Oxygenated organic molecules produced by low-NO\textsubscript{x} photooxidation of aromatic compounds: contributions to secondary organic aerosol and steric hindrance

Xi Cheng1, Yong Jie Li2,3, Yan Zheng1, Keren Liao1, Theodore K. Koenig1, Yanli Ge1, Tong Zhu1, Chunxiang Ye1, Xinghua Qiu1, and Qi Chen1

1State Key Joint Laboratory of Environmental Simulation and Pollution Control, BIC-ESAT and IJRC, College of Environmental Sciences and Engineering, Peking University, Beijing, China
2Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, China
3Centre for Regional Oceans, Department of Ocean Science and Technology, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, China

Correspondence: Yong Jie Li (yongjieli@um.edu.mo) and Qi Chen (qichenpku@pku.edu.cn)

Received: 5 June 2023 – Discussion started: 10 July 2023
Revised: 8 January 2024 – Accepted: 9 January 2024 – Published: 19 February 2024

Abstract. Oxygenated organic molecules (OOMs) produced by the oxidation of aromatic compounds are key components of secondary organic aerosol (SOA) in urban environments. The steric effects of substitutions and rings and the role of key reaction pathways in altering the OOM distributions remain unclear because of the lack of systematic multi-precursor study over a wide range of OH exposure. In this study, we conducted flow-tube experiments and used the nitrate adduct time-of-flight chemical ionization mass spectrometer (NO\textsubscript{3}⁻-TOF-CIMS) to measure the OOMs produced by the photooxidation of six key aromatic precursors under low-NO\textsubscript{x} conditions. For single aromatic precursors, the detected OOM peak clusters show an oxygen atom difference of one or two, indicating the involvement of multi-step auto-oxidation and alkoxy radical pathways. Multi-generation OH oxidation is needed to explain the diverse hydrogen numbers in the observed formulae. In particular, for double-ring precursors at higher OH exposure, multi-generation OH oxidation may have significantly enriched the dimer formulae. The results suggest that methyl substitutions in precursor lead to less fragmented OOM products, while the double-ring structure corresponds to less efficient formation of closed-shell monomeric and dimeric products, both highlighting significant steric effects of precursor molecular structure on the OOM formation. Naphthalene-derived OOMs however have lower volatilities and greater SOA contributions than the other-type of OOMs, which may be more important in initial particle growth. Overall, the OOMs identified by the NO\textsubscript{3}⁻-TOF-CIMS may have contributed up to 30.0 % of the measured SOA mass, suggesting significant mass contributions of less oxygenated, undetected semi-volatile products. Our results highlight the key roles of progressive OH oxidation, methyl substitution and ring structure in the OOM formation from aromatic precursors, which need to be considered in future model developments to improve the model performance for organic aerosol.
1 Introduction

Oxidation of volatile organic compounds (VOCs) leads to the formation of ozone and secondary organic aerosols (SOAs) (Ziemann and Atkinson, 2012). Light and heavy aromatic VOCs are important SOA precursors that can be emitted from various anthropogenic sources such as transportation, solvent use, wood burning, coal burning and cooking (Henze et al., 2008; Pye and Poulbrot, 2012). There are many chamber studies on the SOA formation from aromatic VOCs (Li et al., 2016a, b; Lambe et al., 2011; Ng et al., 2007; Chan et al., 2009; Kautzman et al., 2010). The derived SOA yields vary by precursors and NOx levels, owing to the difference in forming condensable products, i.e., oxygenated organic molecules (OOMs). Characterization of these OOM species is however limited and challenging. Most atmospheric chemical transport models (CTMs) still use SOA-yield-based parameterizations, which have difficulties in reproducing the concentration and the variability of organic aerosol in urban areas (Tsiganidis et al., 2014).

Recent developments in time-of-flight chemical ionization mass spectrometry provide new insights into the formation of OOMs and their contribution to SOA (Bianchi et al., 2019). Wang et al. (2017) indicate that the intramolecular H shift of peroxy radicals (RO2) from alkyl benzenes can compete with bimolecular reactions under atmospheric conditions, thereby substantially increasing the product oxygen numbers via auto-oxidation. Laboratory studies show further evidence for the occurrence of both multi-generation OH oxidation and multi-step auto-oxidation in the aromatic oxidation to increase the oxidation state of the products (Garmash et al., 2020; Cheng et al., 2021b). Additionally, Berndt et al. (2018b) suggest high formation rates of accretion products from self- and cross-reactions of RO2 radicals for aromatic precursors, resulting in great carbon and oxygen number increments that lower the product volatility. The three mechanisms, i.e., multi-generation OH oxidation, multi-step auto-oxidation and accretion reactions, play different roles under different oxidation conditions. Moreover, aromatic precursors differ in substituents and ring numbers, which may cause steric effects in the OOM formation. Cheng et al. (2021b) suggest that for benzene and toluene, the multi-generation OH oxidation likely proceeds more favorably by H abstraction than OH addition, and the dimer formation is unfavorable at high OH exposures. Other laboratory studies indicate that under similar OH exposures, the oxidation of isopropylbenzene, ethylbenzene and toluene likely forms more oxidized RO2 radicals than the oxidation of benzene does (Wang et al., 2017). The formation of dimeric products from the oxidation of trimethylbenzene seemed to be more significant for meta-substituents than for ortho-substituents (Y. Wang et al., 2020). However, there is still a lack of multi-precursor studies that compare the OOM formation systematically under a wide range of OH exposure. A better understanding of the precursor steric effects and the OOM potential of forming SOA is needed to assist future developments of detailed model representation of SOA formation.

