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S1 Detailed description of spatial and spatio-temporal predictors

Predictor Description, source, and spatial and temporal resolution
Resident pop-
ulation

Resident population surveyed by the Italian Institute of Statistics. Source: ISTAT, https://www.istat.it. Available
as vector data for each of the 366,863 population areas related to the national census of the year 2011. Data are
remapped to each buffer based on cell block intersections

Imperviousness
density

Soil sealing at the pixel level. Source: ISPRA download centre, https://www.isprambiente.gov.it/it/attivita/
suolo-e-territorio/suolo/copertura-del-suolo/high-resolution-layer. Average over the three years 2017-2019,
available as raster data at 10m spatial resolution. Data are remapped as the percentage of soil sealing within
the buffer distance

Built-up den-
sity

Percentage of building and no-building class within the sealing arrangement. Source: Copernicus Land Monitor-
ing Service, https://land.copernicus.eu/en/products/high-resolution-layer-impervious-built-up. Average over the
three years 2017-2019, available as raster data at 10m spatial resolution. Data are remapped as the percentage of
soil sealing within the buffer distance

Land cover Corine Land Cover (CLC). Source: Copernicus Land Monitoring Service, https://land.copernicus.eu/en/products/
high-resolution-layer-impervious-built-up. Average over the three years 2017-2019, available as raster data at
10m spatial resolution. Data are remapped as percentage covered by four classes (high urban development, low
urban development/industrial/other artificial areas, agricultural areas, forest and semi-natural areas) within the
buffer distance

Road density Road segments. Source: Open Street Map database, https://download.geofabrik.de. Available as vector data as of
2022-11-12. The data are remapped as the sum of the length of all road segments within the buffer distance

Main roads Road segments. Source: Open Street Map database, https://download.geofabrik.de. Available as vector data as
of 2022-11-12. The data are remapped as the sum of the lengths of all road segments within the buffer distance.
Data are remapped as the sum of the main road segments (highways and trunks) within the buffer distance

Precipitation Total daily precipitation (m). Source: ECMWF ERA5 database, http://https://www.ecmwf.int/. Daily time reso-
lution, available as raster data with spatial resolution 0.1◦ × 0.1◦. Data are remapped to each buffer on the basis
of cell block intersections

Wind speed
and direction

Wind speed and direction (m). Source: ECMWF ERA5 database, http://https://www.ecmwf.int/. Hourly time
resolution, available as raster data with 0.1◦×0.1◦ spatial resolution, retrieved at 12 UTC for each day. Data are
remapped to each buffer on the basis of cell block intersections

PBL Planetary Boundary Layer height (m). Source: ECMWF ERA5 database, http://https://www.ecmwf.int/. Hourly
time resolution, available as raster data with spatial resolution 0.1◦ × 0.1◦, retrieved at 00 and 12 UTC for each
day. Data are remapped to each buffer on the basis of cell block intersections

Table S1. Purely spatial and spatio-temporal predictors used during the post-processing stage.
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S2 Skill score of ensemble models

To assess the value of the raw CAMS air quality forecasts, we here introduce the same approach described in Murphy (1988).
To be precise, we measure the added value by means of the skill score SS, defined as:5

SS = 1− RMSEf

RMSEr
(1)

where RMSEf is the root mean square error of forecasts, and RMSEr is the root mean square error of the reference used as
no-skill baseline. The observations of the previous day are used as a reference baseline; in this case, the skill score measures
the accuracy of the CAMS forecast in predicting the next-day value compared to the hypothesis of persistence, i.e., that the
concentration does not change from the previous day. Note that SS is positive when the forecast accuracy is greater than10
the reference baseline accuracy, and the added value becomes more and more important as the skill score approaches one.
Furthermore, negative values of the skill score mean that, on average, the performance of the persistence hypothesis exceeds
that of the raw CAMS forecast.

