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Abstract. Starting from the regional air quality forecasts produced by the Copernicus Atmosphere Monitoring
Service (CAMS), we propose a novel post-processing approach to improve and downscale results on a finer
scale. Our approach is based on the combination of ensemble model output statistics (EMOS) with a spatio-
temporal interpolation process performed through the stochastic partial differential equation–integrated nested
laplace approximation (SPDE-INLA). Our interpolation approach includes several spatial and spatio-temporal
predictors, including meteorological variables. A use case is provided that scales down the CAMS forecasts on
the Italian peninsula. The calibration is focused on the concentrations of several air quality pollutants (PM10,
PM2.5, NO2, and O3) at a daily resolution from a set of 750 monitoring sites, distributed throughout the Italian
country. Our results show the key role that conditioning variables play in improving the forecast capabilities of
ensemble predictions, thus allowing for a net improvement in the calibration with respect to ordinary EMOS
strategies. From a deterministic point of view, the performance of the predictive model shows a significant
improvement in the performance of the raw ensemble forecast, with an almost-zero bias, significantly reduced
root mean square errors, and correlations that are almost always higher than 0.9 for each pollutant; moreover,
the post-processing approach is able to significantly improve the prediction of exceedances, even for very low
thresholds, such as those recently recommended by the World Health Organisation. This is particularly significant
if a forecasting approach is used to predict air quality conditions and plan adequate human health protection
measures, even for low alert thresholds. From a probabilistic point of view, the quality of the forecast was verified
in terms of reliability and credible intervals. After post-processing, the predictive probability density functions
were sharp and much better calibrated than the raw ensemble forecast. Finally, we present some additional results
based on a set of gridded (4 km× 4 km) maps covering the entire Italian country for the detection of areas where
pollution peaks occur (exceedances of the current and/or proposed regulatory thresholds).
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1 Introduction

Outdoor air pollution induced by natural sources and human
activities remains a major environmental problem of con-
cern worldwide. Studies have shown that particulate mat-
ter, ozone, and nitrogen dioxide degrade ambient air qual-
ity and cause serious health problems to human beings (Kim
et al., 2015; Kampa and Castanas, 2008; Manisalidis et al.,
2020). For example, recent studies have suggested that air
pollution, particularly traffic-related pollution, is associated
with pre-term birth and infant mortality and the development
of asthma and atopy (Khreis et al., 2017; Burbank and Pe-
den, 2018). A joint study of the World Bank and the Insti-
tute for Health Metrics and Evaluation (World Bank, 2016)
has shown how air pollution also has huge implications for
world economies: approximately 5.5 million lives were lost
in 2013 from diseases associated with outdoor and indoor air
pollution, with the global economic cost of those deaths be-
ing approximately USD 225 billion in lost labour income and
over USD 5 trillion in welfare losses.

Producing reliable short-term forecasts of pollutant con-
centrations is a key challenge in supporting national authori-
ties in their tasks related to EU Air Quality Directives, such
as planning and reporting the state of air quality to citizens.
Starting in 2014, the Copernicus Atmosphere Monitoring
Service (CAMS), a service implemented by the European
Centre for Medium-Range Weather Forecasts (ECMWF),
has continuously provided air quality forecasts throughout
Europe, supporting this task. This system is based on an en-
semble of several models (Marécal et al., 2015). The different
individual model results are interpolated on a common reg-
ular 0.1◦× 0.1◦ grid over the European domain (30–72◦ N,
25◦W–45◦ E) for the next 4 d at an hourly time resolution,
and a median ENSEMBLE is calculated from the model out-
put.

Higher spatial resolutions are achieved through smaller-
scale applications, such as those used for the FORAIR-
IT (Mircea et al., 2014), kAIROS (Stortini et al., 2020),
PREV’AIR (Rouil et al., 2009), UK-AIR (DEFRA, 2022),
or CALIOPE (Baldasano et al., 2008) systems. However, all
these systems require the use of more detailed information
and obviously imply the use of much greater computational
resources. On the other hand, the use of raw CAMS fore-
casts do not permit the reproduction of subgrid-scale fea-
tures, especially close to large point emission sources. There
is a reasonable expectation that even the ENSEMBLE results
have limited skill under complex local-scale conditions, with
expected ensemble mean and variance correlated with the
observations and the actual model uncertainty, respectively,
and a persistent underestimation of the true observations and
model uncertainty.

However, understanding how well pollutant concentra-
tions can be predicted in both space and time is essential for
a proper assessment of warning and alarm levels and to cap-
ture concentration gradients even at high spatial resolutions

(Buizza et al., 2022; Chianese et al., 2018; Cohen et al., 2017;
Lindström et al., 2014; Zhou et al., 2019). In recent years,
there has been an increasing interest in spatio-temporal sta-
tistical models, which combine ensemble predictions, data
assimilation, and machine learning, and these models have
quickly gained attention in the air quality scientific commu-
nity (Bai et al., 2018; Zhang et al., 2012). The reason lies in
the fact that hybrid models are easier to implement and do
not require high computational resources, while determinis-
tic models are often more computationally expensive and dif-
ficult to manage in terms of quality and the number of input
data requests (Bertrand et al., 2023; Camastra et al., 2022;
Chianese et al., 2019; Taheri Shahraiyni and Sodoudi, 2016).

In this study, starting from the CAMS air quality forecasts,
we studied the possibility of improving the 24 h evolution of
PM10, PM2.5 (daily averages), O3 (highest 8 h daily maxi-
mum), and NO2 (1 h daily maximum) in Italy. This coun-
try is characterised by complex conditions for modelling air
pollution due to topographic characteristics, different geocli-
matic zones, and the complex mix of anthropogenic and natu-
ral sources of air pollution. Thus, post-processing of CAMS
raw ensemble results may be particularly suitable for such
areas, where the results of the different models could benefit
from the use of additional information for a more accurate
and higher-resolution estimation.

