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Abstract. Volatile organic compounds (VOCs) play a crucial role in the formation of tropospheric ozone (O3)
and secondary organic aerosols. VOC emissions are generally considered to have larger uncertainties compared
to other pollutants, such as sulfur dioxide and fine particulate matter (PM2.5). Although predictions of O3 and
PM2.5 have been extensively evaluated in air quality modeling studies, there has been limited reporting on the
evaluation of VOCs, mainly due to a lack of routine VOC measurements at multiple sites. In this study, we uti-
lized VOC measurements from the “Towards an Air Toxic Management System in China” (ATMSYC) project
at 28 sites across China and assessed the predicted VOC concentrations using the Community Multiscale Air
Quality (CMAQ) model with the widely used Multi-resolution Emission Inventory for China (MEIC). The ra-
tio of predicted to observed total VOCs was found to be 0.74± 0.40, with underpredictions ranging from 2.05
to 50.61 ppbv (5.77 % to 85.40 %) at 24 sites. A greater bias in VOC predictions was observed in industrial
cities in the north and southwest, such as Jinan, Shijiazhuang, Lanzhou, Chengdu, and Guiyang. In terms of
different VOC components, alkanes, alkenes, non-naphthalene aromatics (ARO2MN), alkynes, and formalde-
hyde (HCHO) had prediction-to-observation ratios of 0.53± 0.38, 0.51± 0.48, 0.31± 0.38, 0.41± 0.47, and
1.21± 1.61, respectively. Sensitivity experiments were conducted to assess the impact of the VOC prediction
bias on O3 predictions. While emission adjustments improved the model performance for VOCs, resulting in a
change in the ratio of total VOCs to 0.86± 0.47, they also exacerbated O3 overprediction relative to the base
case by 0.62 % to 6.27 % across the sites. This study demonstrates that current modeling setups and emission in-
ventories are likely to underpredict VOC concentrations, and this underprediction of VOCs contributes to lower
O3 predictions in China.
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1 Introduction

Volatile organic compounds (VOCs) in the ambient atmo-
sphere consist of thousands of gaseous organic trace sub-
stances emitted from various anthropogenic and biogenic
sources (Guenther et al., 2012; M. Li et al., 2017; Kelly et
al., 2018). These compounds undergo complex chemical re-
actions that form ozone (O3) and secondary organic aerosols
(SOAs) (Sillman, 1999; Kroll and Seinfeld, 2008). While
biogenic VOCs (BVOCs) are the primary source of VOCs
worldwide (Guenther et al., 2006), urban areas are predom-
inantly influenced by anthropogenic sources (Guan et al.,
2020; Guo et al., 2022; C. Li et al., 2022). Anthropogenic
VOC (AVOC) emission inventories are typically developed
by estimating the total VOC emissions using emission fac-
tors (EFs) and activity rates from different sources. The VOC
speciation profiles are then utilized to determine the emis-
sion rates of various VOC species (M. Li et al., 2017). Due
to the complexity of VOC emission processes and presence
of numerous small but dispersed nonpoint sources, notable
uncertainties exist while determining EFs, activity rates, and
speciation profiles. It is estimated that the uncertainties asso-
ciated with VOC emissions range from approximately 68 %
to 76 %, which are higher than those of sulfur dioxide (SO2)
(12 % to 40 %), nitrogen dioxide (NOx) (31 % to 35 %), and
particulate matter (PM) (30 % to 94 %) (Zhang et al., 2009;
Li et al., 2019; Kurokawa and Ohara, 2020; An et al., 2021).

Chemical transport models (CTMs), such as the Com-
munity Multiscale Air Quality (CMAQ) model, Weather
Research and Forecasting model coupled with Chemistry
(WRF-Chem), and Goddard Earth Observing System Chemi-
cal transport model (GEOS-Chem), have been developed and
widely used to investigate the formation processes, source
apportionment, and emission control strategies for various
air pollution issues (Zhang et al., 2021; Dang et al., 2021;
Wang et al., 2021). The emissions of VOCs, along with other
species such as SO2, NOx , ammonia, and PM, serve as es-
sential inputs driving air quality model simulations. Uncer-
tainties in VOC emissions notably impact air quality model-
ing for O3, SOA, and total fine particulate matter (PM2.5). A
study conducted in the United States reported a substantial
underprediction of VOC emission inventories in urban re-
gions (Mcdonald et al., 2018), particularly for volatile chem-
ical products (VCPs). A simulation study that developed four
cases based on the baseline inventory demonstrated that aug-
mented VOC emission inventories have notable effects on
O3 and PM2.5, highlighting the need for more detailed VCP
emissions in the inventory to improve model performance
(Zhu et al., 2019). In China, notable discrepancies in aromat-
ics have been observed between CMAQ predictions and mea-
surements (Wang et al., 2020). Wu et al. (2022) reconciled
the bottom-up methodology and measurement constraints to
improve the city-scale non-methane VOC (NMVOC) emis-
sion inventory in Nanjing, resulting in improved O3 simula-
tion performance with the CMAQ model.

