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Abstract. The Great Plains and southwest regions of the US are highly vulnerable to precipitation-related cli-
mate disasters such as droughts and floods. In this study, we propose a self-organizing map–analogue (SOMA)
approach to empirically quantify the contribution of atmospheric moist circulation (mid-tropospheric geopo-
tential and column moisture transport) to the regional precipitation anomalies, variability, and multi-decadal
changes. Our results indicate that moist circulation contributes significantly to short-term precipitation variabil-
ity, accounting for 54 %–61 % of the total variance in these regions, though these contributions vary significantly
across seasons. As indicated in previous research, Pacific Decadal Oscillation (PDO) is one of the major climate
modes influencing the long-term multi-decadal variation in precipitation. By contrasting three multi-decadal
periods (1950–1976, 1977–1998, 1999–2021) with shifting PDO phases and linking the phase shift to self-
organizing map (SOM) nodes, we found that circulation changes contribute considerably to the multi-decadal
changes in precipitation anomaly in terms of the mean and days of dry and wet extremes, especially for the
southern Great Plains (GP) and southwest. However, these circulation-induced changes are not totally related to
the PDO phase shift (mostly less than half) since internal variability or anthropogenically induced changes in
circulation can also be potential contributors. Our approach improves upon flow analogue and SOM-based meth-
ods and provides insights into the contribution of atmospheric circulation to regional precipitation anomalies and
variability.

1 Introduction

The United States Great Plains (GP) and southwest (SW) are
central to national and global agricultural production (Elias
et al., 2016; Parton et al., 2015). As the drier half of the
continental United States (CONUS) with high variability in
precipitation, the GP and SW rely on irrigation much more
heavily than the eastern states, and they are known to be sus-
ceptible to climate disasters such as extreme droughts, wild-
fires, storms, and flooding, which are all listed among the top
billion-dollar weather and climate disasters (NOAA NCEI,
2023). Understanding the driving factors and mechanisms for
the occurrence of precipitation anomalies is crucial for the

evaluation and improvement in current prediction systems as
well as water resource management.

Past studies have reported various mechanisms that link
to precipitation variability in North America, including an-
thropogenic forcings (Kirchmeier-Young and Zhang, 2020),
internal atmospheric variabilities (McKinnon and Deser,
2021), El Niño–Southern Oscillation (ENSO) (Hu and
Huang, 2009), Pacific Decadal Oscillation (PDO) (Lehner
et al., 2018), Pacific North America (PNA) (Zhuang et al.,
2021a), and Atlantic sea surface temperature (Hu and Feng,
2008), each of which can contribute differently for differ-
ent locations, timescales, seasons, or even individual events.
These internal variabilities and large-scale remote forcings
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can influence the local precipitation either by affecting the at-
mospheric circulation conditions above or through local and
remote land surface feedbacks, both of which control the ver-
tical air motion and moisture supply that finally lead to pre-
cipitation.

Many recent studies have argued that the long-term precip-
itation changes in these regions, at least from the mid-20th
century until now, are primarily driven by PDO-induced at-
mospheric teleconnection to North America instead of an-
thropogenic warming, as evidenced by the relatively dry pe-
riods with negative PDO phase (1940s–1970s and 1999 on-
wards) when many of the major drought events occurred
(Hoerling et al., 2014; Seager et al., 2014; Mankin et al.,
2021) and a relatively wet period with positive phase (1980s–
1990s). Yet, it is not clear quantitatively how much these
long-term changes in precipitation can be explained by the
PDO-related circulation variability.

The self-organizing map (SOM) or Kohonen Map (Koho-
nen, 1990), an unsupervised neural-network-based cluster-
ing method, has long been demonstrated as an effective and
powerful tool to study dynamics or atmospheric circulation
patterns related to precipitation variability, drought, or other
atmospheric/oceanic phenomena (Liu and Weisberg, 2011;
Zhuang et al., 2020). Different from other clustering meth-
ods, such as K means and hierarchical clustering, SOM has
the advantage of sorting samples into types (SOM nodes)
connected to each other in a “map” that preserves the topo-
logical structure of the data, so similar types are close to each
other. Based on SOM, Cassano et al. (2007) proposed a quan-
titative partitioning method (referred to as “C2007” here-
after) to determine the circulation contributions to anoma-
lies or trends of surface parameters such as precipitation.
The idea is that the total precipitation anomaly for a certain
node K during a period (P ′K ) can be decomposed as the sum
of a circulation or dynamic component (P ′K,dyn =1fKP