In this work, a post-processing framework was used to
improve the estimation of the air quality forecast in Italy,
combining the deterministic forecasts with additional spatio-
temporal predictors within a statistical framework. More pre-
cisely, we designed an output statistical framework for the
output data from CAMS models to obtain a well-calibrated
and bias-corrected ensemble prediction and then fit this cal-
ibrated ensemble prediction within a spatio-temporal hierar-
chical model using the integrated nested Laplace approxi-
mation stochastic partial differential equation (INLA-SPDE)
approach. The INLA-SPDE method is a deterministic ap-
proach to Bayesian inference, as opposed to the Markov
chain Monte Carlo (MCMC) method, a simulation-based ap-
proach (Gilks et al., 1995; Riccio et al., 2006), for which
computational costs are very demanding. Conversely, the
INLA-SPDE method has been shown to provide a viable
method to speed up calculations, even for large-scale prob-
lems, without sacrificing accuracy (Rue et al., 2009).

The remainder of this paper is organised as follows. In
Sect. 2, we first introduce the input data set chosen to anal-
yse pollutant concentrations, and in Sect. 3, we outline the
methods used to develop the post-processing approach. Next,
Sect. 4 discusses the results, model validation, and two possi-
ble applications of the model estimates for predicting thresh-
old levels in Italy. Conclusions are reported in Sect. 5.
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2 Data

2.1 The CAMS suite

CAMS provides daily analyses and forecasts of long-range
transport of atmospheric pollutants around the world, as well
as air quality forecasts for the European domain, updated on
a daily basis. On a global scale, CAMS provides 5 d forecasts
for aerosols, atmospheric pollutants, greenhouse gases, and
stratospheric ozone and UV index. On the European scale,
predictions are issued with a resolution of 0.1◦× 0.1◦ over
Europe and 10 vertical levels from the Earth surface up to
5000 m, combining data with satellite and non-satellite ob-
servations.

The CAMS ensemble prediction system started with a
suite composed of seven air quality models: CHIMERE,
EMEP, EURAD-IM, LOTOS-EUROS, MATCH, MOCAGE,
and SILAM. At the end of 2019, the DEHM (Aarhus Uni-
versity, Denmark) and GEM-AQ (IEP-NRI, Poland) mod-
els were added. From June 2022, two additional models
(MINNI, operated by ENEA, Italy, and the Barcelona Su-
percomputing Centre’s MONARCH model) have delivered
their results, as well as expanding the ensemble size to 11
members. The 00:00 UTC ECMWF-IFS (Integrated Forecast
System) provides the meteorological data for the prediction
of transport phenomena, and the CAMS emission database
provides the input data for the simulation of emission phe-
nomena. CAMS forecasts are available for download from
the CAMS Atmosphere Data Store. The full range of fore-
casts is guaranteed to be available by 08:00 UTC every day
for the next 4 d. Marécal et al. (2015) provide the full details
on the implementation of this multi-model forecast system.

2.2 Training data and predictors

Our ultimate goal is to improve the CAMS forecast on
the Italian peninsula. This geographic area is characterised
by complex orographic and climatic conditions, including
the mountain systems of the Alpine arc (to the north) and
Apennines (along the entire longitudinal ridge from north to
south), an extensive flat area (the Po Valley), and two ma-
jor islands (Sicily and Sardinia). Furthermore, the transport
of desert dust in the Mediterranean region often affects the
concentration of PM, with a significant impact on the health
of the population (Alahmad et al., 2023; Sajani et al., 2011).
This variety of orographic and climatic conditions leads to a
high spatial variability of air quality conditions, which makes
the Italian peninsula a significant test bed for the predictive
capabilities of the CAMS ensemble.

In the present study, the following air quality pollutants
have been considered: PM10 and PM2.5 (daily averages), O3
(highest 8 h daily maximum), and NO2 (1 h daily maximum).
Table 1 reports the number of ground stations for each of the
pollutants measured together with the type of area, the ge-
ographic area, and the data coverage (defined as the average

percentage of valid data at all monitoring stations for the year
2022). These data are available from the up-to-date (UTD)
channel of the Air Quality E-reporting system (https://
www.eea.europa.eu/data-and-maps/data/aqereporting-9, last
access: 25 November 2023) of the European Environment
Agency (EEA), from which they can be freely downloaded.

According to the information communicated to the EEA,
the Italian air quality network is made up of a total of 750
monitoring stations, unevenly distributed by area type: most
of the monitoring stations are clustered around urban areas,
while remote or rural areas are less represented. These mon-
itoring stations are also unevenly distributed with respect to
altitude, with most monitoring sites below 250 m. This is not
surprising at all since most of the stations are located where
high concentrations are expected, that is, at low-altitude ur-
ban or suburban sites. Furthermore, these stations are not
evenly distributed with respect to geographic area, with most
of the stations located in northern regions and, to a lesser ex-
tent, in central and southern Italy.

As complementary information to the concentration of the
main trace pollutants, several geographic and/or meteorolog-
ical variables may have a potentially predictive role for air
quality. The use of spatio-temporal predictors is by no means
uncommon in air quality modelling as they are usually ex-
ploited to capture the high-frequency variability at finer spa-
tial scales (Bertrand et al., 2023; Shtein et al., 2019; Stafog-
gia et al., 2020). The predictors used in this study can be
classified into two different categories: (1) purely spatial pre-
dictors and (2) spatio-temporal predictors. The first category
includes all geographic variables that do not have a variable
temporal component, while the second category may vary
over time. For each monitoring station, we first built a cir-
cular buffer with a radius of 5000 m, comparable to the res-
olution of the raw CAMS predictions, and sampled the den-
sity of each purely spatial predictor within this buffer. The
purely spatial predictors included in this study are as fol-
lows: resident population; imperviousness density; impervi-
ousness built up; land cover; and road density, re-sampled in
two classes (sum of the length of all road segments and sum
of the length of main roads (highways and trunks) within the
buffer distance). For the spatio-temporal predictors, we took
into consideration several meteorological data, all retrieved
by the ECMWF operational system and bi-linearly interpo-
lated at each monitoring station location: total daily precipi-
tation, temperature, wind speed and direction, and planetary
boundary layer height. For a detailed description of these pre-
dictors, see Table S1 in the Supplement.