Model evaluation serves as the initial step in establishing
confidence in air quality model predictions for further analy-
sis. Numerous studies have conducted evaluations of the pre-
dicted O3 and PM2.5 concentrations in China (Hu et al., 2016;
L. Li et al., 2021; Li et al., 2020). Overall, the predictions of
O3 and PM2.5 concentrations generally align with the obser-
vations (Shi et al., 2017; Wang et al., 2021), although sub-
stantial biases have been reported in certain circumstances
and for specific species, such as O3 and SOA (Gong et al.,
2021; Liu et al., 2020; Hu et al., 2017; Qin et al., 2018).
Given that VOCs are key precursors of O3 and SOA, evalu-
ating VOC predictions can help elucidate the causes of these
substantial biases in predictions. However, VOC evaluations
in regional modeling studies have been infrequent due to lim-
ited measurement data. Ambient VOCs have been measured
at different locations in China in various studies (Yang et al.,
2022; G. Wang et al., 2022). Unlike O3 and PM2.5, which
are routinely monitored across major cities and regions in
China, VOCs are often measured over short periods at one
site only or specific sites. Different studies may employ dif-
ferent instruments, and the study periods may vary, making
it challenging to compile VOC measurement data from mul-
tiple studies for a comprehensive model evaluation.

In this study, we conducted VOC evaluations in China
by utilizing summertime observations from 28 sites located
in different regions of the country, as part of the “Towards
an Air Toxic Management System in China” (ATMSYC)
project (Lyu et al., 2020). This study aimed to assess the
disparities between measured VOC concentrations and pre-
dictions in various regions of China using the widely used
CMAQ model. We quantified the impacts of VOC biases
on O3 predictions through emission adjustments based on
observation–prediction differences. The results of this study
indicated that the model performance of VOCs in China still
has much room to improve, likely with a focus on updating
emission inventories in fast-growing industrial cities. Most
sites underpredicted TVOCs, and the biases of alkenes sig-
nificantly impacted O3 production. These findings enhanced
our understanding of current VOC modeling in air quality
models, which could help to improve VOC emission inven-
tories and O3 prediction in the future.

2 Materials and methods

2.1 Observation data

The ATMSYC project involved a collaborative sampling
campaign at 28 sites in 18 cities across China, conducted
from 6 June to 24 August 2018, with speciated VOC mea-
surements as part of the observation task (Lyu et al., 2020).
Detailed site information and sampling times can be found in
Table S1 in the Supplement. Measurements were taken at in-
tervals of 2 or 4 h between 08:00 and 16:00 (local time). The
offline measurement techniques, and data quality assurance
and quality controls (QA/QC), which were consistent across
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all sites, have been described previously (Lyu et al., 2019,
2020; Liu et al., 2021; Zhou et al., 2023). Briefly, stainless
steel canisters and 2,4-dinitrophenylhydrazine (DNPH) car-
tridges were utilized to collect non-methane hydrocarbons
(NMHCs) and oxygenated VOCs (OVOCs), respectively.
NMHCs were quantified using a gas chromatograph (GC)
coupled with a mass spectrometry detector (MSD), electron
capture detector (ECD), and flame ionization detector (FID)
(the GC-FID system for C2–C3 species and GC-MSD/ECD
for other NMHCs). OVOC samples were analyzed by high-
performance liquid chromatography. The accuracies for the
NMHC measurements ranged from −22.58 %–8.71 %, with
precisions of 0.86 %–25.89 % (Zhou et al., 2023). More de-
tails regarding the measurements can be found in Sect. S1.
From the ATMSYC dataset, we selected 61 representative
VOC species and classified them into 20 categories, accord-
ing to the SAPRC07 mechanism (Carter, 2010) to facili-
tate comparison with model predictions. These species can
be categorized into five groups: alkanes, alkenes, aromatics,
alkynes, and formaldehyde (HCHO). Further details regard-
ing these specific classifications are mentioned in Table S2.

Observations of O3 and nitrogen dioxide (NO2) were col-
lected from 28 ground sites, sourced from the Chinese Min-
istry of Ecology and Environment (https://www.mee.gov.cn/,
last access: 20 April 2022), to assess the simulation perfor-
mance of the modeled O3 and NO2. To evaluate the impact
of meteorological conditions, we also collected observation
data of meteorological variables (temperature (T 2), relative
humidity (RH), wind speed (WS), and wind direction (WD))
from the nearest meteorological stations to the 28 sites from
the Chinese Meteorological Agency (http://data.cma.cn/en,
last access: 27 April 2022).

2.2 Model configurations

The CMAQ version 5.2 model (Appel et al., 2018), cou-
pled with the SAPRC07TIC mechanism and aerosol module
AERO6i, was utilized to simulate air quality across China
from June to August 2018 (Mao et al., 2022). Meteorological
fields were generated using WRF version 4.2.1, employing a
1.0◦× 1.0◦ resolution FNL reanalysis dataset from the Na-
tional Center for Atmospheric Research (NCAR). The spe-
cific settings of WRF were consistent with those described
by Mao et al. (2022), and the simulation performance of the
meteorological fields was verified (Mao et al., 2022). The
modeling domain with a horizontal resolution of 36 km is
shown in Fig. 1, which divides China into seven regions: the
North China Plain (NCP), the Northwest, the Northeast, the
Yangtze River Delta (YRD), Central China, the Southwest,
and South China (with a higher concentration of sites in the
Pearl River Delta (PRD) region).

We utilized the Multi-resolution Emission Inventory for
China (MEIC) v1.3 with a resolution of 0.25◦× 0.25◦

in 2017 (http://www.meicmodel.org, last access: 25 Jan-
uary 2022) for anthropogenic emissions within China. For

anthropogenic emissions outside of China, we employed
the Regional Emission Inventory in Asia (REAS) v3.2 in
2015 (https://www.nies.go.jp/REAS/, last access: 25 January
2022). Biogenic emissions were generated using the Model
for Emissions of Gases and Aerosols from Nature (MEGAN)
v2.1 (Guenther et al., 2012), which were then mapped to
27 SAPRC07TIC species, including isoprene (ISOP), α-
pinene (APIN), and other BVOCs. Further details on the bio-
genic emissions can be found in J. Li et al. (2022). Open
biomass burning emissions were processed using the Fire In-
ventory from NCAR (FINNv1.5; https://www2.acom.ucar.
edu/modeling/finn-fire-inventory-ncar, last access: 28 Jan-
uary 2022, now updated to FINNv2.5).

