dust is considered hydrophobic by many
ESMs. Chemical dust aging is crucial for dust to gain
hygroscopicity and become effective cloud condensa-
tion nuclei (CCN). A comprehensive mineralogical rep-
resentation of dust and a more complex heterogeneous
dust chemistry are required to adequately represent the
roles of dust in the formation of warm, ice, and mixed-
phase clouds as well as the effects of dust–cloud interac-
tions on indirect radiative effects and forcings in ESMs.

6. Observations for dust modeling development. The un-
certainties in dust modeling are due to not only the un-
certainties in the parameterized dust processes, but also
the uncertainties in the input data of these parameter-
ized processes. The availability of observations will in-
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fluence the uncertainties in dust modeling both by en-
tering the simulations as input datasets and by shap-
ing the parameterization development. For instance, Le-
ung et al. (2023) used a global soil particle diame-
ter Dp = 127 µm (Sect. 3.2) to compute the emission
thresholds since there were too few site Dp measure-
ments, which hindered the accuracy of the simulation
of the global distributions of emission thresholds. We
also speculated in Sect. 5 that some of our simulated
DAOD biases could be due to biases in the meteorolog-
ical inputs rather than the missing physics in the dust
scheme. More observations will also allow us to develop
more accurate parameterizations for dust. For instance,
recent coarse dust observations (e.g., Adebiyi and Kok,
2020) justified the importance of and quantified the nec-
essary parameters for formulating the coarse dust modes
in ESMs (e.g., Ke et al., 2022; Meng et al., 2022). Hav-
ing more observations of dust and its dependent vari-
ables is highly warranted for reducing the uncertainties
in dust simulations by improving the dust schemes and
reducing the uncertainties in input-dependent variables.

Finally, while many dust modeling studies focused on im-
proving and evaluating the spatial representation of mod-
eled dust, the importance of evaluating the temporal vari-
ability of modeled dust is likely undervalued in global dust
modeling studies. Relatively few dust studies (e.g., Zhang
et al., 2013; Klose et al., 2021; LeGrand et al., 2023) pro-
vide evaluation of the temporal changes in dust emissions
and DAOD. This study represents one of the early attempts
to conduct a global-scale evaluation of the day-to-day vari-
ability (Figs. 6–7) of the simulated dust time series (along
with studies like Klose et al., 2021). The next step in improv-
ing dust modeling should be to enhance the long-term (inter-
annual or interdecadal) variability of dust, especially since
recent studies (e.g., Kok et al., 2023) found that ESM dust
trends do not reproduce the historical increasing trends of
dust. It is highly warranted to investigate how transient cli-
mate change and LULCC regulate the long-term variability
of observed dust and reproduce them in ESMs. Improving
long-term ESM dust predictions will also benefit the study
of the epidemiological consequences of future dust changes
on human health, risk management, and mitigation strategies
(Philip et al., 2017; Achakulwisut et al., 2019; Bauer et al.,
2019; van Donkelaar et al., 2021).

Appendix A: Mathematical symbols of major
variables defined in this study

η Intermittency factor
κ Fragmentation exponent
ρa Air density
ρp Soil particle density
ϕ Sandblasting efficiency in the Zender et al. (2003)

emission scheme
σũs Standard deviation of instantaneous wind

fluctuations
Ar Fractional rock area
Av Fractional vegetation area
a Tuning constant for threshold gravimetric soil

moisture
Cd Soil erodibility coefficient
CMB Proportionality constant in the

Zender et al. (2003) emission scheme
Ctune Proportionality constant for the Kok et al. (2014)

emission scheme
Dp Soil particle diameter
Fd Dust emission flux
Fd,c Simulated dust emission at coarse resolution
Fd,f Simulated dust emission at fine resolution
Feff Hybrid drag partition factor
fclay Clay fraction (from 0 to 1)
feff,r Rock drag partition factor
feff,v Vegetation drag partition factor
fm Soil moisture effect
fv Vegetation cover fraction
g Gravitational acceleration
K̃c Scaling map for correcting the spatial variability

of simulated dust emission at coarse resolution
toward simulated emission at fine resolution

LAI Leaf area index
S Preferential dust source filter in the Zender et al.

(2003) emission scheme
SAI Stem area index
VAI Vegetation area index
VAIthr Threshold vegetation area index
T Proportionality constant in the Zender

et al. (2003) emission scheme
u∗ft0 Dry fluid threshold
u∗ft Wet fluid threshold or static threshold

(accounting for the soil moisture effect fm)
u∗it Impact threshold or dynamic threshold
u∗s Friction velocity at the soil surface
u∗t Dust emission thresholds (generic for

indicating both fluid and impact thresholds)
u∗st Standardized fluid threshold
ũs Instantaneous wind velocity
w Gravimetric soil moisture
wt Threshold gravimetric soil moisture
z0a Aeolian roughness length (for rocks and plants)
z0s Smooth roughness length (for soil grain)
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Code and data availability. The MODIS Dust Aerosol (MIDAS)
daily dust aerosol optical depth data from Gkikas et al. (2021)
are available at https://doi.org/10.5281/zenodo.4244106 (Gkikas et
al., 2020). The AERONET site AOD data are available at http:
//aeronet.gsfc.nasa.gov (AERONET, 2022). The satellite-derived
aeolian roughness data are available upon contacting Cather-
ine Prigent. The in situ dust PM and dust deposition measure-
ments are available at https://zenodo.org/records/6989502/files/
LLi2022GMD.Observations.tar.gz?download=1 (Li et al., 2022b),
which was originally from Table S2 of Albani et al. (2014)
and Table S2 of Mahowald et al. (2009). ESA CCI land
cover can be obtained from https://www.esa-landcover-cci.org/
?q=node/164 (last access: 20 December 2022). The CESM2
code for the new dust emission scheme is available at
https://doi.org/10.5281/zenodo.10621844 (Leung, 2024).
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