These data are expected to show potential predictive capa-
bilities for air quality. For example, temperature, wind speed,
and direction can cause changes in pollutant concentrations,
with higher temperature and wind speed and lower relative
humidity being favourable for the production of ozone, par-
ticulate matter, and nitrogen dioxide (Kayes et al., 2019; Liu
et al., 2020; Zhang et al., 2015; Li et al., 2020). The height of
the boundary layer is also an important factor in the forma-
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Table 1. Details of observation stations with at least 90 % of valid data for the year 2022 grouped by pollutant, geographical area, and area
type. Data coverage refers to the average percentage of valid data over all monitoring stations.

Pollutant Area type Geographical area Data coverage

Rural Suburban Urban North Centre South

PM10 38 59 152 147 59 43 79 %
PM2.5 10 29 54 40 31 22 73 %
NO2 49 64 189 182 100 20 80 %
O3 47 39 72 114 37 7 81 %

tion of air pollution due to enhanced convective activity and
scavenging of peroxy radicals (H. Chen et al., 2019; J. Chen
et al., 2019; Alfiya et al., 2020).

3 Methods

3.1 The post-processing approach

Ensemble systems are often associated with statistical post-
processing steps to inexpensively improve their raw predic-
tion properties (Vannitsem et al., 2021). Starting from raw
CAMS data, we propose a two-stage post-processing ap-
proach that is capable of removing biases from the output
distribution and improving the prediction properties.

A flow chart of the post-processing approach is shown in
Fig. 1. The first stage is an ensemble model output statisti-
cal method (EMOS) (Gneiting et al., 2005) used to obtain a
bias-corrected and well-calibrated ensemble. In the second
stage, we embed this well-calibrated forecast into a hierar-
chical spatio-temporal framework based on the INLA-SPDE
method, exploiting the previously listed spatial and temporal
predictors.

All statistical analyses have been performed using the
combined use of the R statistical software version 4.2.2
(Venables et al., 2022), the Climate Data Operator (CDO)
version 2.1.1 (Schulzweida, 2022), and MATLAB® version
R2022b update 3 (MATLAB, 2022) software. Details about
these two stages are given in the following two subsections.

3.1.1 Stage 1: calibration of the ensemble

As discussed in Gneiting et al. (2005), the calibration stage
has, as its final goal, the maximisation of accuracy subject
to reliability. Reliability measures the ability of the ensem-
ble to predict unbiased estimates of the observed frequen-
cies. In short, a reliable forecast is one for which there is
correspondence between the probability of forecast and the
probability of occurrence. Reliability can be measured us-
ing the Talagrand histogram (Talagrand and Vautard, 1999;
Hamill, 2001) or, equivalently, the probability integral trans-
form (PIT) histogram (Dawid, 1984; Gneiting et al., 2007).
Talagrand and Vautard (1999) fully discuss the properties of
the Talagrand and PIT histograms, that is, how their shape

can be used to assess when the ensemble results are under-
or overdispersed.

Reliability is a necessary but not sufficient condition for
a valuable ensemble forecast. Another desirable condition
is accuracy. An accurate forecast closely resembles the true
state of the system; in particular, an ensemble is more valu-
able the greater the accuracy compared to the one obtained
with a naive method, such as climatology or persistence.

In the first stage, we applied an EMOS method, dress-
ing the output from the m ensemble member forecasts –
x1, . . .,xm – using a parametric probability density function
(pdf) of the following general form:

y|µ,σ 2
∼ f

(
µ,σ 2

)
. (1)

Here y is the concentration of the chemical pollutant, and µ
and σ 2 are the expected mean and variance of the pdf, f ,
respectively. The expected mean and variance are estimated
from the ensemble member forecasts.

µ= b0+ b1x1+ . . .+ bmxm (2a)

σ 2
= c+ dS2 (2b)

Equation (2a) encodes a bias-corrected linear combination,
with regression coefficients b0, . . .,bm reflecting the over-
all performance of any member of the ensemble during
the training period relative to the other members. Equa-
tion (2b) implements the so-called spread–skill relationship
(Whitaker and Loughe, 1998), with a non-homogeneous vari-
ance that depends linearly on the ensemble variance, S2

=
1
m

∑m
k=1(xk − x∗)2, where x∗ = 1

m

∑m
k=1xk denotes the en-

semble mean. This formulation allows the predictive distri-
bution to exhibit more uncertainty when the ensemble dis-
persion is large and less uncertainty when the ensemble dis-
persion is small.

We estimated the coefficients in Eq. (2) using a global ap-
proach, i.e. a single global calibration was trained on all data
using observations from the last N days to predict the con-
centration for the upcoming day (Bertrand et al., 2023). This
process was applied repeatedly every day, mimicking an op-
erational forecasting system, using the previous 3 d to train
the algorithm. With a global approach and with the use of
such a short training window, meteorological perturbations
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Figure 1. Flow chart of the post-processing method. The first stage is an ensemble model output statistical (EMOS) method based on the
output from CAMS models and produces a calibrated and bias-corrected ensemble prediction. The second stage embeds this prediction into
the INLA-SPDE spatio-temporal framework, including several spatial and spatio-temporal predictors.

on synoptic scales or changes in emission strengths can be
quickly accounted for through the variation of the parame-
ters estimated during the calibration phase.