′

K )
controlled by the mean frequency change in SOM nodes, a
thermodynamic component (P ′K,the = fK1P

′

K ) related to the
mean state change in precipitation for the same SOM node,
and an interaction term (P ′K,int =1fK1P

′

K ) related to both.
Detailed descriptions of this method can be found in Cas-
sano et al. (2007) and Horton et al. (2015). However, this
partitioning method assumes that P ′dyn at the timescale of in-
dividual sample (e.g., daily) stays the same for circulation
patterns classified to the same SOM node. This underlying
assumption leads to the result that the determination of P ′dyn
could be sensitive to the choice of SOM node number. An
additional inconvenience related to this method is that the
SOM analysis is often conducted in certain seasons as the
circulation–precipitation relationship could vary in different
seasons.

Flow analogue or dynamic adjustment (e.g., Deser et al.,
2016; Horowitz et al., 2022; Jezequel et al., 2018; Lehner
et al., 2018; Terray, 2021; Yiou et al., 2007) is another
widely used method (referred to as analogue hereafter) to
determine the circulation contribution. For a certain day (or

other timescales), different from the C2007 method, the con-
structed flow analogue (Lehner et al., 2018) method searches
for a limited number of days (analogue days) with circula-
tion patterns most similar to that of the target day instead of
days assigned to the same SOM node in C2007; it then com-
bines precipitation anomaly of these analogue days to form
a final analogue anomaly or dynamic component (P ′dyn), and
the residual term which cannot be explained by circulation
is defined as the thermodynamic component (P ′the). Detailed
steps and variants of the analogue method can be found in the
literature (e.g., Zhuang et al., 2021b). The analogue theoret-
ically better estimates the dynamic contribution by utilizing
circulation patterns from the analogue days and accounting
for their subtle difference.

In this study, we proposed a modified approach to quan-
tify the multivariate circulation contribution to P ′ in terms of
its daily variability, which combines the advantages of both
SOM and constructed analogue methods. We further use this
approach to quantify the contribution of overall circulation
changes and potentially PDO-related circulation changes to
the long-term multi-decadal changes in P ′.

The datasets and methods used in this study are described
in Sect. 2. All the main results, including the SOM in-
ferred relationship between large-scale atmospheric circula-
tion and precipitation and SOM–analogue-based quantifica-
tion of circulation contributions to daily variability and long-
term changes in precipitation anomalies, are presented in
Sect. 3. Section 4 summarizes the main conclusions of this
study and also gives a brief discussion about the implications
of this study and limitations of our methodology and results.

2 Data and method

2.1 Data

In previous studies related to SOM and analogue, large-scale
circulation is generally represented by mean sea level pres-
sure (SLP) or geopotential height at 500 hPa (Z500). Here,
we choose Z500 over SLP as our experiments have demon-
strated analogues derived from Z500 show greater similarity
in synoptic variability with observed surface anomalies and
yield smaller residuals compared to analogues derived from
SLP (Zhuang et al., 2021b). Additionally, impacts of anoma-
lous atmospheric moisture transport represented by vertically
integrated vapor transport (IVT) on precipitation variabil-
ity and drought are also suggested in the literature (Zhuang
et al., 2020; Pu et al., 2016; Swales et al., 2016). The 3-
hourly Z500 and IVT data at a 1◦×1◦ resolution are obtained
from the fifth-generation ECMWF atmospheric reanalysis of
the global climate (ERA5) (Hersbach et al., 2020). We use
daily averages for all months from 1950 to 2021 over the
CONUS area (25–55◦ N, 130–70◦W) as input for later anal-
yses. To account for the thermal expansion of the warm-
ing atmosphere, we subtract the daily global area-weighted
mean Z500 from the daily Z500 data at each grid point so
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that there is no linear trend in the Z500 data due to warm-
ing (Christidis and Stott, 2015; Siler et al., 2019; Zhuang
et al., 2021b); however, this procedure does not remove any
anthropogenically forced changes in atmospheric circulation
patterns. Other studies (e.g., Sippel et al., 2019) also use lin-
ear detrending or high-pass filtering to preprocess Z500 data
at each grid point, assuming that the forced circulation re-
sponse was smooth and additive; we do not employ these
approaches due to our short observational record, and they
could remove some of the decadal circulation trend due to
internal variability (Zhuang et al., 2021b). To mitigate high-
frequency synoptic noise, we employ a simple 5 d moving
average filter to both Z500 and IVT. Subsequently, we calcu-
late the daily standardized anomaly (Z′500 and IVT′) using the
5 d moving average-filtered data relative to the 1950–1999
climatology. We select the 1950–1999 period as the clima-
tology reference to maximize the utilization of available data
for this study; furthermore, this period, which predates the
significant warming trend, typically serves as a robust base-
line with less climate change impact. In addition, we adopt
the running mean approach used in Zhuang et al. (2020) to
calculate a smoothed daily climatological mean and standard
deviation.