Herein, the formation of OOMs from six aromatic VOCs (i.e., benzene, toluene, m-xylene, 1,3,5-trimethylbenzene, naphthalene and 1-methylnaphthalene) is investigated in flow-tube experiments under low-NOx conditions, aiming at gaining insights into the OH-initiated chemistry and the low-NOx representation of suburban and downwind environments. The OOMs are characterized using a nitrate adduct time-of-flight chemical ionization mass spectrometer (NO3-TOF-CIMS). The experiments cover a wide range of OH exposures that are equivalent to approximately 1–19 d, assuming a mean OH concentration of 1.5×10^6 molecules cm$^{-3}$. The influences of precursor structure and OH exposure on the formation of OOMs and the contributions of the identified OOMs to SOA are investigated.

2 Methods

2.1 Experimental procedures

Experiments were conducted in a 13.3 L Aerodyne oxidation flow reactor (OFR) with a mean residence time of 95 s under low-NOx conditions. The operation of the OFR has been described previously by Cheng et al. (2021b). The OFR was operated in an OFR254-5 mode, with 254 nm lights on and 5 ppm of externally generated O3 introduced into the OFR (Lambe et al., 2017; Peng et al., 2018). The OH radicals are generated via

$$O_3 + h\nu (254 \text{ nm}) \rightarrow O_2 + O(^{1}\text{D}) \quad \text{(R1)}$$

$$O(^{1}\text{D}) + H_2O \rightarrow 2OH. \quad \text{(R2)}$$

The relative humidity (RH) inside the OFR was maintained at 23.4 %–29.4 %. Concentrations of OH radicals were varied by ramping the voltage of the UV lamps in the OFR, for which each lamp voltage represents one experimental condition. All experiments herein were conducted without injection of seed particles and NOx. We estimate a background NOx level of < 1 ppb throughout the experiments. In total, 27 experiments were performed for the six aromatic precursors. Table 1 lists the experimental conditions and the key measured and derived quantities, including those for the oxidation of benzene and toluene that have been discussed in our previous study (Cheng et al., 2021b). The concentrations of OH and HO2 radicals were estimated using a photochemical box model (PAMchem) (Lambe et al., 2017; Cheng et al., 2021b). The results suggest that the first step of oxidation of the aromatic VOCs was dominated by the OH radicals rather than by O3 because of much higher reaction rate constants for the former than the latter (Lambe et al., 2017; Peng et al., 2016). The reaction rates of early-generation oxidation products that contain double bounds with O2 are also likely slower than those with OH radicals (Molteni et al., 2018; Y. Wang et al., 2020). Therefore, we believe that the oxida-
tion chemistry was prevalently initiated by OH radicals in our experiments. The modeled HO2-to-OH concentration ratio is about 2–18, while the rate constant for RO2 + HO2 is typically an order of magnitude smaller than that for RO2 + OH (Peng and Jimenez, 2020, and references therein). Figure S1 in the Supplement shows the calculated contributions of various pathways to the RO2 loss in our experiments for a given set of rate constants. Both the RO2 + HO2 and RO2 + OH channels are important for RO2 loss under conditions of our experiments considering the uncertainties of the estimations and the variations of reaction constants. The RO2 isomerization rate coefficients are highly structure dependent, ranging from $\sim 10^{-3}$ to $\sim 10^{-1}$ s$^{-1}$ (per second) for aromatic RO2 (Wang et al., 2017; Praske et al., 2018). Therefore, the fast RO2 + HO2 reactions may limit some RO2 auto-oxidation in our experiments.

2.2 Measurements

The concentration of O3 was monitored with an UV photometric analyzer (2B Technologies, 202). Concentrations of aromatic VOCs were measured by an IONICON proton transfer reaction quadrupole time-of-flight mass spectrometer (PTR-QiTof). Calibration of the PTR-QiTof was conducted using gas standards (Spectra Gases, 2B Technologies, 202). Concentrations about 2–18, while the rate constant for RO2 loss under conditions of our experiments considering the uncertainties of the estimations and the variations of reaction constants. The RO2 isomerization rate coefficients are highly structure dependent, ranging from $\sim 10^{-3}$ to $\sim 10^{-1}$ s$^{-1}$ (per second) for aromatic RO2 (Wang et al., 2017; Praske et al., 2018). Therefore, the fast RO2 + HO2 reactions may limit some RO2 auto-oxidation in our experiments.

2.3 Dimer formation rates

Dimeric products may be formed by the accretion reactions between RO2 and R’O2 radicals. At steady state, the formation rate of dimers is represented as follows:

$$\frac{d[RO'OR]}{dt} = \sum_{i} k_{R,i}[RO_{2}][R'O_{2}] - k_{loss}[RO'OR] = 0, \quad (1)$$

where $k_{R,i}$ (cm3 molecule$^{-1}$ s$^{-1}$) is the apparent rate constant of accretion reactions ($i \geq 1$), and k_{loss} (s$^{-1}$) represents the loss rate of OOMs (0.04–0.1 s$^{-1}$) (Sect. S1 of the Supplement). We use Eq. (1) to provide rough constraints to the formation rate constants of detected dimeric products, which is similar to the approach used by Molteni et al. (2019). There are 46, 54 and 76 assigned dimeric products from benzene, toluene and naphthalene experiments, respectively, from the NO$_{3}^{-}$-TOF-CIMS measurements of OOM molecular formulae. However, for each precursor, only five to eight dimers have sufficient combinations of above-detection-limit signals of possible RO2 and R’O2 to solve $k_{R,i}$ using a non-negative multi-linear regression method (sklearn from Python 3). Only the $k_{R,i}$ values that are greater than zero but less than 9×10^{-10} cm3 molecule$^{-1}$ s$^{-1}$ (considering the collision limit) with correlation coefficients (r) of > 0.5 are considered reasonable rate constants and are listed in Table 2. Theoretical and laboratory studies indicate that the production rate constant of ROOR$^{+}$ can reach 10^{-10} cm3 molecules$^{-1}$ s$^{-1}$ (Molteni et al., 2019; Hasan et al., 2020; Perakyla et al., 2023). The OOMs that form slowly would not be detectable by the NO$_{3}^{-}$-TOF-CIMS because of the fast vapor losses at the SOA loading level at the exit of OFR. The detected dimeric products (e.g., C$_{14}$H$_{18}$O$_{14}$)
Table 1. Summary of experimental parameters and measured and derived quantities for aromatic (C$_x$H$_y$) oxidation in the OFR under low-NO$_x$ conditions.