We exploited the crps (continuous ranked probability
score) (Gneiting et al., 2007) to optimise coefficient values
and applied diagnostic tools, such as the PIT histogram, to
evaluate the performance of the calibration stage. The crps
combines calibration and accuracy in one index, thus allow-
ing the evaluation of predictive performance based on the
paradigm of accuracy maximisation subject to calibration
(Gneiting et al., 2007). The full details of this procedure are
given in Sect. S2 of the Supplement.

3.1.2 Stage 2: statistical modelling of the space–time
process

For a given well-calibrated ensemble prediction, we can ex-
ploit additional information that allows higher predictive
power (Chang et al., 2020; Singh et al., 2013; Xi et al., 2015).
To this aim, we combined the advantages of well-calibrated
ensemble results with ancillary predictors to construct a fi-
nal spatio-temporally resolved model, which will potentially
outperform even the calibrated predictions.

Similarly to other studies (Blangiardo et al., 2013;
Cameletti et al., 2013; Fioravanti et al., 2021), for a given
calibrated ensemble prediction of y(t, si) at time t and spa-
tial location si , we exploited the following model:

y(t, si)= α+ z(t, si)β + ξ (t, si)+ ε(t, si). (3)

Here, α represents the overall space- and time-constant aver-
age, with z(t, si)= (z1, . . .,zp) being the vector of p spatio-
temporal predictors, each estimated at the same time t and
spatial location si of the calibrated ensemble prediction, and

β = (β1, . . .,βp) being the corresponding coefficients vec-
tor; ξ (t, si) encodes for the residual space–time correlation
once the large-scale component z(t, si)β is accounted for,
and ε(t, si) is the residual unexplained error, assumed to be
generated by a Gaussian white-noise process independently
of space and time. We used the r-inla package (Bakka
et al., 2018) to perform all the computations for this second
stage. Details of the parameterisation for each component in
Eq. (3) are given in the Supplement.

3.2 Validation

In order to evaluate the improvement in the predictive qual-
ities of the results of the first and second stages, we fol-
lowed a cross-validation approach, splitting the monitoring
stations into two data sets: 668 monitoring stations (≈ 90 %)
were used to train the model in the first stage and then fit
the INLA-SPDE model; the remaining 82 (≈ 10 %) were
used for validation purposes. Also, note that the INLA-
SPDE model includes spatio-temporal correlations among
sites (see the ξ (t, s) term in Eq. 3) in order to avoid false
confidence in model predictions due to spatial correlations in
this cross-validation exercise (Ploton et al., 2020). As already
outlined, the monitoring stations are not evenly distributed
among the different area types; to mitigate this uneven-
representativeness issue and to improve fairness during the
validation stage, the number of urban, suburban, and rural
stations was selected at random in proportion to their num-
ber; precisely 38 (5.1 %) urban, 21 (2.8 %) suburban, and 23
(3.1 %) rural stations were selected for validation purposes,
and the remaining part was left for training.

A second level of validation was also applied in forecast-
ing mode: the output from both the first and/or second stage
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can be used to predict the concentration for the next day;
i.e. the INLA-corrected values from the second stage can be
used to predict the concentrations for the next day, mimick-
ing what could happen when the post-processing phases are
applied in a true-time forecast mode.

We evaluated the performance of the post-processing
stages using well-known and widely used scoring indices:
root mean square error, bias, correlation coefficient, and con-
tingency tables. Furthermore, PIT histograms and credible
intervals were used to assess accuracy and reliability.

The contingency tables were built using the thresholds de-
fined by the current Italian legislation (borrowed from the
European one) and the new guidelines indicated by the World
Health Organisation (WHO), which has reviewed the most
recent epidemiological evidence. The WHO set stringent and
challenging short-term guidelines and interim targets (WHO,
2021); for example, the current threshold value of the Ital-
ian legislation for daily PM10 concentration is 50 µg m−3,
120 µg m−3 for the maximum 8 h daily value for ozone, and
200 µg m−3 for the maximum hourly value of NO2. The new
WHO air quality guidelines are equal to 45 µg m−3 for daily
PM10, 15 µg m−3 for daily PM2.5, 100 µg m−3 for the max-
imum 8 h daily value for O3, and 25 µg m−3 for daily NO2
concentration.

4 Results

4.1 Exploratory analysis

In Sect. S2, we provide an analysis of the skill score of the
raw ensemble data, where we take advantage of the same ap-
proach described in Murphy (1988) based on the use of a
skill score, that is, a measure of the precision of the forecast
relative to the precision of the forecast produced by a stan-
dard of reference. On average, the root mean square error of
the ensemble CAMS predictions is approximately 12 µg m−3

for the daily mean PM10 concentration, 9 µg m−3 for PM2.5,
28 µg m−3 for the 1 h NO2 daily maximum, and 21 µg m−3

for the O3 highest 8 h daily maximum.
However, as shown in Sect. S2, the skill score of all mod-

els is systematically worse than that obtained by exploiting
a standard of reference (based on the persistence assump-
tion). The median model is only partially able to remedy this
condition, usually showing an improvement over the predic-
tion made by the individual models but with a still poor skill
score. This points directly to the need, as described in pre-
vious sections, to re-calibrate the ensemble and remove the
bias.

4.2 The temporal dependence of model weights

Predictions from CAMS are typically constructed by taking
the mean value of each cell on the grid to form a single pre-
diction. The use of the ensemble mean with equal weighting
has been extensively studied and demonstrated the additional

value of the forecast accuracy compared to a single model.
In addition, a combination of ensembles can be achieved by
assigning weights to different ensembles based on the qual-
ity of the forecast. Evidence has shown that, by combining
models through optimal weights, the multi-model forecast-
ing skill is significantly improved compared to the ensemble
predictions of a single model (Raftery et al., 2005; Krishna-
murti et al., 2016).