For precipitation, the Climate Prediction Center (CPC)
global unified gauge-based analysis of daily precipitation (P )
is used. This dataset is at 0.25◦×0.25◦ resolution and covers
the period from 1948 to the present. In this study, we mainly
focus on three regions, including the southern GP (SGP;
26–38◦ N, 105–92◦W), the northern GP (NGP; 38–49◦ N,
105–92◦W), and the southwestern US (SW; 31–42◦ N, 114–
105◦W). Therefore, area-weighted mean precipitation is cal-
culated over these three regions. A 5 d moving average fil-
ter is also applied to precipitation similar to the circulation
data. The precipitation anomaly (P ′) is calculated relative
to 1950–1999 climatology using the same approach stated
above for circulation but without the standardization pro-
cess as precipitation generally follows a gamma distribution
rather than a Gaussian distribution.

Besides circulation and precipitation, other data used in
this study include ERA5 2 m dew point temperature (D2),
700 hPa temperature (T700) data, and convective avail-
able potential energy (CAPE) as well as the monthly Pa-
cific Decadal Oscillation (PDO) index provided by the Na-
tional Center for Environmental Information (NCEI). The D2
and T700 data are used to calculate the convective inhibi-
tion (CIN) index (CINi=D2−T700) (Myoung and Nielsen-
Gammon, 2010) to represent the lower-atmospheric instabil-
ity; ERA5 also provides CIN data, but it is not always avail-
able around the year due to its original definition from the
parcel buoyancy model. Both CAPE and CINi data are pro-
cessed the same way as circulation data to acquire their stan-
dardized anomalies (CAPE′ and CINi′) for further analyses.
The PDO index is one of the most important Pacific climate
variabilities and is often described as an El Niño-like pat-
tern but with long-term persistence of up to several decades

(Zhang et al., 1997). The NCEI monthly PDO index is calcu-
lated based on the NOAA extended reconstruction of sea sur-
face temperature version 5 (ERSSTv5). A 3-month running
mean PDO index is used in this study to smooth out some
monthly sea surface temperature (SST) fluctuations and re-
duce short-term noise. Our whole analysis period 1950–2021
can be divided into three periods, each with a different PDO
phase from the previous one: P1, 1950–1976 (negative); P2,
1977–1998 (positive); and P3, 1999–2021 (negative). Long-
term change in precipitation in terms of its mean or days of
extremes for our following analysis (Sect. 3.3) is defined as
the difference between two adjacent periods (P2−P1 and
P3−P2).

2.2 Method

2.2.1 Multivariate SOM

In this study, the large-scale atmospheric circulation condi-
tion is jointly represented by Z′500 and IVT′, as both of them
have been demonstrated to be important for the precipita-
tion variability over North America. The data matrices of
these two variables are concatenated along the spatial dimen-
sion, so the input data matrix has a size of (2×Nlon×Nlat,
Nt ). Specifically for this study, Nlon = 61, Nlat = 31, and
Nt = 365 d yr−1

× 72 years (leap days removed for simplic-
ity), so the input size is (3782, 26 280).

