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Abstract. The spring 2020 COVID-19 lockdowns led to a rapid reduction in aerosol and aerosol precursor emis-
sions. These emission reductions provide a unique opportunity for model evaluation and to assess the potential
efficacy of future emission control measures. We investigate changes in observed regional aerosol optical depth
(AOD) during the COVID-19 lockdowns and use these observed anomalies to evaluate Earth system model sim-
ulations forced with COVID-19-like reductions in aerosols and greenhouse gases. Most anthropogenic source
regions do not exhibit statistically significant changes in satellite retrievals of total or dust-subtracted AOD, de-
spite the dramatic economic and lifestyle changes associated with the pandemic. Of the regions considered, only
India exhibits an AOD anomaly that exceeds internal variability. Earth system models reproduce the observed
responses reasonably well over India but initially appear to overestimate the magnitude of response in East China
and when averaging over the Northern Hemisphere (0–70◦ N) as a whole. We conduct a series of sensitivity tests
to systematically assess the contributions of internal variability, model input uncertainty, and observational sam-
pling to the aerosol signal, and we demonstrate that the discrepancies between observed and simulated AOD can
be partially resolved through the use of an updated emission inventory. The discrepancies can also be explained
in part by characteristics of the observational datasets. Overall our results suggest that current Earth system
models have potential to accurately capture the effects of future emission reductions.
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1 Introduction

The emergence and rapid spread of COVID-19 in early 2020
had profound impacts on both individual behaviour and the
large-scale economy. Following the detection of the first
cases in Wuhan, China, in December 2019 (World Health
Organization, 2020a) and its categorization as a global pan-
demic in March 2020 (World Health Organization, 2020b),
countries around the world began to implement a range of
public health measures to limit the virus’ spread. In many re-
gions these included restrictions on public and private gath-
erings, domestic or international travel bans, curfews, and in
some cases stay-at-home orders.

One consequence of these dramatic economic and lifestyle
changes was a rapid reduction in the emissions of aerosols
and their precursors. This reduction has been widely reported
on, with the majority of studies falling into one of two cate-
gories.

The first, more extensive category consists of studies in-
vestigating changes in local (predominantly urban) air qual-
ity during the pandemic. As summarized by Gkatzelis et al.
(2021), more than 200 papers on air quality changes were
published in the first 7 months of 2020 alone. These papers
reported substantial reductions in major pollutants including
NO2, NOx , O3, SO2, and particulate matter in cities around
the globe. The spread in estimates varied dramatically within
and between geographic regions. The intra-regional spread
can be attributed in part to city- or nation-scale heterogene-
ity and in part to methodological differences between stud-
ies. Notably, Gkatzelis et al. (2021) found that approximately
two-thirds of these works did not account for interannual or
in some cases even seasonal variability in aerosol levels; the
importance of accounting for meteorological changes is em-
phasized in several recent works (Deroubaix et al., 2021;
Diamond and Wood, 2020; Goldberg et al., 2020; Ordóñez
et al., 2020). There have, however, been many rigorous stud-
ies of air quality changes (Chang et al., 2020; Jia et al., 2021;
Ordóñez et al., 2020; Siciliano et al., 2020; Venter et al.,
2020; Al-Abadleh et al., 2021; Liu et al., 2021; Sokhi et al.,
2021; Wyche et al., 2021; Zhou et al., 2022; Kong et al.,
2023).

The second category of COVID-19-based aerosol stud-
ies consists of model simulations of regional or global cli-
mate responses to this reduction in emissions. These studies,
which include both idealized and proxy-based emission re-
duction scenarios for 2020, have reported weak to negligible
climate responses, with top-of-atmosphere radiation changes
comparable to interannual variability and changes in temper-
ature or precipitation unlikely to be detectable in observa-
tions (Fasullo et al., 2021; Fiedler et al., 2021; Forster et al.,
2020; Fyfe et al., 2021; Gettelman et al., 2021; Jones et al.,
2021; Weber et al., 2020). These studies generally report re-
ductions in zonally averaged aerosol optical depth (AOD) at
∼ 30◦ N in March 2020 and small or non-detectable changes
in global aerosol optical depth. The magnitudes of these re-

ductions are model-dependent and in some cases only de-
tectable in the ensemble mean.

Few studies have bridged these categories, comparing the
observed and simulated responses to the COVID-19 aerosol
emission reductions. Among those studies that have incorpo-
rated both observations and simulations, the simulations have
generally been used to help explain the observed changes by
predicting control conditions in the absence of a COVID-
19 perturbation (Goldberg et al., 2020; Griffin et al., 2020;
Le et al., 2020; Hammer et al., 2021; Huang et al., 2021;
Mashayekhi et al., 2021; Li et al., 2022). No studies have yet
leveraged the observed aerosol response to the COVID-19
lockdowns for model evaluation purposes.

Reliable model simulations of the direct and indirect re-
sponses to a reduction in aerosol emissions are crucial for
policy development. The Shared Socioeconomic Pathways
(SSPs; Riahi et al., 2017) and Representative Concentra-
tion Pathways (RCPs; van Vuuren et al., 2011; Lamarque
et al., 2011) all include a reduction in aerosol emissions over
the coming decades. Because aerosols are often co-emitted
with greenhouse gases (GHGs), some of these reductions
will be the result of targeted air quality legislation and some
will be a side effect of climate policies. Depending on the
sectors targeted by these policy measures and the resulting
cocktail of aerosol species that are affected, such reductions
may lead to climate co-benefits or climate penalties (von
Salzen et al., 2022). These uncertainties are compounded
by the fact that aerosol–climate interactions remain one of
the largest sources of uncertainty in future climate projec-
tions (Szopa et al., 2021). Predictions of future air quality
changes are also highly uncertain (Szopa et al., 2021). The
opportunity for model evaluation afforded by the COVID-
19 pandemic is thus invaluable. In particular, the COVID-
19 pandemic demonstrates the impacts of a rapid emission
reduction, whereas previous observational constraints have
been based on slower (e.g., decadal) emission trends (e.g.,
Ramachandran et al., 2022; Lund et al., 2023). There are
both practical and scientific motivations for studying a rapid
emission reduction. On the practical front, a short-but-strong
signal is easier to disentangle from other sources of variabil-
ity; we have continuous satellite observations that cover the
entire study period; and the period is short enough that the
instrument drift is unlikely to be a concern. Scientifically,
model simulations indicate that the presence and severity of
potential climate penalties, including changes in mean and
extreme temperatures and precipitation, may be proportional
to the rate at which emissions are reduced (Acosta Navarro
et al., 2017; Hienola et al., 2018; Samset et al., 2020; Shin-
dell and Smith, 2019; Shindell et al., 2012; Sillmann et al.,
2013). Although we do not investigate the climate response
to COVID-19 in this work, understanding the aerosol re-
sponse itself is an important first step.

In this work we use the observed AOD anomalies from
spring 2020 to evaluate model simulations of the response to
a COVID-19-like reduction in aerosol emissions. Our work
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addresses two questions. First, how much did aerosol optical
depth change in response to the dramatic lifestyle changes
brought about by the COVID-19 public health measures?
Second, how well do our models reproduce this response?

Both the air quality and climate impacts of a reduction
in emissions depend on the response of atmospheric aerosol
concentrations to emission changes, which is in general a
complex and nonlinear dependence (Szopa et al., 2021; Kroll
et al., 2020). The climate effect further depends on the re-
sulting changes in scattering and absorption, which can be
quantified in terms of aerosol optical depth. In this work we
consider changes in AOD, rather than concentration, since it
is more readily available from both model simulations and
remotely sensed observations.

The models used in this work are taken from the COVID-
19 Model Intercomparison Project (CovidMIP; Jones et al.,
2021), which was developed to investigate the effects of a
COVID-19-like reduction in aerosols and greenhouse gases.
Although Jones et al. (2021) present an initial analysis of
changes in aerosol optical depth, their primary foci were
the radiative and climatic responses to the COVID-19 per-
turbation, and the drivers of the simulated aerosol changes
were not investigated. Our analysis provides the first de-
tailed investigation of aerosol changes in the CovidMIP mod-
els, as well as the first comparison between observed and
CovidMIP-simulated changes.