In this work, we also combined forecasts with unequal
weights for different members during the first stage to im-
prove accuracy and calibration. The weights themselves can
be interpreted as a measure of the relative performance of
each individual member compared to the others. To pro-
vide a clearer idea of what the temporal dependence of these
weights is, Fig. 2 shows the weights over an extended pe-
riod of three years (from 2020 to 2022) using the same pro-
cedure described in Sect. 3.1.1. Weights usually range from
0.05 to 0.3, but a clear seasonal dependence appears for some
models. For example, for PM10 and PM2.5, the GEMAQ
and MOCAGE models show a marked seasonal dependence,
with the weights of the GEMAQ model increasing signifi-
cantly during the summer period, while the weights of the
MOCAGE model increase during the winter period, indicat-
ing their dependence on the season and complementarity. It
is also interesting to note that, for ozone, a pollutant with a
marked seasonal cycle, most models perform equally well in
both the winter and summer seasons.

4.3 The added value of the post-processing stages:
deterministic-style assessment

4.3.1 Root mean square error, bias, and correlation

Now we give the results of applying the first and second post-
processing stage to the next-day predictions for PM10, PM2.5,
NO2, and O3. First, we assessed the performance of the post-
processing stages in terms of deterministic scores. Table 2
provides a summary of some of the well-known and widely
used scoring measures, that is, root mean square error, bias,
and correlation.

The RMSE (root mean square error) and the bias for
the training data set for all pollutants were significantly de-
creased. For example, the RMSE for PM10 was reduced by
more than half, but the same was also true for all other pol-
lutants. As can be seen, the raw data of the ensemble for
PM10, PM2.5, and NO2 are affected by a negative bias, which
is almost zero after the application of the first and second
post-processing stage. The high values of the correlation co-
efficients for the training set (above 0.75 for PM10, PM2.5,
and O3 after the first stage and above 0.85 after the second
stage) show that the predicted and observed values are well
in agreement. Lower scores are obtained for NO2, for which
only the exploitation of auxiliary spatio-temporal predictors
(in the second stage) is capable of raising its value up to 0.85.

Atmos. Chem. Phys., 24, 1673–1689, 2024 https://doi.org/10.5194/acp-24-1673-2024
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Figure 2. Temporal dependence of model weights for PM10 (a), PM2.5 (b), NO2 (c), and O3 (d). To highlight the temporal dependence, the
analysis has been extended over 3 years (from 2020 to 2022, included).

However, it is clear that the results obtained for the train-
ing data set are not suitable for a fair comparison. A more
reliable estimate of the performance of the post-processing
stages can be obtained from the validation data set. These
data represent 10 % of the measurement stations, randomly
selected but stratified according to the type of area in which
they are located. The validation data set has not been in-
cluded in the training process so the results of the validation
data set can be considered as a more reliable and truthful es-
timate of model performance at different spatial locations.
In the case of the validation data set, we still have a strong
reduction of the RMSE and the almost zeroing of the aver-
age bias, as well as a consistently high correlation (usually
greater than 0.80), especially after the second stage. The pre-
diction data set refers to the same monitoring stations used
for training, but the post-processing framework is used to
predict the next-day concentrations. As expected, the perfor-
mances are lower in this case, even if both the first and second
stages generally introduce significant improvements in terms
of RMSE, bias, and correlation.

As indicated in Table 1, the measurement stations are un-
equally distributed with respect to both the type (urban, sub-
urban, or rural) and the geographic location (northern, cen-
tral, or southern Italy). For example, most measurement sta-

tions are located in urban areas, where the concentration of
pollutants (especially those of particulate matter and NO2) is
higher. Therefore, an interesting perspective on the analysis
of the performance of the statistical post-processing process
is to verify whether there is a dependence with respect to
the type or geographic location, i.e. whether calibrating these
stages with a large number of urban stations leads to a con-
sistent bias adjustment across all monitoring stations (regard-
less of the type or geographic location) or not. To this end,
Fig. 3 shows the bias for all pollutants for the training data set
as a function of the type of monitoring station. The results of
the CAMS ensemble tend to underestimate the concentration
of particulate matter and NO2, particularly in urban and sub-
urban stations, and overestimate the concentration of ozone
(probably related to the underestimation of NO2 in the same
areas), although they tend to be more successful in rural ar-
eas. However, the second stage is able to reduce the bias to
almost zero in all types of stations without making a distinc-
tion between them.

Figure 4 shows the same results but reorganised as a func-
tion of geographic location. In this case, the second stage is
also able to strongly reduce the bias independently of geo-
graphic locations.
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Table 2. Statistics of the cross-validation study. RMSE is the root mean square error; CC is the correlation coefficient. Units of RMSE and
bias are expressed in micrograms per cubic metre (µg m−3) for all pollutants.

PM10 PM2.5 NO2 O3

CAMS Stage Stage CAMS Stage Stage CAMS Stage Stage CAMS Stage Stage
data 1 2 data 1 2 data 1 2 data 1 2

RMSE
Training 12.32 9.99 5.13 8.80 8.22 4.06 28.43 22.34 13.02 21.62 16.18 7.42
Validation 12.21 10.82 7.96 7.91 7.71 5.74 26.59 24.36 19.02 19.97 16.51 13.99
Prediction 12.26 9.92 9.09 8.74 8.15 11.82 28.43 22.36 16.40 21.61 16.18 14.14

Bias
Training −5.86 0.22 −0.63 −0.88 0.39 −0.52 −19.36 0.99 −2.21 8.44 0.35 −0.77
Validation −5.47 0.86 −0.04 0.29 1.67 −0.54 −16.29 4.30 1.49 7.03 −1.30 −0.92
Prediction −5.86 0.20 −0.97 −0.87 0.37 −0.58 −19.35 0.98 −2.35 8.43 0.37 −1.54