Most emission inventories commonly employ a lumped
mechanism to represent VOCs. M. Li et al. (2014) intro-
duced a method to allocate individual non-methane VOC
(NMVOC) emissions in the MEIC to species groups using
multiple chemical mechanisms, utilizing mechanism-specific
mapping tables from Carter (2013). This method has been
widely adopted in CTMs. In this study, we followed this
approach and utilized a speciation profile processor called
Spec DB, which is available from https://intra.engr.ucr.edu/
~carter/emitdb/ (last access: 12 November 2021), provided
by Carter (2013), to generate the speciation profiles. The
mapping scheme for the SAPRC07TIC mechanism in the
MEIC and open biomass burning was updated based on the
step-by-step assignment framework of the SAPRC07 mech-
anism provided by the MEIC team.

In this study, we examined the performance of CMAQ
simulations during the observation period of the ATMSYC
project. The days prior to 6 June were considered the spin-up
period. The simulated VOC values at each site were matched
with the observation time to obtain the average concentra-
tion during the same period. This duration was defined as the
study period.

2.3 Adjustment of VOC emissions

Emissions were adjusted for several species that exhibited
significant deviations in simulations. The adjustment factors
for emissions were determined by calculating the median of
the ratio between observed and predicted values at 18 ur-
ban sites, which provided an average measure of the de-
viation for each species. Sensitivity experiments were con-
ducted to examine the impact of the updated VOC emissions
on both predicted VOCs and O3 levels. To quantify the effect
of unit increments in VOCs on O3 concentrations, the rela-
tive incremental reactivity (RIR) was calculated. The RIR is
a commonly used metric in observation-based model studies
(Cardelino and Chameides, 1995) to assess the sensitivity of
O3 to individual precursors such as NOx and various types of
VOCs. The calculation of RIR is based on Eq. (1):

RIR(X)=

(
NO3 (X)−BO3 (X)

)
/BO3 (X)

(NX (X)−BX (X))/BX (X)
. (1)
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Figure 1. The CMAQ modeling domain covering China and the surrounding countries and regions in this study, including 28 blue dots
that represent the positions of VOC sampling sites. We divided China into seven regions according to the geographical location of different
provinces, which comprise the following sites: the NCP – BJ-B, BJ-U, SJZ-B, SJZ-U, JN-B, JN-U; the Northwest – LZ-B, LZ-U; the
Northeast (no observation sites); the YRD – SH-B, SH-U; Central China – ZZ-B, ZZ-U, WH-B, WH-U; the Southwest – CD-B, CD-U,
GY-B, GY-U; and South China – most of the sites being concentrated in the PRD region (shown in the enlarged subgraph in the lower left) –
GZ-B, GZ-U, SZ, HZ, DG, FS, JM, ZQ, ZS, ZH.

In the equation, X represents a specific VOC species, while
BO3 and NO3 represent the O3 concentrations in the base and
adjusted emission case for X, respectively. The denominator
on the right-hand side of the equation represents the relative
change in emissions after the adjustment for X.

3 Results

3.1 Model performance evaluation

3.1.1 Evaluation of O3 and NO2

Figure 2 displays the performance of the CMAQ model for
the maximum daily 8 h average (MDA8) O3 and NO2 con-
centrations at 28 sites. Model performance was assessed us-
ing statistical parameters, including the normalized mean
bias (NMB), normalized mean error (NME), and correlation
coefficient (R). The specific values of these statistical met-
rics can be found in Table S3. The results indicated that the
model predictions complied with the observations at most
sites in the NCP, Central China, and the Southwest, with only
slight underpredictions observed at Lanzhou’s urban station
(LZ-U; NMB=−0.18) and Shanghai’s background station
(SH-B; NMB=−0.16) and a slight overprediction at Shang-
hai’s urban station (SH-U; NMB= 0.20). However, in the
PRD, overpredictions of MDA8 O3 were observed in loca-
tions such as Shenzhen’s station (SZ; NMB= 0.39) and Fos-
han’s station (FS; NMB= 0.32), despite the correlation co-
efficients being higher than the performance criteria at most

sites. The CMAQ’s NO2 predictions exhibited underpredic-
tions for most cities in the Northwest, PRD, and some back-
ground sites, but substantial overpredictions were evident in
certain urban sites, such as Chengdu’s urban station (CD-U;
NMB= 0.92) and SZ (NMB= 0.52).

3.1.2 Evaluation of VOCs

Figure 3 presents the observed VOC concentrations and cor-
responding CMAQ simulations across all the sites during the
observation period. The proportions of the three categorized
VOC groups, namely alkanes, alkenes, and aromatics, are de-
picted in detail in Fig. S1. The results revealed low predicted
VOC concentrations at most sites, with particularly markable
underestimation in certain areas. Table S4 displays the mean
values of O3, NO2, and total VOC (TVOC; encompassing
the VOCs considered in this study) concentrations at the 28
sites throughout the study period. As indicated in Table 1, the
predicted-to-observed ratio (referred to as ratio here after)
of TVOCs is 0.74± 0.40. The underprediction ranged from
2.05 to 50.61 ppbv (5.77 % to 85.40 %) at 24 sites, while
overpredictions occurred at four sites, namely SH-U, CU-U,
Wuhan’s background station (WH-B), and FS, with values
ranging from 0.47 to 29.53 ppbv (1.92 % to 89.96 %). These
findings suggested that the CMAQ model, employing the
MEIC, underpredicted TVOC concentrations. Notably, the
underprediction of TVOCs was more pronounced at sites lo-
cated in the cities of Lanzhou, Jinan, Shijiazhuang, Guiyang,
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Figure 2. Model performance on MDA8 O3 and NO2 at 28 sites in different regions from 6 June to 24 August in 2018. The blue and red
lines denote performance criteria (NMB – normalized mean bias, NME – normalized mean error) for MDA8 O3, suggested by Emery et
al. (2017), and the symbols in different colors distinguish different regions of China.

and Zhengzhou, where TVOCs were underpredicted by fac-
tors of 2 to 6.