In order to disentangle the signal of COVID-19 from other
sources of AOD variability and model–observation discrep-
ancy, we first derive a basic analytic framework consisting
of three assessment metrics and then systematically assess
the influence of potential confounding factors on our results.
This assessment is done by either correcting for these factors
directly or conducting sensitivity tests to quantify their im-
pacts on our metrics. The factors we assess are discussed in
Sect. 2. Our datasets are described in Sect. 3, and the metrics
by which we assess them are described in Sect. 4. Section 5.1
presents the results of our basic analysis, and Sect. 5.2 de-
scribes our sensitivity tests. The implications of these results
are discussed in Sect. 6.

2 Components of the AOD signal

Disentangling the signal of COVID-19 emission reductions
from other sources of variability in an observed AOD field
is a complex and nuanced task. Conducting robust compar-
isons between observed and simulated responses is yet more
involved. We begin by highlighting the major considerations
that need to be addressed in an analysis of this type: sources
of AOD variability; factors that contribute to discrepancies
between simulated and observed AOD fields, no matter the
quality of the atmospheric model or satellite retrieval; and,
finally, the impacts of observational uncertainty.

2.1 AOD variability

Aerosol optical depth is determined by natural and anthro-
pogenic emissions, the chemical production of secondary
aerosol species in the atmosphere, transport, and microphys-
ical processes. All of these processes are affected to various
degrees by meteorological conditions. Collectively, physical
and chemical processes determine not only the distribution of
atmospheric aerosols, but the optical depth that results from
this aerosol burden.

Because these processes are highly interdependent, we
simplify matters by grouping the drivers of AOD variability
into three categories: variability in anthropogenic emissions,
natural emissions, and meteorological conditions. Anthro-
pogenic emissions vary over different timescales, including
diurnal (e.g., weekday–weekend cycles of traffic emissions),
seasonal (e.g., with changing heating–cooling requirements),
and annual to decadal (e.g., due to socioeconomic changes
and direct legislation). Natural emissions also differ substan-
tially from one year to the next: mineral dust and sea salt
emissions are strongly influenced by surface wind stress, and
biomass burning emissions vary with storm activity (wildfire
ignition by lightning) and aridity (soil moisture content, fuel
availability). Once aerosols are in the atmosphere, their trans-
port is affected by atmospheric circulation, and their removal
by precipitation and dry deposition depends on hydrometeo-
rological conditions, atmospheric stability, and winds.

The above processes determine aerosol burden. The AOD
that results from this burden depends on the intrinsic char-
acteristics of the aerosol (e.g., refractive index and particle
morphology, which can change in response to variations in
emission source, and whether components are internally or
externally mixed) and on the ambient conditions (e.g., via
hygroscopic growth). Because these microphysical charac-
teristics ultimately depend on the changes in emission and
meteorological processes listed above, we will consider them
under the umbrella of those categories.

The observed AOD anomaly from spring 2020 will com-
bine these different factors, with the reduction in anthro-
pogenic emissions due to COVID-19 making up an unknown
fraction of the total. Our analysis must therefore account for
these different sources of variability when assessing both the
observed and simulated AOD signals. In the following sec-
tions, we first describe the differences that would be expected
even if both models and observations were perfectly accu-
rate, and then we describe the impacts of observational un-
certainty.

2.2 Differences between observed and simulated AOD
in the absence of model error or observational
uncertainty

Even given a hypothetical model that perfectly simulated
atmospheric aerosol processes and perfectly accurate satel-
lite retrievals, differences would still arise between the ob-
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served and simulated AOD fields. These differences can be
grouped into three main categories. First, a freely running
model would produce a different realization of meteorologi-
cal conditions than occurred in the real world, and so aerosols
would be subject to different emission, transport, and deposi-
tional processes. Second, any errors in the model inputs (e.g.,
in the size of perturbation applied to represent COVID-19)
would translate into biased simulations. Finally, the simu-
lated and observed AODs would be recorded with different
spatiotemporal sampling. Before any differences between the
observed and simulated responses to COVID-19 can be at-
tributed to model biases, these factors must be accounted for.
(We discuss the role of observational uncertainty separately
in Sect. 2.3.)

We address AOD differences stemming from the differ-
ences in the observed and simulated realizations of the cli-
mate system in two ways. First, we compare AOD anomalies
during COVID-19 to the scale of internal variability, both by
looking at observed interannual variability over the reference
period and by running ensembles of simulations to sample
the models’ internal variability. If an AOD anomaly is well
outside of typical interannual variability, then it is likely to
have been caused by more than just meteorological condi-
tions. Equivalently, if the observed AOD change is well out-
side of typical interannual variability but the simulated AOD
change is not, or vice versa, then the difference between these
two responses is unlikely to be caused by differences in the
simulated and observed meteorological conditions. Second,
we can run simulations nudged to meteorological fields taken
from reanalyses to constrain the simulated meteorological re-
alization to be close to observations.

AOD differences arising from biases in the model input
can be assessed by running simulations where the input emis-
sion inventories are varied. In this work we assess the sensi-
tivity of our results to uncertainties in both the reference and
COVID-19-perturbed aerosol emissions in one model and
discuss the extension of these results to the other models in
our sample.

AOD differences can also arise from discrepancies be-
tween the spatial and temporal sampling of the different
datasets. A simulated monthly-mean AOD value is the mean
over all times of day and night, in all weather conditions. A
satellite’s monthly-mean AOD retrieval is the mean of AOD
values collected at the satellite’s particular overpass time, in
clear-sky conditions (if it is a passive sensor), and at times
when the retrieval was successful and not prevented by a
myriad of potential limitations such as sun glint or complex
terrain. We conduct a detailed assessment of these sampling
differences (Supplement Sect. S1) and demonstrate that in
our data, the discrepancies caused by sampling differences
are much smaller than those due to systematic biases between
observed data products.

2.3 Observational uncertainty

The three categories of difference discussed in Sect. 2.2
would occur even if both the model and satellite were
perfect. However, satellite retrievals are characterized by
both systematic and random measurement errors (Povey and
Grainger, 2015; Sayer et al., 2020).

Estimation of retrieval biases and uncertainties is further
complicated when considering quantities averaged in space
and time. The degree to which individual retrieval errors are
reduced by averaging depends on the relative contributions
of random and systematic components, which will vary both
spatially and temporally (e.g., Povey and Grainger, 2015;
Young et al., 2018). Even if the uncertainty was due en-
tirely to random error, the effects of averaging would not be
straightforward, since there is no reason to expect that the re-
trievals would be independent or identically distributed. Fur-
ther complication arises when considering dust-subtracted
aerosol optical depths, since the task of discriminating be-
tween aerosol species is separate from the determination of
total AOD (Omar et al., 2009; Gkikas et al., 2021; Song et al.,
2021), and it is not obvious how the respective uncertain-
ties would be propagated even if they could be individually
constrained. Given these limitations, spatial averages of re-
motely sensed AOD are generally published without quanti-
tative uncertainty estimates.

Considering the above complications, we do not provide
uncertainty estimates for individual observational measure-
ments. Instead we use the spread between observational
products as an overall estimate of the uncertainty in the true
AOD. As Supplement Sect. S1 demonstrates, this spread is
due primarily to systematic biases between products and not
to differences in their spatiotemporal sampling. As Supple-
ment Sect. S1 further demonstrates, however, agreement be-
tween datasets is substantially improved when data are ex-
pressed as anomalies rather than absolute values.

3 Datasets

3.1 Model simulations

The COVID-19 Model Intercomparison Project (CovidMIP;
Jones et al., 2021) was developed to investigate the effects
of a COVID-19-like reduction in aerosols and greenhouse
gases. It includes contributions from 12 Earth system models,
all of which had previously participated in the sixth phase of
the Coupled Model Intercomparison Project (CMIP6; Eyring
et al., 2016).

The CovidMIP scenarios, detailed in Forster et al. (2020),
include the control scenario, a 2-year blip experiment, and
three long-term recovery scenarios. The 2-year blip, which is
the focus of this work, estimates aerosol and greenhouse gas
emission reductions from mobility data (Forster et al., 2020;
Le Quéré et al., 2020) for the period of January–June 2020;
66 % of the June restrictions are then assumed to persist un-
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til the end of 2021, after which emissions recover linearly to
the baseline. We limit our analysis to January–June 2020, for
which the simulated emission changes are based on observa-
tional proxies rather than projections. Further details on the
calculation of these reductions and an assessment of the sen-
sitivity of our results to uncertainties in their estimation are
presented in Sect. 5.2.3.