To speed up the SOM training process, we employ a prin-
cipal component analysis (PCA) preprocessing technique
(Zhuang et al., 2020). PCA, or empirical orthogonal func-
tions (EOFs), is a widely used approach for data dimension
reduction or extracting spatial modes of variability (Reusch
et al., 2005). Here, PCA is used to decompose the high-
dimensional circulation data (two variables and thousands of
grid points) into the matrix multiplication product of some
low-dimensional principal components (PCs) and their cor-
responding loading vectors (modes). By only retaining the
top PCs and modes that explain the majority of the variance
in the original data, we can use these PCs as reduced-size
input data for SOM. Specifically in this study, we retain the
top 26 PCs, which explain 87.3 % of the combined variance
in Z′500 and IVT′ (or 90.6 % and 77.4 % of the variance in
Z′500 and IVT′, respectively).

Determination of SOM node number and evaluation of the
trained SOM quality are often complicated issues. Too few
SOM nodes could lead to an underrepresentation of samples,
while too many nodes likely result in redundancy and cre-
ate difficulties for analysis and visual interpretation. In this
study, we have tested multiple SOM schemes with various
node numbers up to 200. Three metrics are calculated for the
trained SOM of each scheme to assess the SOM quality, in-
cluding the quantization error (QE), topographic error (TE),
and combined error (CE). QE represents the average Eu-
clidean distance between each data vector and the SOM node
it is assigned to, or the so-called best matching unit (BMU).
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TE is the proportion of all input data vectors with first and
second BMUs not adjacent to each other in the SOM map.
CE is a metric that combines the concepts of both QE and
TE and was defined by Kaski and Lagus (1996).

SOM training and error metric calculation are performed
using the MATLAB SOM Toolbox (Vatanen et al., 2015).
Training length is fixed at 100 epochs (50 for rough train-
ing and 50 or fine-tuning) for all schemes. Additional ex-
periments show that increasing training length can reduce
QE, but the improvement is very marginal after around
100 epochs (not shown). In the SOM Toolbox, after inputting
a desired node number, the SOM map shape is automatically
determined. During the initialization before the training, we
employ the default setting, i.e., linear initialization, where
weight vectors are initialized in a linear manner along the
subspace defined by the two principal eigenvectors of the in-
put dataset. This choice is made to facilitate the reproducibil-
ity of our results. While SOM is generally robust to initial-
ization, slight variations in outcomes may occur when using
random initialization, where the weight vectors are initialized
with random small values. To assess the impact of initializa-
tion on SOM error metrics, we also conduct 100 instances of
additional SOM training with random initialization for each
node number setting and analyze the range of their error met-
rics. After training SOMs for all schemes with various node
numbers and calculating their quality metrics, the result in
Fig. 1 shows that, overall, QE decreases with node number as
more nodes mean more detailed classification of circulation
patterns, and thus they are more representative of individual
samples; TE increases with node number as a more complex
network often leads to a larger topographic structure; CE,
which combines the concepts of both quantization and topo-
graphic errors, decreases with node number first when the
number is relatively small and then exhibits a larger fluctu-
ation than QE and TE. A 7× 4 SOM scheme is chosen for
our following analysis as this scheme has a relatively smaller
node number that facilitates the visualization and analysis of
the results and also has a lower CE compared to schemes
with similar node numbers.

2.2.2 Empirical quantification of moist circulation
contribution: the SOM–analogue (SOMA) method

As stated in the Introduction, the C2007 dynamic/thermody-
namic partition method assumes that the dynamic component
P ′dyn for days grouped under the same BMU node is deter-
mined by their mean P ′. However, this approach can under-
estimate variability in true P ′dyn, especially when the node
number is small and the circulation pattern of a BMU is less
representative of the assigned samples. On the other hand,
the flow analogue method (e.g., Yiou et al., 2007; Zhuang
et al., 2021b) estimates P ′dyn for a given day by identify-
ing historical days with similar atmospheric circulation con-
ditions (analogue days) and combining the P ′ information
from these selected analogue days. Specifically, the flow ana-

Figure 1. (a) Quantization error (QE), (b) topographic error (TE),
and (c) combined error (CE) of SOM schemes with different node
numbers (N ). The red cross denotes the one (N = 28) we selected in
this study. Solid lines represent the errors in the SOMs trained with
linear initialization, while the shaded areas represent the range of
errors within the middle 95 % of the distribution from the 100 SOMs
trained with random initialization for each node number setting, and
dashed lines are their averages.