Figure S1. Skill score for the CAMS models. For each model the skill score is reported for the 24-hour look-ahead forecast during the year
2022 compared to the prediction based on the persistence of the previous day concentration for PM10 (green), PM2.5 (blue), NO2 (orange)
and O3 (purple bars)

The results are reported in Figure S1 where the CAMS results for the next day prediction against persistence are evaluated
in terms of the skill score defined in (1). The persistence-based forecast (from the observed previous day values) performs15
consistently better than the model-derived values, so that the skill score is systematically negative for all models and pollutants.
In particular, for the 1-hour NO2 daily maximum, persistence-based prediction allows almost halving the error in the next day

2



prediction for almost all models, indicating the problems they have in predicting the concentration peaks on a small time
scale, probably due to the low spatial resolution. Also note that in some cases the skill score is even lower than -1, meaning
that the root mean square error of the raw CAMS predictions is more than double that obtained by exploiting the persistence20
assumption. The median model is only partially able to remedy this condition, usually showing an improvement over the
prediction made by the individual models but with a still negative skill score. Even if we disentangle results among the different
area type monitoring stations (data not shown), the same general conclusions about the skill of the raw CAMS predictions still
continue to be valid.

S3 The ensemble model output statistical approach25

A number of different pdfs have been proposed for f in (1): normal, truncated normal, logistic, gamma, and other distributions;
the reader is referred to Wilks (2018) for a detailed discussion and comparison. Among all possible choices, after an exploratory
phase, we found that an effective approach consists of selecting the gamma distribution, G(α,β).

The gamma probability distribution function (pdf) is:

Gα,β(x) =
βα

Γ(α)
xα−1e−βx for x > 0 α,β > 0 (2)30

characterised by the ‘shape’ parameter α and the ‘inverse scale’ parameter β. Γ(·) is the gamma function. The shape and
inverse scale parameters are related to the predicted mean, µ= α/β and the variance, σ2 = α/β2, which in turn are related to
the ensemble forecasts, x1, . . . ,xm, by the relations shown in (2).

Gneiting et al. (2007) proposed to evaluate the coefficients in (2) using a diagnostic approach based on minimisation of the
continuous-ranked probability score (crps). The crps is the integral of the Brier scores at all possible threshold values t for the35
continuous predictand (Toth et al., 2003). In simple terms, the crps is defined as:

crps(Fα,β ,y) =

∞∫
−∞

[Fα,β(t)−H(t− y)]
2
dt (3)

where H(t− y) is the Heaviside function and takes the value 0 when t < y and 1 otherwise, and Fα,β is the cumulative
distribution function (cdf) corresponding to the pdf in (2). The closed form of crps for the gamma pdf has been obtained by
Scheuerer and Möller (2015), making the minimisation procedure easy and fast. For an observation-forecast pair (y,x), the40
crps closed form reads:

crps(y,x) = y (2Fα,β(y)− 1)− α

β
(2Fα+1,β(y)− 1)− 1

βB
(
1
2 ,α

) (4)

with y being the observation, and B the beta function. The forecast vector x = (x1, . . . ,xm) enters (4) through the shape and
inverse scale parameters. Their expressions in terms of expected mean and variance read α= µ2/σ2 and β = µ/σ2. The mean
and variance, in turn, depend on the coefficients used in (2). In case of a training set of observations and forecasts, the quantity45
to be minimised is

crps=
1

N

N∑
i=1

crps(yi,xi) (5)

with i denoting the ith observation-forecast pair and N is the total number of pairs in the training set.
As also implemented in Gneiting et al. (2005), we strengthened the estimate of the coefficients in (2a), in order to avoid

negative values, which can be caused by collinearities among the members of the ensemble.50
To estimate the expected mean and variance from the crps minimisation in (5), we are left with the selection of the length of

the training period. This aspect was already faced in Bertrand et al. (2022) and Gneiting et al. (2005), where different sliding
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windows, 3 to 62 days, were considered. Of course, there is a trade-off in selecting a specific training length: a longer training
period reduces the statistical variability in the estimation of coefficients; a shorter training period is able to adapt more rapidly
to different conditions, for example, meteorological perturbations or changes in the emission scenarios. In our case, we found55
that even a very short training period is able to achieve good performance. The results shown in this work refer to a sliding
training period of three days; that is, all predictions for the next day were obtained using air quality and meteorological data
from the previous three days. For each day, this process was applied repeatedly, mimicking an operational forecasting system.