CC
Training 0.70 0.77 0.94 0.67 0.74 0.93 0.54 0.59 0.85 0.84 0.88 0.98
Validation 0.71 0.76 0.85 0.68 0.75 0.81 0.60 0.63 0.70 0.83 0.86 0.91
Prediction 0.70 0.77 0.79 0.67 0.74 0.53 0.54 0.59 0.75 0.84 0.88 0.92

Figure 3. Boxplots for the bias for PM10 (a), PM2.5 (b), NO2 (c), and O3 (d), distinguished according to the type of monitoring station, for
the validation data set. The light-blue boxes correspond to the raw results of the CAMS ensemble, whereas the results after the application
of the first and second stages are reported as coral and yellow boxes, respectively.
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Figure 4. Boxplots for the bias for PM10 (a), PM2.5 (b), NO2 (c), and O3 (d), distinguished according to the geographic location of
monitoring station, for the validation data set. The light-blue boxes correspond to the raw results of the CAMS ensemble, whereas the results
after the application of the first and second stage are reported as coral and yellow boxes, respectively.

4.3.2 Sensitivity, specificity, and threat score

In order to assess the ability of raw CAMS data or post-
processing models to predict the exceedance of a given
threshold, we built a confusion matrix, categorising each pre-
diction into a true or false positive or negative outcome. The
counts from the confusion matrix were used to define the fol-
lowing indices:

1. sensitivity, also known as true positive rate, defined as
the ratio between the number of true positives to the to-
tal number of observed exceedances

2. specificity, also known as true negative rate, defined as
the ratio between true negatives to the total number of
observations not exceeding a given threshold;

3. threat score, also known as critical success index or Jac-
card index, defined as the ratio between the number of
true positives to the total number of predicted or ob-
served exceedances.

We can consider sensitivity to be a measure of how well our
predictions can correctly identify exceedances and specificity

as a measure of how well our predictions can correctly iden-
tify when observations fall short of a given threshold, while
the threat score can be seen as a measure of the overlap be-
tween the distribution of observations versus that of predic-
tions. A perfect forecast would take a value of 1 for all of
these indices.

The sensitivity, specificity, and threat score indices are
plotted in Fig. 5 for the validation data set, where the num-
ber of exceedances was defined with respect to the threshold
from the new WHO guidelines. The same scores are reported
in Fig. S2 of the Supplement.

For PM10 and NO2, raw CAMS data show a low preci-
sion (≈ 0.4), which is greatly improved after the first and
second post-processing stages, achieving a value as high as
(or even higher than) 0.8. This means that most events above
the threshold are missing from the raw CAMS data but are
almost always as expected after post-processing stages.

The increase in sensitivity is not accompanied by a de-
crease in specificity; in most cases, on the contrary, post-
processing increases specificity, that is, the number of events
correctly classified as being below the threshold. The only
exception is represented by NO2, for which the speci-
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Figure 5. Scores (sensitivity, specificity, and threat score) for the validation data set for PM10 (a), PM2.5 (b), NO2 (c), and O3 (d). The
blue bars correspond to the raw CAMS results, while the results after the application of the first and second stage are reported as orange
and yellow bars, respectively. The number of exceedances (both for observations and predictions) is defined with respect to the new WHO
guidelines: 45 µg m−3 for daily PM10, 15 µg m−3 for daily PM2.5, 100 µg m−3 for the maximum 8 h daily value for O3, and 25 µg m−3 for
daily NO2 concentration.

ficity decreases after the post-processing stages. However,
it should also be said that 25 µg m−3 represents a very low
threshold for the 1 h daily maximum; therefore, a low speci-
ficity in the capture of events at such low concentrations is
expected.

4.4 The added value of the post-processing stages:
probabilistic-style assessment

RMSE, bias, and correlation look for a match between obser-
vations and training, validation, and/or prediction data sets
in a stiff mode. However, both the first and the second post-
processing stages tailor a statistical dress around results so
that we can use probabilities in measuring the properties of
our approach.

4.4.1 Reliability and accuracy

First, we checked whether our approach ensures reliability
while maintaining high accuracy. In a meteorological con-
text, reliability measures the ability of unbiased predictions
to closely follow observed frequencies; that is, for a perfectly

reliable forecast, an event declared to occur with frequency p
is actually predicted with a proportion p on average (Taylor,
2001). Instead, accuracy refers to the degree to which the pre-
diction is close to the observed data. Both are concerned with
the conditional probability of predicting an observation for a
given forecast. An in-depth discussion of these and other at-
tributes of probabilistic forecasts can be found in Jolliffe and
Stephenson (2011).

Gneiting et al. (2005), in their seminal work, stated that the
goal of a well-calibrated probabilistic forecast is to maximise
accuracy, subject to reliability. Figure 6 shows the proba-
bility integral transform (PIT) for the raw CAMS predic-
tions and after the application of the first and second post-
processing stages to the validation data set. Figure S3 shows
the same results in the Supplement but for the prediction
data set. As can be seen, the PIT histograms for the raw
CAMS results for PM10 and NO2 follow a quasi-monotonic
decreasing trend, meaning that the raw CAMS results tend
to underestimate observations, while the PIT histogram for
O3 shows an inverted-U-shape profile, meaning overdisper-
sive behaviour, that is, unnecessarily wide prediction inter-
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Figure 6. PIT for PM10 (a), PM2.5 (b), NO2 (c), and O3 (d). The blue bars correspond to the raw CAMS results, while the results after the
application of the first and second stage to the validation data set are reported as orange and yellow bars, respectively. The orange and yellow
bars have been slightly shifted and resized in width so as not to completely overlap the blue bars. The horizontal black lines have been drawn
for reference: for a perfectly reliable ensemble, the PIT should be flat, with a relative frequency equal to 1.

vals that have higher-than-nominal coverage. Conversely, the
histograms for the validation and prediction data set, after
applying the first and second stages, are closer to a flat pro-
file, showing a more accurate reproduction of the probabili-
ties of occurrence, tending to mitigate both the overall bias
and over- or under-dispersion effects.