logue method employed by Zhuang et al. (2021b) follows
three main steps. First, for a particular day, analogue days
with similar circulation conditions are chosen by minimiz-
ing a distance function between the circulation field (e.g.,
Z′500) on the target day and that on historical days within a
specific calendar range centered around the target day. Sec-
ond, the top N analogue patterns with the smallest-distance
function are linearly combined to create a “constructed ana-
logue” pattern that resembles the circulation pattern of the
target day. Finally, the N coefficients from the linear com-
bination are applied to P ′ values of the N analogue days to
obtain P ′dyn. The constructed flow analogue method gener-
ally explains a larger portion of the observed P ′ variance,
and its estimate is not sensitive to SOM node number, so it
has a higher accuracy in capturing the complex relationship
between atmospheric circulation and precipitation anomalies
and theoretically provides a better estimate of the circulation
contribution compared to the C2007 method. This improve-
ment is primarily due to the flow analogue method consider-
ing the differences among circulation patterns in individual
analogue days and combining P ′ values from these analogue
days. However, flow analogue is less effective than the C2007
method when evaluating the relationship between a specific
circulation type and P ′.
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In this study, we propose a new method called the SOM–
analogue (SOMA), which leverages the strengths of both
SOM (C2007) and flow analogue. SOMA aims to be capable
of quantifying overall circulation contribution and the contri-
bution of a specific circulation type to P ′ and also to provide
a more robust circulation contribution estimate that is less
sensitive to parameter choices and explains a large portion of
observed P ′ variability. It is worth noting that attempting to
separate the actual dynamic and thermodynamic components
solely through a circulation clustering approach like SOM
can be challenging. Each type of circulation, as represented
by SOM nodes, inherently encompasses thermodynamic re-
sponses. Therefore, the distinction between “dynamic” and
“thermodynamic” components can be ambiguous when us-
ing these terms. Consequently, we prefer to refer to the pre-
cipitation anomaly influenced by moist circulation patterns
involving Z500 and IVT as P ′SOMA instead of P ′dyn, and the
residual part that cannot be explained by circulation as P ′RES
instead of P ′the. This emphasizes that our results regarding
circulation contributions are contingent on our chosen set of
circulation variables.

The basic idea behind SOMA is to incorporate variabil-
ity in P ′SOMA for days with the same BMU node, similar
to the flow analogue method, while adhering to the C2007
framework. In contrast to the flow analogue method, where
analogue days are determined by minimizing the Euclidean
distance of anomalous circulation patterns, in SOMA, the
analogue days are directly selected from the daily sam-
ples sharing the same BMU. Additionally, the constructed
flow analogue approach relies on a linear combination of
precipitation anomaly from analogue days to quantify cir-
culation contribution at a target day j ; i.e., P ′j,SOMA =∑
i

aiP
′

i =
∑
i

aiP
′

i,SOMA+
∑
i

aiP
′

i,RES, where the coefficients

ai are determined by the linear dependency of the circula-
tion pattern on target day j and those on analogue days i;
i.e., Z′j =

∑
i

aiZ
′

i . However, it is important to note that the

analogue day precipitation anomaly P ′i = P
′

i,SOMA+P
′

i,RES
includes both a circulation-contributed component and a
residual component. This approach overlooks the poten-
tial thermodynamic influences in the precipitation anomaly
on analogue days, and the resulting circulation-contributed
component P ′j,SOMA still retains a thermodynamic residual∑
i

aiP
′

i,RES, which may not be negligible with limited sam-

ples. To mitigate this issue, we make the assumption that
for each group of a similar circulation pattern (same SOM
node), P ′j,SOMA =

∑
i

aiP
′

i,SOMA. This differs from the equa-

tion form in constructed flow analogue and excludes the term∑
i

aiP
′

i,res . Following constructed flow analogue, where each

circulation pattern is linearly dependent on other circulation
patterns within the same SOM node, i.e., Z′j =

∑
i

aiZ
′

i , we

can see that P ′SOMA and Z′ share the same linear form and

coefficients. Therefore, P ′SOMA and Z′ can be considered lin-
early dependent as well, allowing us to treat the calculation
of P ′SOMA as a regression problem, which is different from
the circulation analogue in previous studies (e.g., Deser et
al., 2016; Lehner et al., 2018). Detailed steps are outlined
below.