The control scenario used in CovidMIP is SSP2-4.5 (Ri-
ahi et al., 2017), a middle-of-the-road scenario developed for
the Scenario Model Intercomparison Project (ScenarioMIP,
O’Neill et al., 2016) as part of CMIP6. The implications of
this choice of reference are explored in Sect. 5.2.1. Through-
out this work, SSP2-4.5 is stylized ssp245 when we are refer-
ring to a model simulation experiment and written as SSP2-
4.5 when we are discussing the scenario more generally. The
COVID-19-perturbed experiment is referred to as ssp245-
covid. We additionally use the terms reference, control, and
perturbed to refer to the 2015–2019 ssp245, 2020 ssp245,
and 2020 ssp245-covid simulations respectively.

We use only those CovidMIP models for which aerosol
concentrations were not prescribed and for which data were
available on the Earth System Grid Federation (ESGF; https:
//esgf-node.llnl.gov/search/cmip6/, last access: 1 December
2023). For the control experiment ssp245, this requirement
applies to the reference period (2015–2019) as well as to
the 2020 experiment period. In addition, much of our analy-
sis utilizes dust-subtracted optical depth, which is calculated
by subtracting the aerosol optical depth due to dust (CMIP
variable name od550dust) from the total AOD at 550 nm
(od550aer); however, od550dust is not published for all mod-
els. In total, four CovidMIP models met the data availability
requirements for both total and dust aerosol optical depths,
and an additional two models met the above criteria for total
aerosol optical depth only. These six models, summarized in
Table 1, sample the range of global AOD anomalies and cli-
matic responses simulated by the full CovidMIP suite (Jones
et al., 2021).

The most obvious outlier among these models is
CanESM5.0, which exhibits an exceptionally large ensemble
spread in AOD. This variability is caused by the production
of spurious tropospheric dust storms, which have been at-
tributed to errors in the tuning of mineral dust tracer param-
eters (Sigmond et al., 2023). Fortunately, only the dust trac-
ers were affected, and the dust-subtracted AOD is consistent
with that simulated by other CMIP6 models. This issue has
since been corrected and will not be present in CanESM5.1.
For the purposes of this analysis, CanESM5.0 is excluded
from some analyses of total AOD.

Throughout this analysis, model results are described in
terms of an ensemble median and 5th-to-95th-percentile
range. When results are presented as spatially averaged time
series, the percentile range is calculated across the ensemble
of spatially averaged values.

3.2 Remotely sensed observations

This work incorporates remotely sensed observations of both
total and mineral dust aerosol optical depths. The datasets
used in our analysis are summarized in Table 2 and described
in Sect. 3.2.1 and 3.2.2 respectively.

3.2.1 Total aerosol optical depth

Satellite observations of total AOD are taken from the Mod-
erate Resolution Imaging Spectroradiometer (MODIS; King
et al., 2013; Platnick et al., 2017), Multi-angle Spectral Ra-
diometer (MISR; Diner et al., 1998), and the Cloud-Aerosol
Lidar with Orthogonal Polarization (CALIOP; Winker et al.,
2009). Level 3 gridded, monthly mean products are used
from all three instruments. We additionally include an AOD
estimate derived from CALIOP data by the Aerosol, Cloud,
Radiation-Observation and Simulation (ACROS) group at
the University of Maryland, Baltimore County (ACROS-C;
Song et al., 2021), described further in Sect. 3.2.2.

There are two MODIS instruments, mounted on the Aqua
and Terra satellites. We use MODIS Aqua data in our main
analysis, due to an identified high bias in the MODIS Terra
calibration (Levy et al., 2018), but compare with MODIS
Terra data in Supplement Sect. S1. The MISR instrument is
mounted on Terra and observes a smaller swath within the
footprint of MODIS Terra. As passive sensors, both MODIS
and MISR observe only during the day and in cloud-free con-
ditions. In contrast, CALIOP – aboard the Cloud-Aerosol Li-
dar and Infrared Pathfinder Satellite Observation (CALIPSO)
platform – is an active lidar sensor and so can take measure-
ments during the day or night. Because the absence of a solar
background means that CALIOP’s AOD has lower uncertain-
ties at night (Young et al., 2018), we use the all-sky night-
time product in our main analysis. This product is compared
with the cloud-free daytime product in Supplement Sect. S1
to help quantify the effects of sampling differences between
different datasets. Terra and Aqua have daytime equatorial
overpass times of 10:30 and 13:30 respectively. CALIPSO
initially orbited in the same satellite constellation as Aqua,
but in September 2018, it moved to a lower orbit to maintain
coincident measurements with CloudSat (ASDC, 2018).

AOD retrieved from MODIS is generally biased high
relative to ground-based AERONET measurements (Wei
et al., 2020; Levy et al., 2018), while AOD from MISR
and CALIOP is generally biased low (Kahn et al., 2009;
Schuster et al., 2012); AERONET is widely considered the
gold standard for the evaluation of satellite AOD retrievals,
despite limitations in its spatial representativity (Schutgens
et al., 2020), because AERONET uncertainties are substan-
tially lower than those from satellites. Generally, MODIS
is also biased high and MISR and CALIOP are biased low
when comparing with other remotely sensed and reanalysis
datasets that are available for shorter periods of time (Vogel
et al., 2022). As demonstrated in Supplement Sect. S1, the
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Table 1. CovidMIP models used in this work (in alphabetical order). The “Published od550dust?” column indicates whether mineral dust
optical depths were available on ESGF for each model.

Model Realizations Published od550dust? References

ACCESS-ESM1.5 30 no Ziehn et al. (2020)
CanESM5.0 50 yes Swart et al. (2019)
MIROC-ES2L 30 yes Hajima et al. (2020)
MRI-ESM2.0 10 yes Yukimoto et al. (2019)
NorESM2-LM 10 yes Seland et al. (2020)
UKESM1-0-LL 16 no Sellar et al. (2019)

Table 2. Observational datasets used in this work. Columns AOD and DSAOD indicate whether this dataset is used in our analyses of total
and dust-subtracted optical depths respectively. EOT: equatorial overpass time (local time).

Dataset name AOD DSAOD Instrument Satellite Type Conditions EOT References and notes

MODIS-Aqua x – MODIS Aqua passive cloud-free 13:30 King et al. (2013),
Platnick et al. (2017)

MODIS-Aqua-MIDAS – x MODIS Aqua passive cloud-free 13:30 AOD from MODIS-
Aqua; dust optical
depth (DOD) from
MIDAS (Gkikas et al.,
2021, see Sect. 3.2.2)

MISR x – MISR Terra passive cloud-free 10:30 Diner et al. (1998)

CALIOP-AllSky-Night x x CALIOP CALIPSO active all-sky 01:30∗ Winker et al. (2009)
(CALIPSO official
product)

ACROS-C x x CALIOP CALIPSO active cloud-free 01:30∗ Song et al. (2021); Yu
et al. (2015) (Devel-
oped by ACROS group)

∗ orbit changed in September 2018.

spread in AOD estimates retrieved from these three datasets
is dominated by systematic biases and not by sampling differ-
ences. Thus, the spread between these datasets, which spans
the range of AOD available from ground- and space-based
instruments, provides a reasonable estimate of current obser-
vational uncertainty.

3.2.2 Dust optical depth

Much of this analysis considers dust-subtracted aerosol op-
tical depths. Neither MODIS nor MISR produces a dust-
specific product. However, other research groups have com-
bined MODIS retrievals with auxiliary data to derive esti-
mates of dust optical depth. In this work we use the ModIs
Dust AeroSol (MIDAS; Gkikas et al., 2021) product, which
combines total AOD from MODIS Aqua with an estimate of
the dust-to-total ratio from the MERRA-2 reanalysis, to esti-
mate the dust optical depth from MODIS Aqua. MIDAS also
publishes a total optical depth estimate, which applies addi-
tional filters to the MODIS dataset. Our results are insensi-
tive to the choice of MIDAS or MODIS total aerosol optical
depth; we use MODIS Aqua in the analysis presented here.