<table>
<thead>
<tr>
<th>Exp. no</th>
<th>VOC species</th>
<th>Experimental conditions</th>
<th>Measured quantities</th>
<th>Derived quantities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VOC (ppb)</td>
<td>RH (%)</td>
<td>T (°C)</td>
<td>C$_1$ OOMs (ppt)</td>
</tr>
<tr>
<td>1</td>
<td>benzene</td>
<td>110</td>
<td>23.6</td>
<td>25.0</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>24.3</td>
<td>24.4</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>24.0</td>
<td>25.0</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>23.4</td>
<td>25.6</td>
</tr>
<tr>
<td>5</td>
<td>toluene</td>
<td>50</td>
<td>29.4</td>
<td>23.4</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>29.0</td>
<td>23.7</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>28.3</td>
<td>24.3</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>27.5</td>
<td>25.4</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>26.8</td>
<td>26.4</td>
</tr>
<tr>
<td>10</td>
<td>m-xylene</td>
<td>38</td>
<td>26.0</td>
<td>23.4</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>27.0</td>
<td>23.1</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>24.5</td>
<td>24.7</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>24.1</td>
<td>24.3</td>
</tr>
<tr>
<td>14</td>
<td>1,3,5-trimethylbenzene</td>
<td>17</td>
<td>26.1</td>
<td>22.1</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>26.2</td>
<td>23.0</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td>25.4</td>
<td>23.8</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td>24.6</td>
<td>24.8</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>23.7</td>
<td>25.8</td>
</tr>
<tr>
<td>19</td>
<td>naphthalene</td>
<td>12</td>
<td>28.7</td>
<td>19.5</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>29.4</td>
<td>19.2</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
<td>28.2</td>
<td>20.0</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td>27.4</td>
<td>20.6</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
<td>26.6</td>
<td>21.5</td>
</tr>
<tr>
<td>24</td>
<td>1-methylnaphthalene</td>
<td>17</td>
<td>25.6</td>
<td>23.3</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td>26.3</td>
<td>23.1</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td>25.8</td>
<td>23.5</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td>25.0</td>
<td>24.1</td>
</tr>
</tbody>
</table>

a Not corrected by particle wall losses.

b Experiments that have LTOF-SP-AMS measurements.

NA: not available.

showed rapid increases to stable concentrations with time series similar with their parent RO$_2$ (e.g., C$_2$H$_2$O$_{10}$), indicating a fast production of these dimers. The PAMchem model simulations indicate minor changes of the ROOR$'$ concentrations when the reaction rate constant of RO$_2$ + R’O$'$ → ROOR$'$ reaches above 5 × 10$^{-11}$ cm3 molecules$^{-1}$ s$^{-1}$ (Fig. S2). We therefore think the steady-state assumption may stand for the few dimers that are listed in Tables S2–S7.

2.4 Contribution of OOMs to SOA

The contributions of the detected OOMs to SOA were only estimated for benzene, toluene and naphthalene experiments, for which both LTOF-SP-AMS and SMPS measurements are available. We consider both the irreversible and equilibrium-type condensation. The former was represented by the net condensation flux of the observed OOMs, which can be described using an aerosol growth model (Tröstl et al., 2016). The latter was represented by the particulate fraction estimated by the partitioning theory and the vapor pressure of OOMs (Pankow, 1994). The calculation details are provided in Sect. S1. Aromatic OOMs consist of abundant hydroxyl (–OH) and carboxylic (=O) groups but less hydroperoxide (–OOH) groups compared to monoterpene OOMs (M. Wang et al., 2020). We therefore applied the empirical volatility parameterization that was used in previous naphthalene studies to estimate the saturation concentrations (C*) of the detected OOMs (Epstein et al., 2010; Donahue et al., 2011). The OOMs were grouped into volatility bins based on the
volatile-basis-set (VBS) method (Donahue et al., 2006). They were classified as ultralow-volatility organic compounds (ULVOCs; $\log C^* \leq -9.5$), extremely low volatility organic compounds (ELVOCs; $-9.5 < \log C^* \leq -4.5$), low-volatility organic compounds (LVOCS; $-4.5 < \log C^* \leq -0.5$), semi-volatile organic compounds (SVOCs; $-0.5 < \log C^* \leq 2.5$) and intermediate-volatility organic compounds (IVOCs; $2.5 < \log C^* \leq 6.5$) (Bianchi et al., 2019; Schervish and Donahue, 2020). In this study, SOA contributions from OOMs with $C^* \leq 0.01 \, \mu g \, m^{-3}$ were calculated by the aerosol growth model, and those from OOMs with $C^* > 0.01 \, \mu g \, m^{-3}$ were calculated by the partitioning method.

Table 2. Rate coefficients k for benzene- and naphthalene-derived dimer and comparison with data from other studies. R^2-squared values are shown to verify the fitting results.