1. After PCA preprocessing, the original circulation
anomaly matrix YNp×Nt can be written as YNp×Nt =

VNp×Ne ·XTNt×Ne , whereNp is the number of grid points
(61× 31) multiplied by the number of circulation vari-
ables (2), Nt the number of days, and Ne the number
of all PCs. By only retaining the top K PCs, YNp×Nt ≈
VNp×K ·XNt×KT .

2. The PC matrix XNt×K is used as input to train a SOM.
For each daily sample xt (1×K) at time t , we can find its
corresponding BMU; i.e., BMU(xt )= Bn, where Bn is
one of the SOM nodes, and n (n= 1, 2, 3, . . . ,N ) can be
determined by minimizing the Euclidean distance be-
tween xt and Bn. The circulation pattern for node n can
then be recovered as VNp×K ·BTn .

3. For any day t0, assuming its BMU is node n, we find all
days ti (i = 1, 2, . . . ,M) that have this node n as their
BMU and are within the 91 d calendar window cen-
tered on the day t0 but not in the same year as t0, to
account for the seasonal dependence of the circulation–
precipitation relationship; i.e., BMU(xti )= BMU(xt0 ),
|DOY(ti)−DOY(t0)| ≤ 45 d, Year(ti) 6= Year(t0).

4. Solve the regression problem: P1×M = U1×K ·XTM×K ,
where P1×M is the precipitation vectors for days ti (i =
1, 2, . . . ,M) from the previous step and XM×K is input
PC samples for theseM days. The regression coefficient
vector U1×K is then used to calculate the dynamic pre-
cipitation anomaly for the day t0, P ′SOMA,t0

= U1×K ·xTt0 .

5. Repeat steps (3) and (4) for all days until all P ′SOMA are
calculated.

To account for the sampling uncertainty, we apply a boot-
strap technique in step (3) where we create multiple datasets
of XM×K by randomly sampling xti with a replacement. Af-
ter bootstrapping and repeating steps (3) to (5) 1000 times,
the 1000 calculated P ′SOMA,t0

are then averaged as the final
result.

3 Result

3.1 Atmospheric circulation pattern clustering and link
to precipitation

After the 7× 4 SOM for Z′500 and IVT′ is trained and each
daily sample is assigned to its BMU node, circulation pat-
terns with the same BMU node are averaged as the gen-
eral representation of circulation conditions for the particu-
lar node. The composite circulation anomaly patterns for all
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Figure 2. Composite standardized Z′500 (contours; solid and dashed lines are for positive and negative values, respectively) and standardized
IVT′ (shading) for each node in the 7× 4 SOM. Mean frequency (f ) and seasonality (frange, i.e., the difference between maximum and
minimum seasonal frequencies as shown in Fig. 3; a larger value indicates stronger seasonal variation) of each node are labeled in each
panel.

SOM nodes are shown in Fig. 2. Similar to our earlier study
(Zhuang et al., 2020), the SOM map shows a continuum of
anomalous circulation and moisture transport patterns over
the CONUS. Regions with large Z′500 gradients often corre-
spond to large IVT′ due to the geostrophic balance relation-
ship. For example, when an anomalous geopotential low is
centered over the western or central US and a geopotential
high over the eastern or southeastern US (e.g., nodes A1, B1,
C1, C2, D1, D2, and D3), enhanced moisture transport from
the Gulf of Mexico represented by the large positive IVT′

is often observed in between the geopotential low and high
with an elevated geopotential gradient.

As the SOM is trained with daily samples of all seasons
and considering the potential seasonal variation in occur-
rence frequency and circulation–precipitation relationship,
we calculate the frequency and average P ′ for each SOM
node during every 91 d calendar window during all years.
The resulting seasonal variations in node frequency and
mean P ′ are shown in Figs. 3 and 4, respectively. In Fig. 3,
some nodes exhibit very clear seasonal variation with the
range of frequency being as large as 4 % (mean frequency
and seasonal frequency ranges for each node are also avail-
able in Fig. 2); they either peak in cold seasons, such as
C1 and D1, with the anomalous geopotential high centered
more on the southeastern US and strong moisture transport
to the SGP, or peak in the warm seasons, such as C4 and
D4, where the high is centered more on the northeastern US,
so the moisture transport is weaker and more towards the
north. Some other nodes show a relatively stable frequency
throughout the year, with a range of less than 1 %, such as

nodes C6, C7, and D7, where the CONUS is mostly domi-
nated by an extensive geopotential high.