CALIOP determines the composition of aerosol layers us-
ing a combination of retrieval information (depolarization ra-
tio, integrated attenuated backscatter, layer height) and in-
formation about the underlying surface (Omar et al., 2009;
Kim et al., 2018). The aerosol subtyping algorithm identi-
fies seven tropospheric aerosol types, including dust, pol-
luted dust, and dusty marine. However, these are separate
classifications (e.g., “dust” refers only to clean dust, whereas
“polluted dust” refers to dust mixed with urban pollution or
biomass burning smoke), and there is no estimate of the to-
tal dust optical depth (Omar et al., 2009). We present re-
sults using the dust product (AOD_Mean_Dust) but acknowl-
edge that it does not capture the entire contribution of dust to
AOD, particularly in heavily polluted regions.

The ACROS-C dataset is included in our analysis to
provide a secondary estimate of dust optical depth from
CALIOP retrievals. ACROS-C uses the lidar depolarization
ratio to distinguish dust by shape (Yu et al., 2015; Song et al.,
2021). The ACROS group also publishes a MODIS-based
dust optical depth product, but this dataset is not available
for 2020 so it is excluded from our analysis.
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4 Methods: quantifying the impacts of COVID-19

In the Introduction, we presented two motivating questions
for this work: First, do observations exhibit a detectable re-
sponse to the COVID-19 emissions reductions? And, second,
how well do current models reproduce this response? Here
we present the quantitative metrics by which these questions
are addressed. Throughout, anomalies are calculated relative
to the 2015–2019 March–April–May (MAM) mean.

For the models, we consider a COVID-19 response to be
statistically significant if there is a statistically significant
difference between the control and COVID-19-perturbed en-
semble means in 2020, based on a two-sided Student t test.
Because the only difference between the control and per-
turbed ensembles is the absence or presence of a COVID-
19 perturbation, we can compare the ensembles directly and
avoid the challenge of disentangling year-to-year changes in
the underlying anthropogenic emissions from internal vari-
ability between realizations. Note, however, that this test is
sensitive to ensemble size and that a larger ensemble will be
more likely to yield a significant response.

Defining detectability for the observations is more chal-
lenging, because there is no “control observation” from
which to estimate the AOD that would have been measured in
2020 had COVID-19 not occurred. It would not be sufficient
to use the mean and variance calculated from the reference
period as a control: the using the mean would neglect the
impacts of underlying trends in the emissions, and a 5-year
reference period is too short to provide a robust estimate of
the variance. Instead we borrow an approach from the field
of detection and attribution (Eyring et al., 2021) and com-
pare the ensemble of observed anomalies to a multimodel
control ensemble (MMEc) constructed by randomly draw-
ing an equal number of control simulation anomalies from
each model. This comparison relies upon two assumptions:
that the models realistically simulate internal variability and
that they capture any underlying trends in AOD over the ref-
erence period. These assumptions determine the spread and
best estimate, respectively, predicted by the MMEc.

We assess the first of these assumptions by comparing ob-
served and simulated variability over the reference period
in our regions of interest. We calculate the variance of the
region-mean AOD field over the reference period for each
simulated ensemble member, the MMEc, and the observa-
tional datasets, and we compare the spread in these estimates
of variance. Although individual models may over- or un-
derestimate the interannual variability in some regions, we
cannot reject the null hypothesis that the MMEc and ob-
servations have the same interannual variability, based on
a two-sided Welch t test. The only exception is for India,
where the MMEc overestimates the variability in total and
dust-subtracted aerosol optical depth; as a result, estimates of
observational detectability will be conservative (i.e., anoma-
lies are less likely to be found to be statistically significant).
In a similar analysis of the variability over a longer base-

line (2007–2019), using a subset of models for which these
data were available, the total-AOD variability of the MMEc
is consistent with that of the observations in all four regions.

Having determined that it is reasonable to treat the simula-
tions and observations as having similar internal variability,
we derive a statistical test with which to compare observed
and simulated AOD anomalies. We use a modified Welch
t test of the form

t =
X1−X2

s1
where s1 =

√
s2

1
n1
+

s2
2

n2
, (1)

where s2
1 and s2

2 are unbiased estimators of the variance in
the simulations and observations respectively. As outlined
above we assume that the observations and simulations have
the same variance due to internal variability, s2

1 , which we
calculate from the simulated ensemble spread in the year
under consideration. The observations additionally have a
contribution to their variance due to observational uncer-
tainty, s2

0 , calculated from the spread in observational esti-
mates in that year. The total variance in the observations is
then s2

2 = s2
0+s2

1 . We use this t test to determine whether the
observed anomaly is statistically significant, through com-
parison with the MMEc, and to determine whether the indi-
vidual models’ simulated anomalies are consistent with the
observed anomaly, by comparison with the control and per-
turbed experiments in turn. We present results for t tests per-
formed on region-mean values; using spatially resolved com-
parisons adds little information and does not change our re-
sults.

The second assumption, that the models capture any trends
in AOD over the reference period, may break down in some
geographic regions. However, although some regions have
nonstationary anthropogenic emissions over the 2015–2019
reference period, we do not detrend our datasets. With only
a 5-year baseline, the observed time series is heavily in-
fluenced by interannual variability, which masks underly-
ing trends in anthropogenic emission changes. With a longer
baseline, the assumption of a linear trend would be un-
founded; China, for example, had steadily increasing anthro-
pogenic aerosol emissions until their implementation of the
Action Plan on the Prevention and Control of Air Pollution
in 2013, since which emissions have been rapidly declining
(Zheng et al., 2018). Given these limitations we work with
anomalies calculated relative to the 2015–2019 mean but dis-
cuss the impacts of underlying trends on our results through-
out.
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5 Results

5.1 Comparison between observations and CovidMIP
models

We begin with an assessment of the changes in total and dust-
subtracted AOD during the COVID-19 lockdown periods.
Four regions are selected for analysis: the Northern Hemi-
sphere (restricted to 0–70◦ N) and three major anthropogenic
aerosol source regions, namely East China (20–40◦ N, 100–
122◦ E), India (5–30◦ N, 70–90◦ E), and Europe (35–70◦ N,
10◦W–35◦ E). East China and India were defined following
Wang et al. (2021), with the India domain extended south
to include all of Sri Lanka, and the European domain was
selected to maximize (minimize) the land (ocean) enclosed.
The Northern Hemisphere domain was restricted to 0–70◦ N
to enable comparison with observations. The boundaries of
these regions are illustrated in Fig. S7.

The timing of the strictest lockdowns, as defined by the
Oxford Stringency Index (Hale et al., 2021), varies between
these regions but occurs for all between March and May of
2020. To aid in inter-region comparisons and to increase the
signal-to-noise ratio over what would be obtained from anal-
yses of single months, we evaluate the MAM-mean anomaly
in all four regions.

5.1.1 Response of total AOD to the COVID-19 emission
reductions

The observed and simulated total-AOD anomalies over
2015–2020 are summarized in Fig. 1. Of the four regions as-
sessed, only India exhibits a statistically significant observed
response to the COVID-19 lockdowns. In East China and Eu-
rope, the observed anomalies are clearly within the range
of interannual variability over the reference period. In the
Northern Hemisphere, two of the four observational products
suggest anomalously low AOD compared to the preceding 5
years, although this excursion is less clearly anomalous when
considering the apparent negative trend in AOD; the other
two data sources do not show particularly large anomalies.

Simulated results vary from model to model. In the North-
ern Hemisphere, two of the six models exhibit statistically
significant differences between the control and perturbed
anomalies, but in most cases both the control and perturbed
ensembles are consistent with the observed anomalies in this
region. In East China, four of the six models exhibit a sta-
tistically significant COVID-19-perturbed anomaly, which in
general appears to be overestimated: in these models, there
is a statistically significant difference between the observa-
tions and the perturbed ensemble but not between the ob-
servations and the control. In India, like East China, four
of the six models simulate a statistically significant separa-
tion between the control and perturbed ensembles. Unlike
in East China, however, these responses are in good agree-
ment with the observed anomalies: four of the perturbed en-

sembles are consistent with the magnitude of the observed
ensemble, whereas only two of the control ensembles are.
Finally, there is also good agreement between the observed
and simulated anomalies in Europe: only one model shows
a statistically significant perturbation, and in all models both
the control and perturbed ensembles are consistent with the
observed anomalies.