<table>
<thead>
<tr>
<th>Dimer</th>
<th>R^2</th>
<th>RO2 + R’O2</th>
<th>k (10$^{-10}$ cm3 molecule$^{-1}$ s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_{12}H_{14}O_{15}$</td>
<td>0.31</td>
<td>$C_6H_5O_3 + C_6H_9O_8$</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$C_6H_7O_7 + C_6H_7O_{10}$</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$C_6H_9O_8 + C_6H_7O_3$</td>
<td>7.0</td>
</tr>
<tr>
<td>$C_{20}H_{18}O_{14}$</td>
<td>0.45</td>
<td>$C_{10}H_5O_5 + C_{10}H_7O_{11}$</td>
<td>6.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$C_{10}H_9O_6 + C_{10}H_9O_{10}$</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$C_{10}H_9O_7 + C_{10}H_9O_9$</td>
<td>7.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$C_{10}H_7O_5 + C_{10}H_7O_{11}$</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$C_{10}H_7O_6 + C_{10}H_7O_{10}$</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$C_{10}H_7O_8 + C_{10}H_7O_7$</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$C_{10}H_7O_{11} + C_{10}H_7O_5$</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$C_{10}H_9O_6 + C_{10}H_9O_{10}$</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$C_{10}H_9O_8 + C_{10}H_9O_8$</td>
<td>0.9</td>
</tr>
<tr>
<td>$C_{18}H_{26}O_8$</td>
<td>d</td>
<td>$C_9H_{13}O_5 + C_9H_{13}O_5$</td>
<td>1.4–2.5</td>
</tr>
<tr>
<td>$C_{20}H_{30}O_6$</td>
<td>d</td>
<td>$C_{10}H_{15}O_4 + C_{10}H_{15}O_4$</td>
<td>0.1</td>
</tr>
<tr>
<td>$C_{20}H_{34}O_8$</td>
<td>d</td>
<td>$C_{10}H_{17}O_5 + C_{10}H_{17}O_5$</td>
<td>0.4</td>
</tr>
<tr>
<td>$C_{20}H_{30}O_{18}$</td>
<td>d</td>
<td>$C_{10}H_{15}O_{10} + C_{10}H_{15}O_{10}$</td>
<td>0.5</td>
</tr>
<tr>
<td>$C_{20}H_{32}O_{14}$</td>
<td>d</td>
<td>$C_{10}H_{17}O_7 + C_{10}H_{15}O_9$</td>
<td>0.8</td>
</tr>
<tr>
<td>$C_{20}H_{30}O_{14}$</td>
<td>d</td>
<td>$C_{10}H_{15}O_8 + C_{10}H_{15}O_8$</td>
<td>3.2</td>
</tr>
<tr>
<td>$C_{20}H_{30}O_{15}$</td>
<td>d</td>
<td>$C_{10}H_{15}O_{10} + C_{10}H_{15}O_7$</td>
<td>8.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$C_{10}H_{15}O_8 + C_{10}H_{15}O_8$</td>
<td>6.6</td>
</tr>
<tr>
<td>$C_{20}H_{30}O_{16}$</td>
<td>d</td>
<td>$C_{10}H_{15}O_{10} + C_{10}H_{15}O_8$</td>
<td>2.3</td>
</tr>
<tr>
<td>$C_{20}H_{30}O_{17}$</td>
<td>d</td>
<td>$C_{10}H_{15}O_{11} + C_{10}H_{15}O_8$</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$C_{10}H_{15}O_{10} + C_{10}H_{15}O_9$</td>
<td>1.8</td>
</tr>
<tr>
<td>$C_{20}H_{30}O_{18}$</td>
<td>d</td>
<td>$C_{10}H_{15}O_{12} + C_{10}H_{15}O_8$</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$C_{10}H_{15}O_{10} + C_{10}H_{15}O_{10}$</td>
<td>0.8</td>
</tr>
</tbody>
</table>

*From experiments with 1,3,5-trimethylbenzene addition (Berndt et al., 2018b).
*From experiments with o-pinene addition (Berndt et al., 2018a).
*From experiments with o-pinene addition (Molteni et al., 2019).
*Not provided in the literature.

3 Results and discussion

3.1 Product distributions

The general oxidation chemistry for OH-initiated pathways of aromatic VOCs is described in Sect. S2. Figure 1 shows the OOM product distributions for the oxidation of the six aromatic precursors under similar OH exposures of approximately $(1.2–1.5) \times 10^{12}$ molecules cm$^{-3}$ s$^{-1}$. For a given precursor of C_nH_y, we name the detected OOMs as monomeric products (C_{n-x} and C_x series) and dimeric products (C_{2n-x} and C_{2x} series). Monomeric products contribute to the majority of the detected OOM signals for the six aromatic precursors studied herein, while the dimeric products contribute to up to 18% of the OOM signals. The highest dimeric
signal fraction is observed for m-xylene OOMs. Overall, ion peaks in the m/z range of 200–650 Th show in clusters with progressions and sequences that preserve the precursor carbon structure. The lower ends of the peak clusters of monomeric products for benzene, toluene, m-xylene and 1,3,5-trimethylbenzene are shifted by progressive differences of 14 Th (–CH$_2$). The products from naphthalene and 1-methylnaphthalene also show a similar –CH$_2$ progression. The progression is doubled for dimeric products (28 Th, –(CH$_2$)$_2$). Moreover, there are series of clusters with peak sequences that differ by one and two oxygen atoms in both of monomeric and dimeric products, respectively, in each mass spectrum. The peak clusters then differ by hydrogen atom numbers for each oxygen atom addition. The general shifting of peak abundance to products with one to four more hydrogen (i.e., to the right m/z side) is consistent with the importance of OH addition in the oxidation of aromatic precursors. By contrast, dimeric clusters show abundant distributions in the hydrogen-deficient m/z values (i.e., on the left side), suggesting a significant H abstraction process before the accretion reactions occur.