Similarly, precipitation also shows apparent seasonal vari-
ations for certain nodes (Fig. 4). For example, node D1,
located at the lower-left corner of the SOM, brings the
strongest positive IVT′ from the Gulf of Mexico and the Gulf
of California of all nodes, and it is one of the major wet nodes
related to positive P ′ in all three regions during the cold sea-
son. However, during the warm season, node D1 is more of
a neutral or weakly dry node as it is linked to a small nega-
tive P ′ in the SGP; for the NGP, this node is still a wet node
and the average P ′ is larger than that during the cold season.
This can in part be explained by the seasonal difference in
precipitation mechanisms. In the warm season, precipitation
is mostly convection-driven, reducing the impact of large-
scale vertical air motion associated with certain circulation
patterns. Additionally, the composite CAPE′ and CINi′ map
for node D1 (Fig. S1 in the Supplement) shows relatively
smaller CAPE′ and a more stable lower troposphere (nega-
tive CINi′) compared to other nodes in the warm season (May
to July), suppressing convective development and thus limit-
ing precipitation regardless of the strong moisture transport,
whereas in the cold season (November to January), CAPE′

and CINi′ shows larger positive values associated with more
precipitation compared to other nodes. However, it is impor-
tant to note that the above comparison is within the same
season, as node D1 in the warm season still corresponds to
higher traditional CAPE and CINi values (not anomalies), as
well as less total precipitation, compared to the cold season.
Similar situations occur to many other nodes, either exhibit-
ing opposite signs of mean P ′ in different seasons or clear
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Figure 3. Seasonal variation in frequency for SOM nodes. For each node in each panel, the frequency at a certain calendar day represents
the node frequency during a 91 d calendar window centered on that calendar day for all years (1950–2021).

Figure 4. Seasonal variation in mean P ′ averaged over each region (blue for SGP, red for NGP, and yellow for SW) for each SOM node. For
each node in each panel, the mean P ′ at a certain calendar day represents the P ′ of that node during a 91 d calendar window centered on that
calendar day for all years (1950–2021). The shading represents the interquartile range of all daily P ′ used to calculate the mean.

seasonal variations with the same sign. Overall, these sea-
sonal fluctuations in the circulation–precipitation relation-
ship can be attributed to factors influencing the types and
mechanisms of precipitation, which can vary seasonally, such
as atmospheric stability and thermodynamic feedback (My-
oung and Nielsen-Gammon, 2010), or to potential slight sam-
pling bias in different seasons, as evidenced by the contrast

between composite circulation maps for the same node in
different seasons (Fig. S1).

3.2 Moist circulation contributions to precipitation

The above analyses show that strong seasonal variations
could exist for either frequency or mean P ′ in certain nodes
due to different types of precipitation and factors other than
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Figure 5. (a) Seasonal variation in the percentage of P ′ variance explained by P ′SOMA (R2
SOMA) for the three regions; each data point is

calculated within a 91 d calendar window. Thin dashed lines represent the value for all year round. (b) Same as (a) but for seasonal variation
in the percentage of moist circulation (SOMA) contribution determined by fitting a simple linear regression model between P ′SOMA and P ′

during a 91 d calendar window (P ′SOMA = βP
′).

large-scale circulation and moisture transport that contribute
to precipitation. Therefore, assuming node-mean P ′ as dy-
namic components calculated using the C2007 method may
result in an incorrect representation of dynamic contribution
and underestimation of its variability.

The second part of our analysis is to employ the SOMA
method described in the Method section to estimate the con-
tribution of dynamics and thermodynamics to P ′. We de-
compose the daily average P of certain regions (SGP, NGP,
and SW) into the sum of a moist circulation-contributed com-
ponent P ′SOMA, which is explained by the mid-tropospheric
circulation and moisture transport, and a residual component
P ′RES, which ideally should be independent of circulation
condition and related to thermodynamic processes such as
land surface feedbacks. Further analysis shows that compos-
ite seasonal cycles of P ′SOMA for different nodes are similar
to that of P ′ (Fig. 4) but with a narrower interquartile range
(not shown). In contrast, P ′RES does not show a clear season
cycle for any node (not shown). This indicates the majority
of precipitation variation at daily to synoptic scales can be
mainly explained by circulation, and thermodynamic resid-
ual does not have a preference for certain nodes in any sea-
son. The P ′SOMA calculated by our SOMA method overall is
highly correlated to P ′ in all seasons, indicating that circu-
lation and moisture transport conditions can explain a large
portion of precipitation variability.