The existence of some disagreement between the observed
and simulated responses is not unexpected. As outlined in
Sect. 2, the total-AOD signal is influenced by many factors
beyond the changes in anthropogenic emissions. The impacts
of these factors are assessed in the following sections.

5.1.2 Response of dust-subtracted AOD to the
COVID-19 emission reductions

We next investigate the AOD signal when the contribution
from mineral dust has been removed (dust-subtracted AOD,
or DSAOD). In our regions of interest, the variability in to-
tal aerosol optical depth is dominated by the variability in
mineral dust, which was not directly impacted by COVID-19
lockdowns. Its presence may thus substantially mask any an-
thropogenically driven AOD changes. Although dust emis-
sion could have been indirectly affected via, e.g., changes
in temperature or precipitation induced by CO2 or aerosol
changes during the COVID-19 lockdowns, we expect these
effects to have been small; as described above, simulations
suggest only weak climate responses to the COVID-19 emis-
sion changes.

Figure 2 reproduces Fig. 1 but for DSAOD, showing re-
sults from the four CovidMIP models for which dust opti-
cal depths were available. As with the total AOD, an ob-
served response is only detectable in India. Accounting for
the role of dust improves model–observation agreement in
this region, with all four models assessed exhibiting signifi-
cant COVID-19 responses that agree with the magnitude of
the observed anomaly. This improvement is partially due to
the fact that the observed dust optical depth was anomalously
low in 2020, as seen in our results and as reported elsewhere
(Smith et al., 2022; Wei et al., 2022). Because the simula-
tions were allowed to evolve freely, they would not in gen-
eral have reproduced the meteorological conditions that led
to this anomaly.

Because we are using CALIOP’s clean dust product, the
DSAOD we calculate still contains contributions from dust
that is mixed with pollution or marine aerosol. The negative
2020 anomaly observed in India by CALIOP may thus be
due in part to the anomalously low dust optical depth noted
above. If this is the case, the fact that the simulations are
in qualitatively better agreement with the CALIOP anomaly
than the MODIS anomaly might suggest that the simulations
are overestimating the true DSAOD reduction. Reassuringly,
however, the ACROS estimate is in good agreement with
both the CALIOP estimate and the observations, despite us-
ing an independent method to estimate dust optical depth.
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Figure 1. MAM-mean AOD anomalies in CovidMIP models (colour, ensemble sizes noted in parentheses) and in remotely sensed observa-
tions (black), in the Northern Hemisphere and in three major source regions. The left-hand portion of each panel shows time series of AOD
anomalies over 2015–2020, with datasets denoted as per the upper legend. For the simulations, lines and shaded envelopes indicate ensemble
medians and 5th-to-95th-percentile ranges respectively. The right-hand portion of each panel plots the 2020 AOD values: two points for
each model, corresponding to the control and COVID-19-perturbed simulations (square and diamond markers respectively, with error bars
showing the 5 %–95 % ensemble range), and one point for each observational data product (black outlines, no error bars). These points
are formatted according to the results of our statistical comparisons, as summarized in the lower legend. In this legend, the blue-coloured
and star-shaped markers represent simulated and observed datasets respectively, each of which is plotted with a different colour/marker as
indicated in the upper legend. Model simulations that exhibit a statistically significant COVID-19 response (i.e., separation between control
and perturbed ensembles) are plotted with filled symbols, and those that do not are plotted with open symbols. Black dots indicate simulated
anomalies that are not significantly different from the ensemble of observed anomalies. The single, black-outlined square with error bars,
plotted between the simulated and observed anomalies, shows the MMEc against which observations are compared. If there is statistically
significant separation between the MMEc and observations (i.e., a detectable observed response), then both the MMEc and observations’
markers have a solid fill. Note that the four panels have different vertical scales. Note also that because of the spuriously large AOD spread
in CanESM5.0, only the ensemble median is shown in the time series; the 2020 ensemble ranges extend beyond the limits of the figure.

Good agreement between the observations and simulations
is also found in Europe. Despite model-to-model differences
in the DSAOD trend over the reference period, all models
simulate both control and perturbed ensembles that are con-
sistent in magnitude with the ensemble of observations. Al-
though three of the four models simulate statistically signif-
icant perturbations, whereas the observations do not show a
statistically significant response, the magnitudes of the sim-
ulated perturbations are very small (indeed, smaller than the
spread in observed anomalies).

Models appear to overestimate the DSAOD response to
COVID-19 in the East China and Northern Hemisphere do-
mains. The overestimation is more ubiquitous in East China,
where only NorESM2-LM simulates a COVID-19 pertur-
bation consistent in magnitude with the observed anomaly.
CanESM5.0 and MIROC-ES2L simulate somewhat larger
(more negative) anomalies in this region. The fourth model,
MRI-ESM2-0, exhibits substantially different behaviour than
the others due to a much steeper trend through the reference
period. When the Northern Hemisphere (0–70◦ N) is consid-
ered as a whole, two of the models simulate perturbations
consistent with the observed anomaly, and two overestimate
the AOD reduction. The spatial origins of these overesti-

mations differ: in MRI-ESM2-0, the Northern Hemisphere-
averaged anomaly is due almost entirely to the strong neg-
ative anomaly over Asia; in CanESM5.0, ensemble-median
anomalies are negative throughout the entire region (Fig. S8).

Given the short reference period and substantial inter-
annual variability of the observations, it is challenging to
identify whether the simulated trends are representative of
those observed. In East China there is some indication that
the models may simulate marginally more negative trends
than the observations (more visible in the raw data shown
in Fig. S6 and when the 2020 anomaly is not included in
the time series; consistent with the results of Lund et al.,
2023, for trends over 2005–2017), which could imply that
the MMEc may inadequately represent the range of plausible
control observations. However, this discrepancy – if it exists
– does not appear sufficient to explain the absence of a sta-
tistically significant anomaly in the observations. Visual in-
spection suggests that the observed 2020 anomalies are con-
sistent with DSAOD excursions measured over the preced-
ing 5 years, even taking any potential trends into account,
whereas the simulations show an obvious decrease in 2020.
This behaviour is particularly clear when considering the raw
data shown in Fig. S6.
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Figure 2. As Fig. 1 but with the dust contribution removed from the optical depth. The ensemble spread is shown for CanESM5.0 here,
unlike in Fig. 1, since subtracting off the dust component removes the spuriously high AOD variability in this model.

5.2 Sensitivity tests

Having established the magnitude of the observed optical
depth anomaly in Sect. 5.1 and identified a number of dis-
crepancies between this anomaly and those simulated by the
CovidMIP models, we now conduct a series of sensitivity
tests to probe the influence of potential confounding vari-
ables on the above results. These sensitivity tests are con-
ducted using CanAM5 (Cole et al., 2023), the atmospheric
component of CanESM5. Specifically we use CanAM5.1, a
version of the model in which the spurious dust storms have
been corrected through retuning of the hybrid tracer param-
eters (Sigmond et al., 2023). The complete details of these
tests are provided in the Supplement.

5.2.1 Sensitivity to control emissions

In CovidMIP, the COVID-19 perturbation was applied to
the SSP2-4.5 baseline. This inventory was developed in the
2010s as a projection for the years 2015–2100 (starting from
proposals by Krieler et al., 2012, and van Vuuren et al., 2012)
and has known differences from the true emissions that have
occurred since its development. In particular, it did not ac-
count for recent clean-air legislation in China, which has sub-
stantially reduced the emission of aerosols and their precur-
sors since the early 2010s (e.g., Wang et al., 2021; Zheng
and Unger, 2021; Paulot et al., 2018). Furthermore, biomass
burning emissions in SSP2-4.5 are described by a linear pro-
jection which does not capture the high interannual variabil-
ity of these sources.

We investigate the sensitivity of our results to biases in
the baseline emission inventories by constructing updated
inventories for both anthropogenic and biomass burning
aerosol emissions and then using these inventories to run 10-
member ensembles in CanAM5.1. Anthropogenic emissions
are based on the 21 April 2021 release of the Community

Emissions Data System (CEDS) emission inventory (Smith
et al., 2021), which provides emissions estimates up to 2019,
and year-specific biomass burning emissions are taken from
the Global Fire Emissions Database (GFED v4.1s). Details of
the inventory construction and model configuration are pro-
vided in Supplement Sect. S3.

