

Supplement of

Influences of downward transport and photochemistry on surface ozone over East Antarctica during austral summer: in situ observations and model simulations

Imran A. Girach et al.

Correspondence to: Imran A. Girach (imran.girach@gmail.com) and Andrea Pozzer (andrea.pozzer@mpic.de)

The copyright of individual parts of the supplement might differ from the article licence.

Figure S1: (a) Spatial distribution of EMAC simulated surface O₃ averaged over the study period. Colour inside the black circle represent the average value from in situ measurements over Syowa and Arrival Heights. (b) Spatial distribution of in situ measured surface O₃ averaged over 01–28 February 2014. Spatial heterogeneity is in line with the distribution simulated with EMAC. Surface ozone observations at Antarctic stations (South Pole, United States; Arrival Heights, New Zealand; Marambio, Argentina; Syowa station, Japan) were obtained from the World Data Centre for Reactive Gases (WDCRG), WMO's GAW (Global Atmosphere Watch; World Meteorological Organization) programme (<u>https://ebas.nilu.no/</u>, last access: 1 January 2024 and <u>https://ebas-data.nilu.no/Default.aspx</u>, last access: 1 January 2024), and Legrand et al., 2016.

Figure S2: In situ (black) and EMAC simulated (blue) surface O₃ at Arrival Height during austral summer of 2016–2017.

Figure S3: In situ (black) and EMAC simulated (blue) surface O₃ at Syowa during austral summer of 2016–2017.

Figure S4: In situ (black) and EMAC simulated (blue) vertical profile of O₃ at Davis station. Dashed blue curves represent O₃ profiles 3 h prior and after the time of ozonesonde launch.

Figure S5: Vertical distribution of O₃ (black: in situ and blue: EMAC) and O₃s (red: EMAC) averaged over profiles shown in figure S4 at Davis station.

Figure S6: (a) Distribution of measured O₃ mixing ratio with respect to EMAC simulated O₃ fluxes during the study period. Larger downward fluxes are corresponding to frequent higher O₃ mixing ratio. (b) Scatter plot between in situ measured vertical wind and Δ O₃ during 18–29 January 2016.

Figure S7: Variations in ΔO_3 and wind direction at Bharati during summer 2016.

Figure S8: Variations in surface O_3 at Bharati and OMI-derived BrO column around Bharati (±0.5° latitude/longitude) during austral summer. Red rectangle mark the O_3 depletion event coinciding with enhanced BrO.

Figure S9: Same as S8 but for Syowa station.

Figure S10: EMAC simulated wintertime distribution of surface O₃ and O₃s over the Antarctic region (July of 2015–2017).

Figure S11: Spatial distribution of net rate of change (production minus loss) of surface O₃ due to photochemistry during winter (July of 2015–2017).

Reference

Legrand, M., Preunkert, S., Savarino, J., Frey, M. M., Kukui, A., Helmig, D., Jourdain, B., Jones, A. E., Weller, R., Brough, N., and Gallée, H.: Inter-annual variability of surface ozone at coastal (Dumont d'Urville, 2004–2014) and inland (Concordia, 2007–2014) sites in East Antarctica, Atmos. Chem. Phys., 16, 8053-8069, doi: 10.5194/acp-16-8053-2016, 2016.