4.4.2 Credible intervals

The construction of credible intervals from the cumulative
distribution function (cdf) is straightforward. For example,
the 25th and 75th percentiles of cdf form the lower and up-
per endpoints of the 50 % central prediction interval, respec-
tively, from which the sharpness, that is, the spread around
the predicted value, can be evaluated. For a well-calibrated
ensemble, the higher the accuracy is, the more data are con-
centrated around the predicted value, and the more value the
model adds.

We estimate the 25th and 75th percentiles from the poste-
rior distributions of the first and second stages for each pol-
lutant and compare these results with the interval from the
25th to the 75th percentile from the raw CAMS ensemble

data. Table 3 shows the average widths of the 50 % probabil-
ity interval for the raw CAMS data and after the application
of the first and second post-processing stages. As can be ob-
served in this table, after the application of the first stage, the
credibility interval tends to widen – i.e. the calibrated data
show a much smaller bias (see Table 2) – but at the cost of
widening the credibility interval, making the prediction less
accurate. On the other hand, the effect of applying the second
stage through the exploitation of spatial and spatio-temporal
predictors is not only to improve the accuracy of the forecast
but also to make the forecast sharper, narrowing the credibil-
ity interval. This range is also generally smaller than that ob-
tained from the raw CAMS data. For example, the credibility
interval for all pollutants is roughly halved for the validation
data set, going from 8.3 to 4.4 µg m−3 for PM10, from 8.3 to
4.4 µg m−3 for PM10, from 5.3 to 3.3 µg m−3 for PM2.5, from
17.9 to 10.8 µg m−3 for NO2, and from 13.5 to 15.1 µg m−3

for O3.
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4.5 Example of applications

Finally, we want to conclude this section with two examples
of potential applications of our post-processing analysis, i.e.
(a) interpolation at high spatial resolution and (b) detection
of non-compliant areas.

Interpolating data that have been processed in locations
not directly observed must be done with consideration of
the issues that come with space–time inhomogeneities and
seasonal dependencies. For example, PM10 and PM2.5 are
known to be higher during the winter period, especially for
urban stations. On the contrary, concentrations in remote sta-
tions are relatively low, with a seasonal cycle that favours
higher concentrations during the summer season. This is a
well-known phenomenon, linked to the activation of convec-
tive processes that transport particles emitted at low levels
to higher altitudes during the summer period; conversely, ur-
ban areas are affected by higher concentrations of particulate
matter during the winter period due to condensation phenom-
ena at low temperatures and atmospheric subsidence (Mari-
noni et al., 2008). It is also known that NO2 is a short-lived
gas in the atmosphere, with a lifetime of several hours, espe-
cially in the boundary layer during the daytime (Beirle et al.,
2011; Lu et al., 2015). Since NOx emission sources are gen-
erally clustered near densely populated urban areas, strong
spatial gradients in geographical distribution can be observed
from space (Crippa et al., 2018). The relatively low spatial
resolution of the CAMS data cannot resolve these steep spa-
tial gradients, and simply merging the results (using equal
or unequal weights) into a median prediction cannot remedy
this issue.

As shown in Sect. 4.3 and 4.4, the forecasts of the raw
CAMS data set show significant biases for all pollutants; for
example, the raw CAMS data, even when the mean of the
ensemble is considered, cannot follow the seasonal cycle for
PM10, especially for urban stations where the peaks can be
higher than 60 µg m−3. In contrast, statistical post-treatment
is capable of rapidly adapting the forecast to the synoptic
evolution and removing bias, independently of the type and
density of monitoring stations. These properties are also re-
tained when analysing data for the validation data set, that is,
for those stations not directly involved in the training phase.
It is reasonable to expect similar performance in unmonitored
areas as in, for example, areas corresponding to a regular
grid. With regard to this aim, the calibrated ensemble aver-
age from stage 1 was interpolated onto a 4× 4 km regular
grid (using a bi-linear interpolation), and the post-processing
from stage 2 was applied using the spatio-temporal predictors
estimated at the cell centres of this grid. Figure 7 shows the
concentration maps of two exemplary pollutants, PM10 and
NO2, estimated on the 4× 4 km regular grid for the Italian
peninsula.

It is interesting to compare these figures with the median
forecast from raw CAMS data. Figure S4 in the Supplement
show the same results but from the raw CAMS data set. In

Fig. S4. the pattern is that expected, but it is also clear that
the resolution of the CAMS ensemble does not allow one
to capture the details on a finer scale, and it obviously does
not make much sense to interpolate these data at higher res-
olutions. Unlike raw CAMS data, the second stage of the
statistical post-processing treatment inoculates new informa-
tion, which allows one to capture finer details, making the
space–time interpolation process more realistic and precise
(at least for the monitored stations included in the validation
process). This applies to both PM10 and NO2, where the ef-
fects of urban areas and the road network are more evident.
Figure S5 show the median values for PM2.5 and O3 after
post-processing treatment.

A second application concerns the possibility of accurately
highlighting the non-compliant areas with a spatial resolution
higher than that made available by the CAMS models. The
WHO recently revised the recommended guidelines to pro-
tect the health of the population (WHO, 2021), and in Oc-
tober 2022, the European Commission committed to further
improving air quality and aligning air quality standards with
WHO recommendations (EC, 2022). According to the pro-
posal of the European Commission (EC), partial alignment
(the so-called policy option I-3) was chosen because it corre-
sponds to the highest cost–benefit ratio, and the EC recom-
mends the entry into force of this new policy option by 2030,
balancing the need for rapid improvements with the need to
ensure sufficient response times and coordination with key
related policies that will deliver results in 2030 (such as the
Fit for 55 package of climate change mitigation policies).