The regional averages of the predicted and observed
TVOCs were calculated by averaging the predictions and
observations from all the sites in each region (Table S4).
The ratios of observed to predicted TVOCs varied across
regions as follows: YRD (1.04)>Southwest (0.92)>PRD
(0.83)>Central China (0.71)>NCP (0.42)>Northwest
(0.16). In Fig. S2, despite having the highest observed TVOC
value (44.08 ppbv), the model results showed a lower con-
centration (7.04 ppbv) in the Northwest region (specifically
in Lanzhou), making it the region with the lowest predicted
value. The predicted TVOC concentration in the YRD region
(Shanghai) was the closest to the observed value. However,
Fig. 3 shows that the VOC concentrations were notably over-
predicted at SH-U and underpredicted at SH-B. The South-
west region appeared to have the best performance among all
the regions, which could be due to the overpredicted TVOCs
at CD-U, which offsets the underprediction at other sites.
Overall, the predicted and observed TVOC concentrations
exhibited notable discrepancies in most regions and the per-
formance varied across the regions.

Regarding the VOC components shown in Fig. S2, alka-
nes consistently constituted as the most abundant group of
VOCs in both observations (38.3 % to 50.6 %) and predic-
tions (31.6 % to 44.9 %). This suggested that the predicted
proportion of alkanes in TVOCs closely complied with the
actual data. Alkenes typically ranked as the second-highest
VOC component in observations (14.9 % to 31.2 %), but they
were underrepresented in the model (16.5 % to 20.0 %). The
predicted proportions of aromatics (13.1 % to 22.8 %) and
HCHO (15.3 % to 28.9 %) were higher than in the observa-
tions. In addition, alkynes were predicted to have a minor
contribution to TVOCs. In terms of absolute concentrations,
the underestimation of alkanes and alkenes was relatively

pronounced, particularly in the NCP and Northwest regions.
The model performed better in predicting the proportions of
various VOC species in the PRD and Southwest regions.

Figure 4 illustrates the ratios of O3, NO2, and various
VOC species at the 28 sites. The discrepancies in ratios be-
tween urban and background sites are presented in Fig. S3.
The ratio of alkanes is 0.53± 0.38 (median± standard de-
viation), indicating an underprediction of 5.65± 6.81 ppbv
from a concentration standpoint (Table 1). Notably, the alka-
nes whose reaction rate constant with hydroxyl radical (OH)
was between 5× 102 and 2.5× 103 ppm−1 min−1 (ALK2)
exhibited the most notable underprediction. The predic-
tions for aromatics showed minor deviations across differ-
ent sites, but the median ratio was close to 1, except for
ARO2MN, which was substantially underpredicted, with a
ratio of 0.31± 0.38 (0.32± 0.46 at urban sites), and ben-
zene (BENZ), which was 2.75± 1.97 at urban sites (Ta-
ble S5). The ratios for the seven alkenes were generally high
(0.51± 0.48 for alkenes), indicating underprediction in most
sites. Particularly, 1,3-butadiene (BDE13) exhibited a no-
table low ratio, possibly due to its reallocation from the un-
derpredicted alkenes, whose reaction rate constant is greater
than 7× 104 ppm−1 min−1 with OH (OLE2), and the allo-
cation factor may not be universally applicable across re-
gions. Furthermore, the predicted concentration of acetylene
(ACYE) was lower than observation at all sites (0.41± 0.47
for alkynes), while the HCHO was slightly overpredicted
(1.21± 1.61 for HCHO). Considering that the observed VOC
species primarily originated from anthropogenic emissions,
and the majority of emitted VOCs were contributed by the
MEIC, the ratios between urban and background sites could
verify whether the MEIC adequately reflected the differences
between urban and background areas.
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Figure 3. Comparison of predicted and observed VOCs at 28 sites during the study period. (a) The predicted (bars outlined in blue) and
observed (bars outlined in red) concentrations at each site. (b) Same as (a) but with contributions of VOC groups.

Table 1. Mean, median, maximum (max), minimum (min), and standard deviation (SD) of the ratios and differences (Diff) for five VOC
groups and TVOCs at 28 sites.