The C$_{<x}$ products are typically fragmented products formed from the decomposition of alkoxy (RO) radicals (Li and Wang, 2014). Methyl substitution may prevent the efficient formation of phenoxy radicals, thereby lowering the abundance of fragmented products (Schwantes et al., 2017). Indeed, we observed high signal fractions of C$_{<x}$ products (59.4 %–65.7 %) in OOMs produced by the oxidation of benzene, toluene, naphthalene and 1-methylnaphthalene that have low methyl-to-aryl carbon ratios (C$_{Me}$: C$_{Ar}$ < 0.2), whereas the signal fractions of C$_{<x}$ products produced by the oxidation of m-xylene and 1,3,5-trimethylbenzene (C$_{Me}$: C$_{Ar}$ > 0.2) are much lower (17.9 %–26.3 %). Tables S2–S7 list the formulae and the relative signals of major OOMs for the experiments presented in Fig. 1. For the oxidation of benzene, toluene, naphthalene and 1-methylnaphthalene, C$_5$H$_4$O$_5$ and C$_6$H$_5$O$_5$ are the main common C$_{<x}$ products. These molecules are likely second- or third-generation products formed via the fragmentation of phenoxy radicals with rich unsaturated aryl carbon moieties (Schwantes et al., 2017). C$_5$H$_6$O$_5$ and C$_6$H$_10$O$_7$ are the most abundant C$_{<x}$ products for the oxidation of m-xylene and 1,3,5-trimethylbenzene, respectively. C$_5$H$_6$O$_5$ is likely a ring-scission product (e.g., carboxylic acid), while C$_6$H$_10$O$_7$ may be a fragmented ring-retaining product formed by the dealkylation pathway (Zaytsev et al., 2019; Mehra et al., 2020).

The C$_x$ products with odd H numbers in their formulae for single-precursor oxidation systems are plausibly open-shell products (i.e., mainly RO$_2$) (Zhao et al., 2018), and the C$_x$ products with even H numbers are normally closed-shell products. Central in the formation of OOMs from aromatic VOCs, the bicyclic peroxy radicals (BPRs) contain five oxygen numbers (C$_x$H$_{y+1}$O$_5$), which are formed by two steps of O$_2$ addition after OH addition (Birdsall et al., 2010).

As shown in Table S8, the signal fractions of C$_x$H$_{y+1}$O$_7$ and C$_x$H$_{y+1}$O$_9$ (0.1 %–1.0 %) are greater than those of C$_x$H$_{y+1}$O$_5$ (0.05 %–0.4 %), explained by aggressive multiple steps of auto-oxidation. These odd-oxygen RO$_2$ radicals are the results of the predominant OH-addition plus sequential O$_2$ incorporation (auto-oxidation). Besides, even-oxygen RO$_2$ radicals are observed, with C$_x$H$_{y+1}$O$_6$ and C$_x$H$_{y+1}$O$_8$ (0.1 %–1.1 %) being the most abundant. Their formation might involve the RO pathway (Orlando et al., 2003; Cheng et al., 2021b). In the RO pathway, the RO radicals undergo an intermolecular H shift (isomerization) instead of decomposition, which forms C-centered alkyl radicals that are ready for further auto-oxidation. For example, the BPR (C$_x$H$_{y+1}$O$_5$) can react with HO$_2$ to form the RO radical C$_x$H$_{y+1}$O$_4$. The newly formed RO radical then isomerizes to become a hydroxylated alkyl radical and results in a new RO$_2$ radical (C$_x$H$_{y+1}$O$_6$) via O$_2$ addition. The most abundant closed-shell C$_x$ products are C$_5$H$_6$O$_6$ (3.1 %), C$_7$H$_8$O$_6$ (3.8 %), C$_5$H$_10$O$_7$ (8.6 %), C$_9$H$_{14}$O$_7$ (17.5 %), C$_{10}$H$_{16}$O$_8$ (2.9 %) and C$_{11}$H$_{12}$O$_{10}$ (2.1 %) for the oxidation of benzene, toluene, m-xylene, 1,3,5-trimethylbenzene, naphthalene and 1-methylnaphthalene, respectively. We obtained average O : C ratios of 0.9–1.1 for closed-shell OOM products formed from monocyte precursors and 0.7–0.8 for those formed from double-ring precursors. The lower O : C ratios for the latter are probably because the second aromatic ring prohibits extensive auto-oxidation (Molteni et al., 2018).

Among the dimeric products, the C$_{2x}$ products are much more abundant than the C$_{2x}$ ones in terms of both number and amount (Tables S2–S7). The observed C$_{2x}$ dimers have odd and even oxygen numbers in their formulae, suggesting the occurrence of both the cross- and self-reactions of RO$_2$ radicals. For example, C$_{18}$H$_{26}$O$_{12}$ is a product from the 1,3,5-trimethylbenzene oxidation, which may be formed via self-reactions of C$_9$H$_{12}$O$_7$ or cross-reactions of other even-oxygen RO$_2$ radicals. Dimers that are formed from BPR or RO$_2$ with further auto-oxidation are expected to contain at least eight oxygen atoms. Interestingly, the C$_{2x}$ products with four to seven oxygen numbers are abundant, suggesting the occurrence of accretion reaction between BPR and less oxygenated RO$_2$ radicals. These C$_{2x}$ products show a greater abundance for the oxidation of m-xylene (Fig. 1c) than for those of other precursors, indicating more stable accretion reactions for the less oxygenated RO$_2$ radicals derived from m-xylene due to stereoselectivity. Consistently, Y. Wang et al. (2020) identified more abundant dimeric products for the meta-substitution aromatic. Moreover, different numbers of hydrogen atoms in the dimer formulae suggest different formation routes. For monocyclic aromatic precursors, the main C$_{2x}$ products are C$_{2x}$H$_{2y+2}$O$_{10–14}$, likely formed by the accretion reactions of two C$_x$H$_{y+1}$O$_2$ radicals (Table S8). These C$_x$H$_{y+1}$O$_2$ products are usually RO$_2$ radicals formed from multi-step auto-oxidation with one step of OH addition. Unlike the monocyclic precursors, the main C$_{2x}$ products produced by the oxidation of
naphthalene and 1-methylnaphthalene are \(C_2xH_{2y}O_{10−14} \), \(C_{2x}H_{2y+2}O_{10−14} \) and \(C_{2x}H_{2y+4}O_{10−14} \), showing more diverse H number distributions. This result suggests more efficient multi-generation OH oxidation (e.g., adding one H atom via OH addition vs. losing one H atom via H abstraction) before accretion reactions occur for double-ring aromatic precursors than for single-ring precursors.