Specifically, in the EC proposal, the new limit values for
the protection of human health to be achieved by 2030 are
45 µg m−3 for the PM10 daily limit, not to be exceeded more
than 18 times per calendar year, and 25 µg m−3 for the PM2.5
daily limit, not to be exceeded more than 18 times per calen-
dar year. The post-processing method proposed in this work
is ideal for highlighting non-compliant areas, for example by
using the corrected daily averages for 2022 to detect which
areas need to be subject to increased containment measures
to meet the 2030 limits.

Figure 8 shows the map of the 95.1st percentile of daily
means for PM10 and PM2.5. The deep-red colour marks the
areas for which the daily PM10 concentration exceeds the
threshold of 45 µg m−3 more than 18 times in 2022 (and the
threshold of 25 µg m−3 for PM2.5). Not surprisingly, large ar-
eas with concentrations above the 2030 threshold for PM10
are observed in the Po Valley and other urban areas (espe-
cially the urban area of Naples). Similarly, the PM2.5 thresh-
old is particularly challenging to respect. The entire Po Val-
ley and the main urban areas (the metropolitan areas of Flo-
rence and Naples) all exceed the PM2.5 threshold so strict
containment measures will be necessary for a large part of
the Italian peninsula.

According to the results of this work, more than 21 % of
the Italian peninsula exceeds the 2030 threshold for PM2.5.
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Figure 7. Median PM10 concentration map (a) of daily means and median NO2 concentration map (b) of 1 h daily maximum in 2022 after
the application of the second post-processing stage and estimated over a regular 4× 4 km grid resolution.

Figure 8. The 95.1st percentile of PM10 (a) and PM2.5 (b) after the application of the second post-processing stage and estimated over a
regular 4× 4 km grid resolution.
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Table 3. Average width for the 50 % probability interval around the predicted value for the estimation data set (first row) and validation data
set (second row) and in prediction mode (third row). Units are expressed in micrograms per cubic metre (µg m−3) for all pollutants.

PM10 PM2.5 NO2 O3

CAMS Stage Stage CAMS Stage Stage CAMS Stage Stage CAMS Stage Stage
data 1 2 data 1 2 data 1 e 2 data 1 2

Estimation 8.3 11.1 3.3 5.9 8.1 2.5 19.2 25.7 7.5 14.6 23.4 7.9
Validation 8.2 11.5 4.4 5.3 7.8 3.3 17.9 26.3 10.8 13.5 23.5 15.1
Prediction 8.3 11.1 7.1 5.9 8.1 5.1 19.2 26.0 10.5 14.6 23.5 14.4

Figure S6 show the 95.1st percentile of the highest 8 h
daily maximum for O3 after post-processing treatment. The
new EC proposal established a threshold of 120 µg m−3 for
this pollutant, but more than 37.3 % of the Italian peninsula
does not comply with this limit. In this case, not only the Po
Valley and the main urban areas are affected by this problem;
several rural areas and those corresponding to the highest al-
titudes are also affected.

5 Conclusions

In this work, the effectiveness of statistical post-processing
techniques aimed at improving the accuracy and reliability
of the predictions of the air quality models of the CAMS
suite have been tested. It is well known that the CAMS suite
(currently made up of 11 members), while representing the
state-of-the-art of atmospheric modelling, shows significant
biases; hence, it is advisable to adopt post-processing tech-
niques that are statistically reliable and computationally in-
expensive to cope with operational constraints. Furthermore,
predictions are currently available with moderate spatial res-
olution (0.1◦× 0.1◦) and may miss steep spatial gradients
that occur in the vicinity of large urban areas and industrial
sites.

In order to ameliorate these problems, a statistical post-
processing technique was developed and applied to the Ital-
ian region, capable of correcting both the bias and the relia-
bility of ensemble predictions. Concentrations of the main air
pollutants, PM10, PM2.5, NO2, and O3, were taken into ac-
count, and a new two-stage post-processing approach was de-
signed, able to meet operational constraints. In the first stage,
the ensemble data were combined together through min-
imisation of the continuous ranked probability score (crps)
on the training data. During the second stage, the ensem-
ble prediction was corrected by exploiting additional spatio-
temporal predictors within a framework based on the INLA-
SPDE approach. The post-processing stages make use of a
short training period (3 d) so as to rapidly adapt to changes
in meteorological or emission conditions and to apply simul-
taneously to all monitoring stations.

The post-processing approach is computationally inexpen-
sive. For example, the application of the post-processing
method for 1 d usually takes less than 40 s on a typical desk-

top computer (we used an iMac computer equipped with a
3.4 GHz Intel i5 quad-core processor and 16 GB 2.4 GHz
DDR4 memory). This computational time is competitive
with respect to other approaches (for example, complex
spatio-temporal hierarchical models within a Markov chain
Monte Carlo framework), mainly due to the efficient use of
sparse matrices and the Laplace approximation for numerical
integration schemes (Bakka et al., 2018).

The validation procedure shows that the post-processing
stages were able to remove systematic biases, improve ac-
curacy, and provide reliable forecasts. Moreover, the global
approach allowed the application of the INLA-SPDE frame-
work to a regularly spaced grid (with a resolution higher than
that of the original CAMS members), highlighting the re-
gions in which exceedances occur.

The post-processing correction process has been applied
to the measurement stations for the year 2022 for Italy, but
this procedure can be easily generalised to any spatial and
temporal region. Because of its flexibility, we also expect that
this approach is prone to adapt in real time to fast changes in
meteorological conditions and/or abrupt changes in pollutant
emissions.
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