Alkanes Alkenes Aromatics ARO2MN Alkynes HCHO TVOCs
(aromatics)

Ratio (pre / obs) mean 0.59 0.60 1.33 0.40 0.55 1.66 0.70
median 0.53 0.51 1.30 0.31 0.41 1.21 0.74
max 1.87 2.46 3.29 1.96 2.36 8.70 1.90
min 0.13 0.09 0.10 0.05 0.09 0.25 0.15
SD 0.38 0.48 0.89 0.38 0.47 1.61 0.40

Diff (pre− obs) mean −6.18 −4.02 0.42 −0.28 −1.16 0.16 −10.78
median −5.65 −2.56 0.83 −0.25 −1.04 0.49 −7.57
max 14.12 3.50 6.09 0.24 0.87 5.57 29.53
min −19.40 −15.50 −8.18 −0.74 −2.64 −8.90 −50.61
SD 6.81 4.69 3.47 0.20 0.97 2.99 16.11

3.2 Adjusting VOC emissions and their impacts on O3
predictions

These findings indicated a bias between the model-predicted
VOCs and observed ambient VOC concentrations. To evalu-
ate the impact of these biases on O3 predictions, we modified
the VOC emissions of the MEIC based on the differences
between observations and predictions. Previous studies have
adjusted emission inventories to match observed constraints
for predicting VOCs and O3 in specific cities (Wu et al.,
2022; Wang et al., 2020). Considering the temporal and spa-
tial variability of the 28 sites, we calculated the median ratio
of VOCs for the 18 urban sites. We selected coefficients for
six representative AVOC species with deviations exceeding
2.0 times the median, including ALK2, ARO2MN, BENZ,

the alkenes (excluding ethene) whose reaction rate constant
is less than 7× 104 ppm−1 min−1 with OH (OLE1), propene
(PRPE), and ACYE, and adjusted their emission rates in
the MEIC, resulting in six new cases. Additionally, we con-
ducted a case (case_all) that incorporated the aforementioned
adjustments and a case in which NOx was adjusted by 1.5
based on observational constraints. The adjustment factors
for the eight new cases are provided in Table 2.

The impact of adjusting VOC emissions on the concen-
trations of O3 and VOCs is presented in Table S6. The
underprediction of simulated VOCs and NO2 values was
largely reduced for the new case, as indicated in the six
cases with single-species changes and in case_all. In Ta-
ble S7, the ratio of TVOCs in case_all was modified to
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Figure 4. The prediction-to-observation ratios (pre / obs) for O3,
NO2, and individual VOCs at 28 sites (including urban and back-
ground). The horizontal midlines in boxes represent the median val-
ues, and the hollow squares depict the mean values. The boxes rep-
resent the ratios ranging from the lower and upper quartile for in-
dividual VOCs at all sites, and the whiskers represent 1.5 times the
interquartile range (1.5 IQR).

Table 2. New cases of adjusting emission coefficient under obser-
vation constraints.

Cases in Changing species Adjusted
CMAQ in the MEIC coefficient

Base case – –
case_NOx NO, NO2 1.5
case _ALK2 ALK2 4.6
case_ARO2MN ARO2MN 3.2
case_BENZ BENZ 0.4
case_OLE1 OLE1 2.0
case_PRPE PRPE 2.1
case_ACYE ACYE 2.8
case_all all of the above VOCs

0.86± 0.47, demonstrating improved performance in VOCs
compared to the base case. However, it is worth noting that
even after the emission adjustment, the predicted VOC con-
centrations remained lower than the observations (particu-
larly for case_BENZ). This discrepancy resulted from the
varying reactivities of different VOC species and NOx in
atmospheric chemical reactions, leading to different levels
of depletion. Additionally, both measured and modeled con-
centrations were subject to photochemical losses (Ma et al.,
2022; Shao et al., 2011). The increased VOC concentrations
resulted in higher O3 concentrations. Based on the data pre-
sented in Tables S6 and S8, the constrained species ALK2,
ARO2MN, OLE1, and PRPE, guided by observational data,
contributed to an increase in O3 concentration, especially

in case_all, which led to more pronounced overpredictions,
ranging from 0.62 % to 6.27 % across all the sites. In con-
trast, increasing NOx had a positive effect and reduced the
O3 concentration.

To illustrate regional pollution levels on a broader scale,
Fig. 5 displays the average concentrations of O3, NO2, and
the six previously mentioned VOC species studied in China
during the specified period.

High O3 levels were particularly prominent in most ar-
eas of the NCP, the eastern part of the Northwest, and the
Sichuan Basin in the Southwest. NO2 concentrations were
elevated in the NCP, YRD, and PRD regions, as well as
in certain megacities. The spatial distribution of various
VOCs, derived from TVOC emissions in the MEIC, exhib-
ited broad consistency, with higher concentrations observed
in southeastern China. Megacities, akin to NO2, displayed
elevated VOC levels. Different cities exhibited VOCs origi-
nating from various sources. ALK2 demonstrated high con-
centrations in individual cities but less than 1 ppbv in other
regions, thus displaying stronger geographical characteris-
tics compared to the other five VOCs. ARO2MN exhibited
the lowest average concentration but exerted a substantial in-
fluence on O3 due to its higher reactivity. Figure S4 illus-
trates the effects of altering the emission rates of NOx and
VOCs in seven scenarios across China. The left panel dis-
plays the concentrations in the new cases, while the mid-
dle and right panels show the differences for corresponding
species and O3 between the new cases and the base case,
respectively. Spatial variations in NO2 and VOCs exhibited
similarities. The increase in NO2 was more pronounced in
the NCP and YRD regions, where NO2 concentration was
consistently high. Previous studies indicate that the NCP and
YRD regions are predominantly limited by VOCs during the
summer (K. Li et al., 2017; Lyu et al., 2019; Liu et al., 2021),
resulting in either no change or a reduction in O3 when NO2
increases. Conversely, in other areas with low NO2 concen-
trations, O3 concentrations increased by 0 to 10 ppbv. BENZ
was the only compound whose concentration decreased, and
its impact on O3 in different regions mirrored that of NO2,
albeit at a much lower concentration. The increased emis-
sions of ALK2, ARO2MN, ACYE, OLE1, and PRPE favored
O3 production, with the most notable effects observed in the
NCP, YRD, and other metropolitan areas. Among these com-
pounds, OLE1 exhibited the strongest effect, while ACYE
had a minimal influence.