These simulations (CanAM-new-emis) are compared to
the original CanESM5.0 ensemble in Fig. 3, which shows
dust-subtracted aerosol optical depths as in Fig. 2. In all re-
gions except India, updating the baseline emission inven-
tory reduced the median separation between control and
perturbed ensembles, because the COVID-19 perturbation
was applied as a percent change to a smaller initial value
(Figs. S9, S11). The effects of this reduction vary: in East
China, the update is sufficient to bring the simulated COVID-
19 signal into agreement with the observed anomaly (i.e.,
the separation between observed and simulated ensembles
is no longer statistically significant), whereas in the North-
ern Hemisphere the simulated response is brought somewhat
closer to the observations but the difference remains signif-
icant. In Europe the main effect of the update is to remove
the simulated trend over the 2015–2019 reference period,
bringing the simulations into qualitatively better agreement
with the observations over this period and reducing the 2020
anomalies to which the trend had contributed. In India, emis-
sions were largely unaffected by the update, so the results do
not change except for the loss of the large-negative-anomaly
tail on the perturbed distribution. This change could be due
either to the updated inventory or to the reduced ensemble
size.

These results suggest that in India, inferences drawn from
the other CovidMIP models will likely not be affected by
biases in the underlying baseline inventory as long as the ap-
plied perturbation is realistic. In the Northern Hemisphere,
East China, and Europe, the apparent overestimation of
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the COVID-19 response identified in CanESM5.0, MIROC-
ES2L, and MRI-ESM2-0 may have been partially caused by
overestimates of the control emissions and thus of the abso-
lute magnitude of the COVID-19 disruption. Confirming this
hypothesis is beyond the scope of this work. The changes in
DSAOD magnitude through the reference period which oc-
cur as a result of the updated emissions are explored in Sect. 6
and Supplement Sect. S3.

5.2.2 Sensitivity to meteorological conditions

Once aerosols have been emitted, the aerosol burden that re-
mains in the atmosphere and the optical depth that this bur-
den produces are determined by the meteorological condi-
tions. We assess the degree to which meteorological condi-
tions impacted the magnitude of the apparent COVID-19 re-
sponse using a second CanAM5.1 experiment, CanAM-new-
emis-ndgd.

CanAM-new-emis-ndgd simulations were nudged to tem-
perature, wind, and humidity fields taken from the European
Centre for Medium-Range Weather Forecasts (ECMWF)
fifth-generation reanalysis (ERA5; Hersbach et al., 2020);
details of this nudging process are described in Supplement
Sect. S3. Anthropogenic and biomass burning aerosol emis-
sions in CanAM-new-emis-ndgd were taken from the same
updated inventories as were used in CanAM-new-emis.

A comparison between the absolute AOD simulated
by CanESM5.0, CanAM-new-emis, and CanAM-new-emis-
ndgd is provided in Supplement Sect. S3. The degree to
which updating the inventory and nudging towards ERA5 re-
analysis improves the agreement of CanAM5.1 with the ob-
served AOD fields (in terms of both average magnitude and
the pattern of interannual variability) varies from region to
region and, in the Northern Hemisphere region, depends on
which satellite dataset is considered as reference. In general
the nudged simulations exhibit higher interannual variability
than the free-running simulations do, although this variabil-
ity generally falls within the envelope of the larger coupled
ensemble. In Europe, the nudged ensemble exhibits substan-
tially higher interannual variability than do either of the free-
running ensembles or the observations, indicating that the
model may underpredict the variability of and AOD sensi-
tivity to temperature, winds, and/or humidity in this region.

Results from CanAM-new-emis-ndgd are compared with
CanAM-new-emis and CanESM5.0 in Fig. 3. Because the
ensemble spread in CanAM-new-emis-ndgd is negligible, we
can assume that any difference between the control and per-
turbed ensembles is due to the signal of COVID-19 and not
to internal variability. It is worth noting that the meteorolog-
ical fields towards which the simulations were nudged may
themselves have been impacted by the COVID-19 emission
reductions. For instance, a reduction in scattering aerosols
could have resulted in local warming. The control and per-
turbed CanAM-new-emis-ndgd simulations are therefore not
fully independent. However, in all regions except Europe, the

separation between the control and perturbed CanAM-new-
emis-ndgd ensembles is large enough that this effect is un-
likely to materially affect our conclusions.

The 2020 anomalies in the nudged simulations, considered
in the context of the variability differences between datasets,
are largely consistent with those from the free-running simu-
lation CanAM-new-emis. In East China, both CanAM-new-
emis-free and CanAM-new-emis-ndgd simulate lower inter-
annual variability than do the observations; the pattern of
variability is perhaps somewhat improved in the nudged en-
semble. In the previous section we found that updating the
emission inventory substantially reduced the magnitude of
the perturbed anomaly, bringing it into agreement with the
observed anomaly. In that model configuration, both control
and perturbed ensembles simulated 2020 anomalies that were
consistent with the observations. Nudging results in a small
positive shift in both the control and perturbed anomalies,
such that the control moves just outside the range of the ob-
served ensemble. However, since the difference between the
control and the observations is substantially smaller than the
spread in observational estimates, it is reasonable to describe
the nudged control ensemble as still qualitatively agreeing
with the observations.

In India, the nudged control ensemble exhibits a positive
anomaly, suggesting that meteorological conditions may in
fact have partially masked the strength of the COVID-19 re-
sponse. Because the observed interannual variability is re-
produced less well in the nudged than the free-running simu-
lations, detailed comparisons between the observed and sim-
ulated 2020 anomalies would not be robust; however, it is
reassuring to note that the 2020 perturbed anomaly is in ex-
cellent agreement with the observations, and the results of
our statistical comparisons remain unchanged.

In Europe the nudged ensemble exhibits higher interan-
nual variability than do either of the free-running simu-
lations. The pattern of positive and negative anomalies is
consistent with, although substantially amplified relative to,
observations from MODIS-Aqua; however, this pattern of
variability is not reproduced in the two CALIOP-derived
datasets. The simulated COVID-19 perturbation is small rel-
ative to this variability, and, as in all previous ensembles,
the control and perturbed 2020 anomalies are both consistent
with the observed ensemble.

When averaged over the entire Northern Hemisphere (0–
70◦ N), neither the free-running nor nudged ensembles re-
produce well the observed pattern of interannual variability.
Overall, our results here are unaffected by nudging: the con-
trol ensemble is consistent with the observed anomalies, and
the perturbed ensemble values are too negative.

In all regions, the separation between the control and
perturbed CanAM-new-emis-ndgd ensembles is on the or-
der of the spread in observational estimates, suggesting
that further observationally based model evaluation may not
be feasible given current observational uncertainties. Im-
proving observational constraints beyond this point would
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Figure 3. As Fig. 2 but comparing dust-subtracted AOD in the three CCCma simulations: CanESM5.0 (the original CovidMIP implemen-
tation), CanAM-new-emis (an atmosphere-only simulation with updated anthropogenic and biomass burning aerosol emissions; Sect. 5.2.1),
and CanAM-new-emis-ndgd (as CanAM-new-emis but nudged to meteorological fields taken from ERA5 reanalysis; Sect. 5.2.2). The MMEc
in this figure is drawn from CanESM5.0, CanAM-new-emis, and CanAM-new-emis-ndgd; using the MMEc from Fig. 2 does not change the
statistical significance of the observed anomaly.

require substantially reducing the differences between re-
motely sensed products retrieved using different instruments
and algorithms.

5.2.3 Sensitivity to perturbation size

Finally, in this section we address the potential impact of un-
certainties in the perturbation applied to simulate COVID-
19. Although as stated above our observational constraints of
model performance are limited by observational uncertainty,
it is still informative to understand how sensitive our com-
parisons are to uncertainties in the perturbation size.

The aerosol emission reductions used in the simulations
considered to this point were estimated from mobility data
by Forster et al. (2020) and gridded for use in CovidMIP by
Lamboll et al. (2021). In brief, the reductions were deter-
mined as follows. Google mobility data were used to estimate
the country-by-country reduction in activity at transit stations
and at residential, workplace, retail, and recreation locations,
with Apple mobility data used as a secondary check. These
reductions were then used to estimate sector-by-sector CO2
emission reductions following the methodology of Le Quéré
et al. (2020) but using the mobility-data-derived estimates of
activity changes in each sector. The original Le Quéré et al.
(2020) estimates, derived from an estimate of confinement
level on a scale of 1–3 based on government and media re-
porting, were used for countries for which mobility data were
unavailable (notably for our analysis, this includes China)
and for aviation and shipping sectors. Non-CO2 emissions
for 2020 were then determined by scaling each species’ 2015
emissions by the ratio of CO2 emissions in 2015 and 2020.
This scale factor was determined uniquely for each country
and sector.