The apparent molar yields of the OOMs detected by the \(\text{NO}_3^-\text{-TOF-CIMS} \) at the exit of OFR were calculated as \(\left(k_{\text{loss}} \times [\text{OOMs}] \right) / \left(k_1 \times [\text{VOC}] \times [\text{OH}] \right) \), where \(k_{\text{loss}} \) is the loss rate constant of OOMs, and \(k_1 \) is the VOC–OH reaction rate constant. The AMS and SMPS particle measurements are only available for benzene, toluene and naphthalene, for which we can correct the vapor loss of OOMs to the particle phase and the OFR wall. Figure 2 shows the OOM yields under different OH exposures. The yields range from 0.07 % to 2.05 %, among which the yields of naphthalene-derived OOMs are greater than those of the other two monocyclic aromatic precursors. This is consistent with the result from Molteni et al. (2018), who obtained a higher OOM yield for naphthalene (1.8 %) than for benzene (0.2 %) and toluene (0.1 %). As the OH exposure increases, the OOM yields for benzene and toluene first increase and then decrease after the equivalent photochemical age exceeds 7 d. The initial increase in OOM yields is consistent with the results presented by Garmash et al. (2020) for the oxidation of benzene under low OH exposure. The later decrease in the apparent OOM yields under high OH exposure suggests the production of more fragmented products that remain undetected by the \(\text{NO}_3^-\text{-TOF-CIMS} \). For the oxidation of naphthalene, we find increasing OOM yields under high OH exposure. Multi-generation OH oxidation may occur more efficiently for precursors with two aromatic rings than the monocyclic precursors, thereby forming more of the detectable OOMs by the \(\text{NO}_3^-\text{-TOF-CIMS} \) even under high OH exposure. The parameters in the yield calculation are associated with various kinds of uncertainties. We used a uniform calibration factor to determine the OOM concentrations which may underestimate the sensitivity of large molecules. Given an average transmission efficiency of \(\sim 0.5 \) for 450–650 Th, as suggested by Tian et al. (2023), the underestimations of OOM yields (about 0.01 %–0.03 %) are minor. The main bias in yields is perhaps associated with \(k_{\text{loss}} \), which is most sensitive to the condensation sink (Palm et al., 2016). It is worth noting that the yield calculation herein assumes that the production rate is equal to the loss rate of OOMs, which may represent only the lower limit of the actual yield if particles are still growing when exiting the OFR.
Figure 2. Yields of OOMs produced from photooxidation of benzene, toluene, and naphthalene in OFR as a function of OH exposure. Equivalent photochemical ages are referred to a mean OH concentration of 1.5×10^6 molecules cm$^{-3}$.

3.2 Formation of C_x and C_{2x} OOMs

For all precursors, the concentrations of closed-shell C_x products are much greater than those of open-shell products (i.e., mainly RO$_2$) (Fig. S3). Under low-NO$_x$ conditions, the closed-shell C_x products are formed primarily from the RO$_2$ + HO$_2$ pathways rather than the reaction of RO$_2$ + RO$_2$. This is due to the much higher HO$_2$ concentrations (0.9–2.4 ppb) than the RO$_2$ concentrations (0.1–2.2 ppt) (Table 1), which hints that the formation of closed-shell C_x products is limited by the RO$_2$ availability. Indeed, good correlations between closed-shell C_x products and RO$_2$ are observed (Fig. 3). The slopes are generally lower for double-ring precursors than for monocyclic precursors, indicating a steric hindrance of double rings on the C_x product formation.

For a given precursor of C_xH$_y$, further auto-oxidation of BPRs (C_xH$_{y+1}$O$_2$) may lead to the formation of C_x products with hydrogen numbers of y or $y + 2$, whereas multi-generation OH reactions (i.e., a second or third OH attack) would lead to the formation of C_x products with hydrogen numbers of $y - 2$ (H abstraction) or $y + 2$ (OH addition) (Garmash et al., 2020; Cheng et al., 2021b). Figure 4 shows the signal fractions of closed-shell C_x products that have different hydrogen numbers at different OH exposure. The signal fractions of products with $y - 2$ hydrogen numbers increase with increasing OH exposure, suggesting that more H abstraction may have occurred at higher OH exposure. Consistently, the signal fractions of C_x products with $y + 2$ hydrogen numbers decrease as the OH exposure increases, suggesting less OH addition at higher OH exposure. H abstraction has been found to be involved in the formation of the majority of monoterpane OOMs (Shen et al., 2022). Moreover, the signal fractions of products with $y - 2$ and $> y + 2$ hydrogen numbers are relatively higher in naphthalene- and 1-methylnaphthalene-derived OOMs than in other types of OOMs, highlighting the importance of multi-generation OH oxidation for double-ring aromatic precursors. Additionally, for naphthalene and 1-methylnaphthalene, both of the products with $y + 4$ (15.9%–27.8%) and $y + 6$ (3.4%–10.9%) hydrogen numbers have high signal fractions, whereas for monocyclic aromatic OOMs, the products with $y + 4$ (9.7%–37.9%) hydrogen numbers are the main $> y + 2$ products (Tables S2–S7 and Fig. S4). The presence of abundant C_x products with hydrogen numbers of $y + 6$ from double-ring precursors suggests a significant occurrence of third OH addition in early-generation products that still possess a high degree of unsaturation.