The Sect. 2.3 describes the calculation of the RIR val-
ues, which were used to demonstrate the sensitivity of the
model-simulated O3 to VOCs constrained by observations
in different locations. Figure S5 presents the variations in
RIR values for the six VOCs across the 28 sites. OLE1,
PRPE, and ARO2MN exhibited a higher RIR values. Ur-
ban areas within the same city displayed a higher RIR val-
ues compared to the background areas. With the exception of
Chengdu, Guiyang, Lanzhou’s background station (LZ-B),
Guangzhou’s background station (GZ-B), and Zhaoqing’s

https://doi.org/10.5194/acp-24-219-2024 Atmos. Chem. Phys., 24, 219–233, 2024



226 Y. She et al.: Current status of model predictions of VOCs in China

Figure 5. Predicted concentration of (a) O3, (b) NO2, and (c–h) six VOCs in the base case from 6 June to 24 August 2018.

station (ZQ), where O3 generation was more sensitive to
PRPE, other areas showed a greater impact of OLE1 concen-
tration on O3, indicating that adjusting the emission rate of
alkenes in the emission inventory was crucial for simulating
changes in O3 concentrations. For instance, improvements
could be made in LZ-U, Huizhou’s station (HZ), and Jiang-
men’s station (JM), where O3 concentrations were underpre-
dicted in the base case. Special attention should be given to

the sites with high RIR values such as SH-U, CD-U, SZ, and
Zhuhai’s station (ZH), as O3 generation in these locations
will be highly sensitive to changes in the local VOC emission
inventory. Moreover, ALK2, ACYE, and BENZ had minimal
effects on O3, and BENZ even exhibited negative RIR values
at certain sites.

These findings indicated a notable improvement in the un-
derprediction of VOCs when adjustments were made based
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on VOC observations. However, the elevated VOC concen-
trations in the model could lead to increased O3 formation,
thereby enhancing the model’s accuracy in areas where both
VOCs and O3 were underpredicted. Nonetheless, this adjust-
ment will unavoidably worsen any existing overprediction of
O3 in the model.

4 Discussions

4.1 Large bias in TVOC predictions at specific sites

Significant discrepancies between predicted and observed
TVOCs were observed in Lanzhou, Jinan, Shijiazhuang,
and Zhengzhou. Lanzhou and Shijiazhuang have devel-
oped petrochemical industries, where high concentrations of
VOCs are frequently detected downwind of industrial areas
(Guan et al., 2020; Guo et al., 2022). Figure 3 illustrates that
alkanes, alkenes, and aromatics were substantially underpre-
dicted due to inadequate prediction of industrial areas with
high VOC emissions in the MEIC. Jinan and Zhengzhou ex-
perienced severe air pollution due to heavy industry and traf-
fic (Zhang et al., 2017; X. Wang et al., 2022). The simulated
levels of TVOCs were substantially lower than the observed
levels, with alkenes exhibiting an even greater inaccuracy,
being more than 10 times lower in Jinan. At certain sites, the
simulated TVOCs exceeded the measurements, including the
CD-U, SH-U, WH-B, and FS sites. In CD-U, the predicted
TVOCs were almost double the measured values, whereas
they were underpredicted in CD-B. In Chengdu, VOC emis-
sions were dominated by liquefied petroleum gas and natu-
ral gas (LPG/NG) usage and vehicle emissions in summer,
with a higher proportion of low-carbon alkanes compared to
other cities in China (Xiong et al., 2021). It is most likely
that VOC emissions in CD-U were overpredicted. This could
also cause high biases of HCHO, which is mostly generated
from secondary production in VOC photochemical reactions
(Atkinson and Arey, 2003; Wu et al., 2023). In SH-U, char-
acterized by a dense population, the simulation of alkenes,
aromatics, and HCHO was approximately twice that of the
measurements. This aligns complied with the report by Wang
et al. (2020) stating that observation-constrained aromatic
emissions were roughly half of the estimates provided by the
MEIC in Shanghai, 2015. Peng et al. (2023) also observed
inconsistencies between the trend of non-methane hydrocar-
bon emissions in Shanghai from 2009 to 2015 and the growth
trend indicated by the MEIC (Li et al., 2019), suggesting the
effectiveness of local pollution control measures. However,
SH-B was situated in the easternmost part of Chongming Is-
land, which had minimal local emissions at 36 km grid reso-
lution. This likely explains the differences observed between
the urban and background areas in Shanghai. In the cases of
WH-B and FS, which demonstrated excellent model perfor-
mance for VOCs, only the overprediction of aromatics was
more pronounced.

Heavy O3 pollution events, primarily limited by VOCs,
have been frequently observed in the PRD region since its
rapid development in the last century (Chan et al., 2006; Shao
et al., 2009; J. Li et al., 2014). In the PRD region, slightly
lower TVOC simulations were observed at most sites, pri-
marily due to the underestimation of alkanes and alkenes,
while aromatics and HCHO were overestimated. Further-
more, the differences in VOC components among the cities
in the PRD region could be attributed to local industry char-
acteristics and variations in prevention and control policies.
For instance, although the TVOC concentration was well
modeled in FS, the simulated ethene (ETHE) accounted for
35 % of the alkenes, lower than the observed fraction of
over 50 %. In addition, the predicted HCHO (3.66 ppbv) was
much higher than the observed value (0.42 ppbv). The pre-
dicted ETHE in ZH was higher (50 % of alkenes) than the ob-
servation (20 % of alkenes), while other cities exhibited sim-
ilar ETHE percentages. Moreover, the proportion of ISOP
in Guangzhou’s alkenes was higher than that in other PRD
cities, suggesting effective control of local anthropogenic
alkene emissions, consistent with the findings of Zhao et
al. (2022).