This approach has the advantage of being self-consistent
and bottom-up but does come with a number of limitations.
Notably, mobility data may not be a good proxy for emis-
sion changes in all sectors (e.g., some industries may have
background emission even in the absence of active produc-
tion), and changes in Apple or Google mobility data may
overestimate the actual reduction in traffic (e.g., there may
be a correlation between the subset of the population that has
smartphones and the subset of the population that has the op-
portunity to work from home, particularly in less-affluent na-
tions). Gensheimer et al. (2021) measured differences of up
to 60 % between mobility data and local traffic changes and
could not determine a unique functional relationship between
these quantities that applied in all regions. Finally, CO2 and
non-CO2 species have not evolved in tandem at the country/-
sector level over 2015–2020 (Smith et al., 2021), so scaling
all species by changes in CO2 introduces further error to the
analysis. There is thus substantial uncertainty in the Covid-
MIP emission reductions.

We perform a sensitivity test by running nudged, baseline-
corrected CanAM5.1 simulations with a range of perturba-
tion strengths: no perturbation (the control) and perturbations
of 0.5, 1, and 2 times the original CovidMIP experiment. We
simulate only a single realization of each because, as demon-
strated in Fig. 3, nudging effectively removes all ensemble
spread in AOD.

Given the uncertainty in the observations, and the fact
that nudging does not result in particularly good agreement
with the observations (Figs. S11 and S12), it is not con-
structive to directly compare the magnitude of the observed
and simulated AOD anomalies as a function of perturbation
strength. However, comparing the spread in the observations
to the spread in simulated responses to different perturba-
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Figure 4. Effects of varying the magnitude of the simulated COVID-19 perturbation in CanAM5.1. The control simulation, nudged to ERA5
fields, is shown in orange. The remaining symbols show simulations forced with COVID-19 perturbations 0.5, 1, and 2 times the magnitude
of the original CovidMIP perturbation. All simulations use the updated baseline inventory introduced in Sect. 5.2.1.

tion strengths can indicate whether or not uncertainties in the
perturbation would affect our model evaluation results (i.e.,
whether they would be visible over the observational uncer-
tainty).

The results of these simulations are presented in Fig. 4.
In all regions, the spread in the observed anomalies is larger
than the separation between the control and half-strength, or
half- and full-strength, simulated perturbations. So although
a doubling of the perturbation strength is clearly inconsistent
with the observations, uncertainties of up to ∼ 50 % would
not impact our model evaluation assessment. In Europe, the
perturbation strength could be very nearly doubled without
the spread exceeding observational uncertainties. In conclu-
sion, modest uncertainties in the perturbation size are un-
likely to have impacted our results in the preceding sections.

6 Discussion

6.1 Summary and synthesis

In this work we have used remotely sensed observations
of AOD changes from the spring of 2020 to evaluate the
response of aerosol optical depth to emission changes in
CMIP6-class models from the CovidMIP project. We then
performed sensitivity tests in CanAM5, the atmospheric
component of CanESM5, to assess the influence of model
inputs and meteorological variability on our comparison.

The response of total aerosol optical depth to the COVID-
19 emission reductions is, unsurprisingly, very small and not
statistically detectable in most regions. Aerosols are charac-
terized by substantial interannual variability, many drivers of
which were not affected by the COVID-19 lockdowns. De-
tection of a response is further hampered by biases in model
inputs and by uncertainty in the observations.

When the mineral dust component has been removed from
aerosol optical depth measurements, good agreement be-
tween the observed and simulated responses is found in India
(where both exhibit a significant COVID-19 response) and in
Europe (where a difference can only be detected in the simu-
lated ensemble means, and where both control and perturbed
anomalies are consistent with the observations). Models ap-
pear to overestimate the COVID-19 response in the North-
ern Hemisphere generally and in East China specifically, al-
though our results suggest that a more accurate emission in-
ventory can reduce this discrepancy. Our conclusions appear
to be insensitive to modest uncertainties in the magnitude of
the simulated COVID-19 perturbation, in part because of the
large spread in observational estimates of the COVID-19 re-
sponse. This spread, which is caused by systematic biases
between the different datasets, prohibits a more detailed eval-
uation of the simulated response.

The sensitivity studies presented here incorporate aerosol
emission inventories which have been updated from the
SSP2-4.5 scenario used in the original CovidMIP experi-
ment. As well as altering the magnitude of the COVID-
19 perturbation, these updates cause important changes in
the magnitude of DSAOD simulated through the reference
period. In Supplement Sect. S3 we decompose simulated
changes in the magnitude of DSAOD over 2015–2019 into
reductions caused by changes in anthropogenic emissions,
biomass burning emissions, and model configuration (cou-
pled vs. atmosphere-only). In all regions, DSAOD was re-
duced in CanAM-free from the original CanESM5.0 Covid-
MIP simulation, but the relative contributions to this reduc-
tion varied. In East China, the reduction in anthropogenic
emissions dwarfed other changes, causing a 30 % decrease
in DSAOD over the reference period compared to only
an 8 % reduction from model configuration. Emission- and
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configuration-induced changes were comparable in India,
and model configuration had a larger effect in Europe. Av-
eraged over 0–70◦ N, emission inventory and model configu-
ration caused comparable reductions in simulated DSAOD;
increased boreal latitude (50–60◦ N) biomass burning par-
tially compensated for decreases in anthropogenic emissions.
We emphasize that the changes in DSAOD stemming from
model configuration led mainly to a systematic offset and
had little impact on the anomalies considered in our main
analysis.

The impacts of anthropogenic emission inventory on total
AOD and aerosol radiative forcing have been recently inves-
tigated by Lund et al. (2023), who compare simulations using
the two CEDS inventories analyzed here, as well as emis-
sions from ECLIPSE v6. Although they do not assess the
impacts of biomass burning emissions and they look at total
rather than dust-subtracted AOD, their findings are generally
consistent with those presented here. In particular, they iden-
tify a reduction in AOD and improved agreement with obser-
vational trends over 2005–2017, dominated by reductions in
emissions over East Asia.

There exist substantial differences in biomass burning
emissions between different inventories (Pan et al., 2020).
We have used GFED v4.1s, which is among the low-emission
datasets; it is possible that a different biomass burning in-
ventory may have been more accurate. However, since in
three of our four regions the MAM biomass burning emis-
sions are small compared to anthropogenic emissions, this
choice is unlikely to affect our results. If an underestimation
of biomass burning emissions or their variability did impact
our results, it would likely be in the Northern Hemisphere
domain. Not only does the Northern Hemisphere as a whole
contain a higher proportion of biomass burning to anthro-
pogenic emissions, but emissions are poorly constrained in
the boreal latitudes due in part to a scarcity of observational
data (Pan et al., 2020).

In East China, discrepancy between observed and simu-
lated anomalies may also be due in part to processes that
were not captured in the models. It has been well documented
that a combination of stagnant meteorological conditions, in-
cluding an unusually weak East Asian winter monsoon, and a
highly polluted background resulted in haze production when
emissions decreased (Gao et al., 2022; Chang et al., 2020;
Huang et al., 2021; Kong et al., 2023; Le et al., 2020; Li
et al., 2021; Shi and Brasseur, 2020; Wang et al., 2020; Xu
et al., 2020; Zhao et al., 2022). Similar local enhancements
in pollution levels were identified in a number of polluted re-
gions around the globe (Balamurugan et al., 2021; Gaubert
et al., 2021; Sicard et al., 2020; Venter et al., 2020). These
enhancements occur because, in NOx-saturated regions, the
reduction of NOx emissions (largely due to decreased vehi-
cle traffic) led to increased ozone production, which in turn
increased the oxidative capacity of the atmosphere and re-
sulted in enhanced secondary aerosol formation (Kroll et al.,
2020). These unusual meteorological conditions, and the re-

sulting complex and nonlinear chemical reactions, are not
well represented by the CovidMIP models. Indeed, of the
models considered here, only MRI-ESM2-0 includes an in-
teractive ozone scheme; the other models used a prescribed
perturbation (Lamboll et al., 2021). Disagreement between
the observed and simulated responses is therefore unsurpris-
ing. Conducting a similar analysis in models that simulate
more complex chemistry would be a valuable direction for
follow-up analysis, and the inclusion of a prognostic ozone
scheme will be critical for representing the climate and air
quality effects of future emission reductions in polluted re-
gions.