The concentrations of C_{2x} products are several times lower than those of C_x products (Fig. S5). Their total concentrations vary by OH exposures but show different trends for different precursors. For benzene and 1-methylnaphthalene, the C_{2x} concentrations increase for higher OH exposures, whereas for the other four precursors, the C_{2x} concentrations decrease as the OH exposure increases. This highlights a large difference in the RO$_2$ distribution and their functional groups for different precursors, calling for further investigations. The concentrations of C_{2x} products correlate well with the square of the RO$_2$ concentrations except for m-xylene (Fig. 5). The slopes are lower for naphthalene than for monocyclic precursors, again suggesting significant steric effects of double rings on the formation of C_{2x} products (Tomaz et al., 2021). In addition, the slopes are greater for methyl substituted precursors than for non-substituted ones.

Table 2 lists the constrained rate constants for benzene- and naphthalene-derived dimeric products with reason-
and 1,3,5-trimethylbenzene products formed from the oxidation of aromatic precursor (C\(_x\)H\(_y\)).

Figure 4. Fractions of different series of closed-shell C\(_x\) products from the oxidation of (a) benzene, (b) toluene, (c) m-xylene, (d) 1,3,5-trimethylbenzene, (e) naphthalene, and (f) 1-methylnaphthalene at different OH exposure. x and y represent the numbers of carbon and hydrogen atoms of the aromatic precursor (C\(_x\)H\(_y\)).

Figure 5. Scatter plot of the concentrations of closed-shell C\(_{2x}\) products and those of RO\(_2\) × RO\(_2\) for the 27 experiments listed in Table 1. The r values represent the Pearson correlation coefficients.

Table 1. The r values represent the Pearson correlation coefficients.

<table>
<thead>
<tr>
<th>RO(_2) × RO(_2) concentration (ppb)</th>
<th>C(_2x) product concentration (ppb)</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.7</td>
</tr>
</tbody>
</table>

Molteni et al., 2019). The estimated rate constants are 7.0 × 10\(^{-10}\) cm\(^3\) molecule\(^{-1}\) s\(^{-1}\) for C\(_6\)H\(_7\)O\(_8\) + C\(_6\)H\(_7\)O\(_8\) → C\(_{12}\)H\(_{15}\)O\(_{15}\) and 0.9 × 10\(^{-10}\) cm\(^3\) molecule\(^{-1}\) s\(^{-1}\) for C\(_{10}\)H\(_8\)O\(_8\) + C\(_{10}\)H\(_8\)O\(_8\) → C\(_{20}\)H\(_{18}\)O\(_{14}\), suggesting that the accretion reaction rate is sensitive to precursor structures and RO\(_2\) functional groups. These RO\(_2\) radicals could be formed from BPRs (C\(_x\)H\(_y\)+O\(_3\)); thus the lower rate constant for C\(_{10}\)H\(_8\)O\(_8\) + C\(_{10}\)H\(_8\)O\(_8\) → C\(_{20}\)H\(_{18}\)O\(_{14}\) may again be explained by the steric influence of double rings.

3.3 OOM contribution to SOA

Figure 6 shows the average elemental ratios of SOA and detected gaseous OOMs as well as the estimated contributions of the detected OOMs to the SOA mass for the experiments having AMS and SMPS particle measurements. For benzene oxidation, greater O : C ratios and lower H : C ratios are observed for SOA produced at higher OH exposures, which can be explained by typical functionalization process (Kroll et al., 2011). For toluene oxidation, the O : C ratios of SOA increase and then decrease as OH exposures increase, while the H : C ratios show the opposite, indicating significant fragmentation at high OH exposures. The lowest OH exposure in the OFR (> 0.9 d atmospheric equivalent photochemical age) is greater than chamber conditions. Correspondingly, the O : C ratios at lowest OH exposure for both types of SOA are greater, and the H : C ratios are lower compared to the reported values in previous chamber studies (Nakao et al., 2013; Chhabra et al., 2010) (Fig. 6a). Unlike benzene and toluene SOA, the H : C ratios for naphthalene SOA increase as OH exposures increase, and the O : C ratios at lowest OH exposure are lower than the reported ratios in chamber study (Chhabra et al., 2010), suggesting more difference in the oxidation conditions between the OFR and chamber studies for naphthalene. Our results agree with the reported O : C ratios in another OFR study (i.e., 0.86–1.40 for toluene SOA and 0.48–1.59 for naphthalene SOA) (Lambe et al., 2011). The detected OOMs produced from naphthalene have lower O : C and lower H : C ratios than those from benzene and toluene (Fig. 6b). When the OH exposure increases, the average O : C ratios of the detected OOMs increase, and the H : C ratios decrease (Fig. S6). The increase in O : C ratios of OOMs is more significant for the oxidation of naphthalene, whereas the decrease in H : C ratios of OOMs is more evident for the oxidation of benzene and toluene. The much broader ranges of O : C and H : C for each type of SOA than those for detected OOMs highlight the important contributions of undetected products to SOA. Notably, the O : C ratios of naphthalene-derived OOMs are much lower than those of benzene-derived OOMs, but the naphthalene-derived OOMs contain more low-volatility fractions than those of benzene-derived OOMs as shown in the volatility distribution (Fig. S7).

The measured SOA mass concentrations are 4.3–22.2 µg m\(^{-3}\) at the exit of OFR. The particle wall loss correc-
Figure 6. (a) The averaged H : C and O : C ratios of the resulted SOA for the oxidation of benzene, toluene and naphthalene. (b) The averaged H : C and O : C ratios of gaseous OOMs detected in these experiments. (c) Estimated contributions of the detected OOMs to the SOA mass. The volatilities of OOMs were calculated using the method described in M. Wang et al. (2020).