4.2 Urban–background evaluation

Differences in atmospheric VOCs among urban–background
areas have been extensively demonstrated (Sillman, 1999;
Shao et al., 2020). As depicted in Fig. 6, we compared the
average performance of the model for 18 urban sites and 10
background sites. In urban areas, the predicted TVOC con-
centration (23.76 ppbv) was lower than the observed con-
centration (32.46 ppbv), primarily due to the underprediction
of alkanes, alkenes, and alkynes. Predicted aromatics and
HCHO exhibited higher proportions and concentrations com-
pared to the observations. In the background areas, TVOCs
were also underpredicted, with concentrations lower than
those in urban areas, as indicated by both the observed and
predicted values. Each of the five VOCs showed lower pre-
dictions, with alkanes exhibiting the most notable dispar-
ity, with a negative bias of 6.91 ppbv compared to the ob-
servation values. This suggested that the model underpre-
dicted alkanes in urban areas, which were predominantly de-
rived from the petrochemical industry or fuel evaporation
(G. Wang et al., 2022). The predicted proportions of alka-
nes, aromatics, and HCHO exhibited urban–background dif-
ferences consistent with the observations, reflecting the char-
acteristics of urban–background areas in the model. These
differences were well represented in our horizontal grid res-
olution of only 36 km. Overall, the CMAQ model captured
the characteristics of urban–background areas in different re-
gions but underestimated the concentrations of certain indi-
vidual VOC species.

The ratios distinguished between urban and background
areas are presented in Fig. S3. The comparison revealed
that the alkanes were more prominently underpredicted in
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Figure 6. Observed and predicted contributions of different VOCs
to the total VOC concentrations at (a, c) urban sites and (b, d) back-
ground sites.

the background area than in the urban area. Xylene (XYL),
1,2,4-trimethylbenzene (B124), OLE1, OLE2, and PRPE
were also underpredicted to a greater extent in the back-
ground area. This could be attributed to the scarcity of back-
ground sites or the model’s underprediction of VOC emis-
sions in the background area. The model’s performance in
simulating ISOP, a BVOC, in urban areas was not as satisfac-
tory as in the background areas, which was consistent with
the findings of Ma et al. (2021), suggesting that MEGAN
could underestimate the emissions from urban green spaces.
APIN, an important monoterpene, originating from anthro-
pogenic emissions from biomass burning and VCPs, could be
either underpredicted or disregarded (H. Wang et al., 2022;
Mcdonald et al., 2018), resulting in common underpredic-
tion with a median ratio of 5 in urban–background areas. Ad-
ditionally, the simulated HCHO concentrations were higher
in the urban areas. Overall, these results indicated that the
model generally performed better for anthropogenic VOCs
in the urban areas. However, there were still a few notable
outliers and significant deviations for a majority of VOCs,
particularly those with high chemical reactivity. These devi-
ations will inevitably impact the model’s calculation of pho-
tochemical reactions involved in O3 generation.

4.3 Implications and suggestions

Accurately predicting VOCs is crucial for O3 modeling.
However, due to limited measurement data and uncertain-
ties in emission inventories, accurately simulating the VOCs
across China using CTMs remains challenging.

Considerable efforts have been dedicated to the develop-
ment of VOC emission inventories in recent years (Li et al.,
2019; An et al., 2021; Chang et al., 2022). However, our find-
ings indicate a substantial variation in the model performance

of VOCs across different regions and species. Therefore, the
inclusion of accurate local emission factors, activity data,
and source profiles is essential. Sha et al. (2021) compiled
an integrated dataset of AVOC source profiles in China, em-
phasizing the need for supplementary and timely updates to
these profiles in the future. Apart from anthropogenic emis-
sions, model resolution, chemical mechanisms, meteorolog-
ical conditions, and BVOC emissions also contribute to the
uncertainty of VOCs modeling, thereby affecting the perfor-
mance of O3 modeling (Zhang et al., 2021; Wang et al., 2021;
Liu et al., 2022).

High-resolution models require higher-resolution emis-
sion inventories (L. Li et al., 2022; An et al., 2021), which
can improve simulation performance to a certain extent.
Given the large scope of the model used in this study and the
0.25◦× 0.25◦ horizontal resolution of the MEIC, a resolution
of 36 km was chosen to balance computational efficiency and
the preservation of information from the emission inventory,
but this inevitably results in deviation of the modeled VOCs
and other elements. On the one hand, urban–background
sites in close proximity may be assigned to the same grid
in the model, as shown in Table S3, making it difficult to
distinguish the differences in modeled VOCs between urban
and background sites in cities such as Shijiazhuang, Jinan,
Wuhan, and Guiyang; on the other hand, in real atmospheres,
even with close proximity, the observed VOCs may differ
greatly in concentration, which is challenging to capture in
a coarse-resolution model. When applying coarse-resolution
emission inventories, increasing the model resolution can en-
hance the spatial correlation between observed and predicted
concentrations but does not always improve simulation per-
formance (Zheng et al., 2021). High-resolution models may
introduce more emission mapping errors, which can be re-
duced by using coarse-resolution model grids (Zheng et al.,
2021). Therefore, addressing this issue requires not only finer
model resolution but also improved emission inventories.