Interpretation of the results for East China is further com-
plicated by the presence of spatial structure in both the mag-
nitude and tendency of aerosol emissions in this region, with
urban areas characterized by high baseline emissions but
negative trends, whereas rural areas have lower emissions
with positive trends. Modest differences in the relative mag-
nitudes of these components of the signal could likely have
substantial impacts on the area-averaged mean responses de-
rived from different datasets.

We have assessed aerosol changes averaged over fairly
large geographic regions, and this decision will influence our
results. Selecting a smaller box, centred over the most pop-
ulated urban areas, would likely yield a larger COVID-19
signal. On the other hand, the selection of a larger domain al-
lows us to average over different potential trajectories, so we
do not need to worry about signals appearing and disappear-
ing by being advected in or out of our analysis regions. Fur-
thermore, while local AOD changes are relevant when study-
ing air quality, the regionally averaged aerosol response to an
emission reduction is more relevant for understanding poten-
tial climate impacts.

This analysis assesses the capability of models to re-
alistically simulate the net effect of emission changes on
aerosol optical depth. As described in Sect. 2.1, the focus
on AOD folds in the effects of many different processes.
In order to help disentangle the different drivers of model
performance, future analyses would benefit from studies of
aerosol concentrations, which are an intermediate stepping
point between emission and optical depth. Additional in-
sight could be gained through an investigation of individ-
ual aerosol species; sulfate, for example, would exhibit a
stronger COVID-19 signal than total AOD does. We have not
conducted such an analysis due to the limited availability of
speciated data amongst the CovidMIP models.

6.2 Comparison to previous studies

We have taken the approach of applying a single consistent
framework to all four analysis regions. There is also much to
be learned from bespoke analyses of the observed changes in
each individual region, and indeed numerous such analyses
have been conducted.
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In India, AOD reductions have been reported by Acharya
et al. (2021), Gouda et al. (2022), Ranjan et al. (2020), Rani
and Kumar (2022), Smith et al. (2022), and Wei et al. (2022).
The magnitude of reduction has been found to vary region-
ally and with the period of 2020 considered and, for relative
changes, on the choice of baseline; in general it is reported to
be on the order of 10 %–15 % when averaged over India as
a whole. These reductions are comparable to those we find
from MODIS and MISR (−13 % and −14 % respectively)
but somewhat smaller than those returned by CALIOP and
ACROS-C (−24 % and−21 %). We emphasize that, as high-
lighted above and also by Smith et al. (2022) and Wei et al.
(2022), a substantial portion of the observed reduction is due
to anomalously low dust optical depth.

In China, the measured AOD response depends sensi-
tively on the choice of reference period, since the trend in
aerosol emissions reversed in or around 2013 (Zheng et al.,
2018). When underlying trends are accounted for, the 2020
AOD anomalies are not significant, although species includ-
ing NO2, SO2, and SO4 do exhibit substantial changes (Dia-
mond and Wood, 2020; Field et al., 2021; Smith et al., 2022).
When trends are not accounted for, AOD reductions in cen-
tral eastern China range from−14 % to−30 % depending on
the choice of reference period; compared to the 2016–2019
mean (similar to our 2015–2019 reference period), AOD
in this region was reduced 14 %–17 % (Field et al., 2021).
AOD increased in South China (Field et al., 2021; Diamond
and Wood, 2020; Acharya et al., 2021), possibly as a result
of biomass burning in Thailand, Myanmar, and Laos (Field
et al., 2021). In comparison, we find an observed decrease of
4 %–13 % relative to the 2015–2019 mean, when averaging
over a domain that contains both these areas of positive and
negative anomalies.

In Europe, Smith et al. (2022) report detectable changes
in the summer and autumn of 2020 but not in the spring,
which is our focus in this work. Springtime changes may be
detectable when smaller averaging boxes are used: Ibrahim
et al. (2021) report an AOD reduction in central Europe but
an increase around the edges of the domain, which when av-
eraged together would be consistent with our non-detection.
It has been demonstrated that this reduction is driven by an
increase in the number of moderately low AOD hours, as op-
posed to a few extremely low hours (van Heerwaarden et al.,
2021).

As highlighted in the introduction, model-based studies
have predominantly been focused on the climate response
to aerosol emission reductions, rather than the AOD change
itself. However, they generally report modest decreases in
zonal average AOD over ∼30◦ N in the spring, particularly
March, of 2020 (Fasullo et al., 2021; Fiedler et al., 2021;
Forster et al., 2020; Fyfe et al., 2021; Gettelman et al., 2021;
Jones et al., 2021; Weber et al., 2020). In many cases this
reduction is only detectable in the ensemble mean. We find
similar behaviour in the CovidMIP models (not shown); as
expected, the observed signal is less clear.

7 Conclusions

The reduction in aerosol emissions associated with the
COVID-19 pandemic provided a unique opportunity for
Earth system model evaluation. We have investigated
changes in total and dust-subtracted aerosol optical depth
during MAM 2020 in order to assess the AOD sensitivity of
CMIP6-class Earth system models. The impacts of internal
variability, background emissions levels, and simulated per-
turbation size on our results have been assessed with a series
of sensitivity tests.

Despite the dramatic economic and lifestyle changes asso-
ciated with the COVID-19 lockdowns, a statistically signifi-
cant reduction in observed aerosol optical depth is only iden-
tified over India. CovidMIP models reproduce the observed
responses reasonably well over India and Europe but appear
to overestimate the magnitude of response in East China
and the Northern Hemisphere (0–70◦ N). We demonstrate
that this discrepancy can be partially resolved in CanAM
through the use of an updated emission inventory; investi-
gating whether the other models would show similar im-
provement is an avenue for further study. The substantial
uncertainty in remotely sensed observations of AOD pre-
cludes a detailed assessment of the relative biases in different
models. As such, this analysis motivates future research into
the drivers of the systematic biases in satellite retrievals of
aerosol fields, particularly in the context of monitoring fu-
ture emission reductions which are expected to take place
over the coming decades.

AOD sensitivity is critical for the prediction of short-
term climate impacts to emission reductions, and our results
will provide important context for interpreting the simulated
climate impacts of proposed mitigation pathways of both
aerosols and co-emitted greenhouse gases.

Data availability. This analysis utilized data from the CovidMIP
project, available through the Earth System Grid Federation
(https://esgf-node.llnl.gov/search/cmip6/); the Moderate Res-
olution Imaging Spectroradiometer (MODIS; Platnick et al.,
2017), hosted by NASA (https://ladsweb.modaps.eosdis.nasa.gov/
missions-and-measurements/products/MOD08_M3 and https:
//ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/
products/MYD08_M3); the Multi-angle Spectral Ra-
diometer (MISR; Diner et al., 1998), hosted by NASA
(https://asdc.larc.nasa.gov/project/MISR/MIL3MAEN_4);
the Cloud-Aerosol Lidar with Orthogonal Polariza-
tion (CALIOP; Winker et al., 2009), hosted by NASA
(https://asdc.larc.nasa.gov/project/CALIPSO/, product names
https://asdc.larc.nasa.gov/project/CALIPSO/CAL_LID_L3_
Tropospheric_APro_AllSky-Standard-V4-20_V4-20 and
https://asdc.larc.nasa.gov/project/CALIPSO/CAL_LID_L3_
Tropospheric_APro_CloudFree-Standard-V4-20_V4-20); the
ModIs Dust AeroSol (MIDAS) project (Gkikas et al., 2021),
available on Zenodo (https://zenodo.org/record/4244106#
.ZAfI-nbMKMo, data for 2018–2020 available from Antonis
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Gkikas by request); and the ACROS Global Dust Climatology
(Song et al., 2021), hosted by UMBC (https://acros.umbc.edu/
data-and-models/decadal-global-dust-aod-database/, last access: 2
March 2023). We thank these organizations for making their data
publicly available.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/acp-24-2077-2024-supplement.
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