The formation of OOMs from the photooxidation of benzene, toluene, m-xylene, 1,3,5-trimethylbenzene, naphthalene and 1-methylnaphthalene was investigated under low-NOx conditions with a wide range of OH exposure. The detected OOM formulae show diverse oxygen and hydrogen numbers that need both multi-step auto-oxidation and multi-generation OH oxidation to explain, highlighting similar reaction rates of the two mechanisms under atmospheric relevant VOC concentrations. Multi-generation OH oxidation appears to be more prominent at higher OH exposure for

4 Conclusions

The estimation of OOM contributions to the SOA mass has large uncertainties. The main calculation uncertainty is associated with the estimation of OOM volatilities, which could be ±1 bin different (i.e., 1 or 2 orders of magnitude in C*) or more (Donahue et al., 2011). This may significantly affect the calculation of gas–particle partitioning and net condensation flux with compensation errors among species. On the other hand, the OFR experiments may not mimic the ambient conditions fully. High OH exposures with short residence time may lead to fast RO2 + HO2 reactions that limit some RO2 auto-oxidation. Precursors are mixed in the real atmosphere, which may lead to different RO2 chemistry and product distributions compared to single-precursor systems in this study (Chen et al., 2022). Measurement uncertainties are relatively minor and not subject to significant systematic bias. The underestimation of large molecules (450–650 Th) in NO3-TOF-CIMS analysis by a factor of 2 only affects the OOM contribution by ∼0.1 %.

The main calculation uncertainty is associated with the estimation of OOM volatilities, which could be ±1 bin different (i.e., 1 or 2 orders of magnitude in C*) or more (Donahue et al., 2011). This may significantly affect the calculation of gas–particle partitioning and net condensation flux with compensation errors among species. On the other hand, the OFR experiments may not mimic the ambient conditions fully. High OH exposures with short residence time may lead to fast RO2 + HO2 reactions that limit some RO2 auto-oxidation. Precursors are mixed in the real atmosphere, which may lead to different RO2 chemistry and product distributions compared to single-precursor systems in this study (Chen et al., 2022). Measurement uncertainties are relatively minor and not subject to significant systematic bias. The underestimation of large molecules (450–650 Th) in NO3-TOF-CIMS analysis by a factor of 2 only affects the OOM contribution by ∼0.1 %. The quantification uncertainties of VOCs and SOA are usually less than 30 % (Huang et al., 2019; Zheng et al., 2021). In ambient applications, the calculation of OOMs to SOA needs to isolate the observed SOA growth to OOM production, which introduces additional uncertainties related to air mass dilution and transport.

4 Conclusions

The formation of OOMs from the photooxidation of benzene, toluene, m-xylene, 1,3,5-trimethylbenzene, naphthalene and 1-methylnaphthalene was investigated under low-NOx conditions with a wide range of OH exposure. The detected OOM formulae show diverse oxygen and hydrogen numbers that need both multi-step auto-oxidation and multi-generation OH oxidation to explain, highlighting similar reaction rates of the two mechanisms under atmospheric relevant VOC concentrations. Multi-generation OH oxidation appears to be more prominent at higher OH exposure for
the oxidation of double-ring precursors than for the oxidation of single-ring aromatic precursors. The product distributions demonstrate significant steric effects of the methyl substitution and the double-ring structure on the OOM formation. We show that (1) the formation of fragmented products, especially unsaturated small oxygenates, is less efficient for precursors with more methyl groups, and (2) the steric effects of double rings affect the formation of both monomeric and dimeric products. More studies are needed for developing quantitative understanding to improve the CTM representation on the OOM formation. Finally, we found more OOMs produced by the oxidation of double-ring precursors in the lower volatility range than those formed from the oxidation of traditional monocyclic precursors, highlighting the importance of heavy aromatics to SOA formation. The detectable OOMs by the NO$_3^-$-TOF-CIMS are usually highly oxygenated products and explain at maximum 30.0% of the aromatic SOA mass herein. More of the SOA mass is perhaps contributed by less oxygenated products that require other types of chemical ionization technique to explore.

Data availability. Data presented in this paper are available at https://doi.org/10.5281/zenodo.10047716 (Cheng, 2023).

Supplement. The supplement related to this article is available online at: https://doi.org/10.5194/acp-24-2099-2024-supplement.

Author contributions. QC and YJL designed the study. XC, YZ and KL conducted the experiments. XC performed the data analysis with the help of all authors. XC, QC and YJL wrote the manuscript, with inputs from all other authors.

Competing interests. At least one of the (co-)authors is a member of the editorial board of Atmospheric Chemistry and Physics. The peer-review process was guided by an independent editor, and the authors also have no other competing interests to declare.

Disclaimer. Publisher’s note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors.

Acknowledgements. The authors gratefully acknowledge Andrew Lambe and Penglin Ye for instrument support and helpful discussion.

Financial support. This work is supported by the National Natural Science Foundation of China (grant nos. 41875165, 42250410322, 41961134034), the special fund of the State Key Joint Laboratory of Environmental Simulation and Pollution Control (grant no. 23Y05ESPCP), and the 111 Center of Urban Air Pollution and Health Effects (grant no. B20009). Yong Jie Li has been supported from the Science and Technology Development Fund, Macao SAR (file no. 0023/2021/A1), and a multiyear research grant (grant no. MYRG2022-00027-FST) from the University of Macau.

Review statement. This paper was edited by Thomas Berkemeier and reviewed by two anonymous referees.

References

Chen, Q., Liu, Y., Donahue, N. M., Shilling, J. E., and Martin, S. T.: Particle-phase chemistry of secondary organic material:
Li, L., Tang, P., Nakao, S., and Cocker III, D. R.: Impact of molecular structure on secondary organic aerosol formation from aromatic hydrocarbon photooxidation under low-
X. Cheng et al.: Oxygenated organic molecules produced by low-NOx photooxidation

https://doi.org/10.5194/acp-24-2099-2024

Atmos. Chem. Phys., 24, 2099–2112, 2024