The SAPRC07TIC chemical mechanism used in this study
has been proven reliable in previous model applications
(Qin et al., 2022), reducing the computational effort com-
pared to the explicit Master Chemical Mechanism (MCM;
Li et al., 2015) while retaining the chemical reactivity of
various VOCs. However, the lumped VOC species contain
more VOC species than those in corresponding observations.
Therefore, if both the emission inventory and model are suf-
ficiently accurate, the predicted values should theoretically
be higher.

Notably, this study revealed that the model overpredicted
HCHO, while some previous studies tend to show underpre-
diction (Luecken et al., 2018; J. Li et al., 2022). The biases
could result from uncertainties in VOC emissions, chemical
mechanisms, and model resolution, etc. In general, HCHO
is mainly contributed by oxidations of reactive VOCs such
as ISOP, ETHE, PRPE, and toluene (TOLU) (Simpson et al.,
2010; Wei et al., 2023; Wu et al., 2023). The overprediction
of HCHO suggests that there may be excessive emissions of
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these VOCs or that the reaction rates of some VOCs with OH
radicals were overpredicted in the model. Secondly, HCHO
predictions could vary by 25 %–40 % with different chemical
mechanisms, likely due to differences in hydrogen oxide rad-
icals (HOx) and VOC grouping (Knote et al., 2015; Luecken
et al., 2018). Lastly, finer model resolution could improve the
representation of HCHO, especially in grids where HCHO
was substantially affected by point sources (e.g., petrochem-
ical facilities), as has been reported in Parrish et al. (2012).
Considering HCHO is an important source of HOx radicals
and drives ozone production (Wittrock et al., 2006; K. Li et
al., 2021), more investigations are warranted to improve the
model performance of HCHO in the future.

Meteorology bias also contributed to some bias of the
VOC predictions. We added evaluation of the meteorology
predictions in this study, and the results are shown in Ta-
bles S9 and S10. The results are consistent with other studies
in China (Mao et al., 2022; Wang et al., 2021). It is observed
that temperature is overpredicted at most sites, while RH is
mostly underpredicted. The combination of high temperature
and low RH facilitates the consumption of VOCs through
photochemical reactions, which may explain the tendency
of our modeled VOCs to be underestimated. But we believe
it is insufficient to account for the underestimation of low-
reactivity VOC species (mainly alkanes). Furthermore, the
modeled wind speeds slightly exceed the observations, which
may also contribute to VOC underprediction (Table S10).
While the bias in meteorological conditions contributes to
the underestimation of modeled VOCs, the underestimated
VOC emissions is the key factor for the VOC underpredic-
tion across most of the cities.

In this study, the adjustment of VOC emissions resulted in
increased predicted emission levels, subsequently leading to
higher O3 predictions. However, these adjustments are sim-
plistic and fail to account for regional variations in VOC bi-
ases. The accuracy of VOC measurement data is also cru-
cial. Therefore, there is a need to promote the establishment
of a national O3 precursor monitoring network and develop
a standardized framework with quality control systems. This
would facilitate the comparability of VOC measurements be-
tween regions, thereby supporting related research and the
implementation of collaborative regional prevention and con-
trol measures.

5 Conclusion

In this study, we conducted a comprehensive evaluation of
the simulation performance of VOCs using the CMAQ model
and investigated the influence of predicted VOCs on O3 for-
mation. The inclusion of summertime-observed VOC data
from the ATMSYC project for 28 sites in China enhanced
the spatiotemporal comparability of our model evaluation.

During the study period, TVOCs were found to be under-
predicted by 14.1± 13.2 ppbv at 24 sites, except for SH-U,

CD-U, WH-B, and FS. Despite some sites exhibiting similar
TVOC concentrations, differences still persisted in their spe-
cific components. After considering the uncertainties of the
MEIC and relevant factors, we found several sites with sub-
stantial inaccuracies, such as Jinan, Shijiazhuang, Lanzhou,
Chengdu, and Guiyang. The model’s performance in predict-
ing TVOCs and their components varied across regions, with
better predictions observed in urban areas compared to back-
ground areas.

Alkanes, alkenes, ARO2MN, and alkynes are gener-
ally underpredicted, with ratios of 0.53± 0.38, 0.51± 0.48,
0.31± 0.38, and 0.41± 0.47, respectively, except for HCHO
which is overpredicted, with the ratio of 1.21± 1.61. In ur-
ban areas, the CMAQ model exhibited underpredictions for
OLE1, ALK2, ARO2MN, PRPE, ACYE, and NOx , rang-
ing from 2.0 to 4.6 times, while overpredicting BENZ by
2.75 times. For sensitivity experiments, their emissions were
adjusted, and their impact on O3 and VOCs was evalu-
ated. These adjustments improved the model’s VOC per-
formance, resulting in a change in the ratio of total VOCs
to 0.86± 0.47. However, the increased VOCs contributed to
higher reactivity, exacerbating O3 overpredictions by 0.62 %
to 6.27 % across the sites. Consequently, RIR values were
calculated to depict the varying reactivities of VOCs in dif-
ferent regions, with OLE1, PRPE, and ARO2MN contribut-
ing the highest RIR values during the study period.

Due to the uncertainties present in current VOC emission
inventories, notable efforts are needed to enhance the devel-
opment and updating of emission inventories, particularly in
regions characterized by developed industries, evolving en-
ergy structures, and relatively underdeveloped conditions. It
is only through improving the accuracy of VOC emission in-
ventories that we can ensure reliable model performance in
predicting O3 levels, thereby establishing a solid foundation
for addressing the escalating issue of O3 pollution.
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