S4 The spatio-temporal statistical model

Results from the first stage are used to feed a second stage, in which we introduce additional spatio-temporal predictors. For60
a given calibrated ensemble prediction, y(t,si), at time t and spatial location si, we assumed the model shown in (3). In this
case, we model the residual as a first-order autoregressive model with spatially correlated innovations ω(t,si):

ξ(t,si) = aξ(t− 1,si)+ω(t,si) (6)

for t= 2, . . . ,T and |a|< 1, ξ(t,si) derives from the stationary distribution ξ ∼N (0,σ2
ω/(1− a2)), where N (η,ε2) denotes

the Gaussian distribution with mean η and variance ε2. Moreover, ω(t,si) is assumed to be temporally independent and char-65
acterised by the spatio-temporal covariance function

Cov(ω(t,si),ω(t′,sj)) =

{
0 if t ̸= t′

σ2C(h) if t= t′
(7)

for i ̸= j. The purely spatial correlation function C(h) depends on spatial location si and sj only through the Euclidean distance
h=∥ si− sj ∥∈ R; therefore, the process is, according to the nomenclature used in the geostatistical literature, a second-order
stationary and isotropic process (Cressie and Wikle, 2015). For the specification for the purely spatial covariance function,70
C(h), we follow the common choice of the Mat’ern function.

C(h) = 1

Γ(ν)2ν−1
(kh)νKν(kh) (8)

with Kν denoting the modified Bessel function of the second kind and order ν = 1. The parameter ν measures the degree of
smoothness of the process; instead, k > 0 is a scaling parameter related to the range ρ, that is, the distance at which the spatial
correlation becomes small. In particular, we use the empirically derived definition ρ=

√
8ν/k, with ρ corresponding to the75

distance where the spatial correlation is close to 0.1 (Lindgren et al., 2011). This kind of model is well discussed and widely
used in the literature on air quality, thanks to its flexibility in modelling the effect of relevant predictors, as well as space and
time dependence (Blangiardo et al., 2013; Cameletti et al., 2013; Fioravanti et al., 2021; Konstantinoudis et al., 2022).

For the second stage, a three-day training period was also chosen and the estimation process was repeated for each day.
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S5 Sensitivity, specificity, threat score and reliability for the prediction dataset80

Figure S2. Scores (sensitivity, specificity and threat score) for the prediction dataset for PM10 (upper-left panel), PM2.5 (upper-right panel),
NO2 (lower-left panel) and O3 (lower-right panel). The blue bars correspond to the raw CAMS results, whereas the results after the appli-
cation of the first and second stage are reported as orange and yellow bars, respectively. The number of exceedances (both for observations
and predictions) is defined according to the new WHO guidelines: 45 µg/m3 for daily PM10, 15 µg/m3 for daily PM2.5, 100 µg/m3 for the
maximum 8-hour daily value for O3, and 25 µg/m3 for daily NO2.
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Figure S3. PIT for PM10 (upper-left panel), PM2.5 (upper-right panel), NO2 (lower-left panel) and O3 (lower-right panel) for the prediction
dataset. The blue bars correspond to the raw CAMS results, while the results after the application of the first and second stage to the validation
data set are reported as orange and yellow bars, respectively. The orange and yellow bars have been slightly shifted and resized in width to not
completely overlap the blue bars. The black horizontal lines have been drawn for reference: for a perfect reliable ensemble, the PIT should
be flat, with a relative frequency equal to 1..
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S6 Results from the raw CAMS data

Figure S4. Median of PM10 concentration map (left) of daily means, and median NO2 concentration map (right) of 1-hour daily maximum
in 2022, from raw CAMS data and bi-linearly interpolated over a regular 4× 4 km grid resolution.
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S7 Results from the post-processing approach for PM2.5 and O3

Figure S5. Median PM2.5 concentration map (left) of daily means, and median O3 concentration map (right) of highest 8-hour daily maxi-
mum in 2022, after the application of the second post-processing stage and estimated over a regular 4× 4 km grid resolution.
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Figure S6. 95.1st percentile of O3 highest 8-hour daily maximum after the application of the second post-processing stage and estimated
over a regular 4× 4 km grid resolution.
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