Figure 5a shows the percentage of the variance of P ′ ex-
plained by the P ′SOMA (R2

SOMA). NGP, which is located more
to the north and more susceptible to frontal weather systems,
has the largest mean R2

SOMA of 60.5 % for all year round,
while SW and SGP have slightly smaller values of 56.3 %
and 53.6 %, respectively. These three regions also show very
clear seasonal variations in R2

SOMA as well: regions located
more to the south, like the SGP and SW, show a maximum of

∼ 60 % and ∼ 70 % in winter (December to January) when
precipitation is more affected by frontal systems and a min-
imum of ∼ 45 % and ∼ 40 % in summer (July to August)
when precipitation is mostly convectively driven and surface
thermodynamics have more influence. On the other hand,
the more northern region NGP shows continuously higher
R2

SOMA in the warm season (March to October); its seasonal
variation in R2

SOMA shows two local minima (one in Au-
gust, ∼ 55 %, and the other in January, ∼ 50 %) and two
local maxima (one in April–May, ∼ 65 %, and the other in
October–November, ∼ 64 %).

In addition to daily precipitation variability, we fit a sim-
ple linear regression model P ′SOMA = βP

′ for each 91 d cal-
endar window in each region to estimate the relative percent-
age dynamic contribution (β) to intensity of the precipitation
anomaly. Figure 5b shows the seasonal variation in β for all
samples at a daily scale for each region. Overall, the percent-
age of SOMA contributions in the SGP and SW shows a sim-
ilar seasonal cycle as the R2

SOMA, with the highest β (∼ 69 %
and ∼ 73 %) in the cold season (December to January) and
the lowest (∼ 56 % and ∼ 50 %) in the warm season (May
to August), while the NGP has a mean β of ∼ 68 % with a
smaller range of seasonal variation (∼ 65 % to ∼ 75 %).

Figure 6 further shows the historical evolution of 12-
month moving average P ′ and its moisture circulation con-
tributed (SOMA) and residual (RES) components from 1950
to 2021 to demonstrate how they contribute to the longer-
term variability in precipitation. Overall, P ′SOMA matches
better with P ′ than P ′RES does for all three regions, even for
some P ′ extremes during major drought and flooding events.
Percentage variance explained by the SOMA component is
87.3 %, 82.1 %, and 82.8 % for SGP, NGP, and SW, respec-
tively, which are considerably higher than that explained by
the residual (62.6 %, 77.2 %, and 65.5 %). This suggests at-
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mospheric circulation and moisture transport are the main
controls for precipitation variations at an interannual scale
as well.

To further demonstrate what type of atmospheric circu-
lation patterns are most related to regionally dry and wet
anomalies, Fig. 7 ranks the nodes according to their mean
seasonally cumulative P ′SOMA and P ′RES during four seasons,
including January to March (JFM), April to June (AMJ),
July to September (JAS), and October to December (OND).
As these seasonal contributions are averaged over all years,
many nodes show a clear tendency to be dynamically related
to either dry or wet anomalies during a particular season in a
region, but almost all of them have negligible residual com-
ponents. Consistently through all three regions, the top four
nodes that contribute most to dry anomalies in the cold sea-
son (JFM and OND) are A7, B7, C7, and D7, all located
on the right side of the SOM map, featuring either a west
high-east low or high dominant geopotential pattern over the
CONUS with reduced IVT′ in both SGP and SW. On the
other hand, for the wet anomalies, top contributing nodes are
mostly located on the left or bottom side of the SOM map,
featuring a west low-east high geopotential pattern favoring
increased IVT′.

In the warm season (AMJ and JAS), top dry and wet nodes
all change a bit for the three regions. For example, for the
SGP, besides the high dominant pattern D6 and 7, a few
west low-east high patterns (C3, D2, D3) with increased IVT′

also contribute considerably to P ′SOMA due to the increased
lower-atmospheric stability related (CIN′) to them. For the
SW, A1 becomes the top contributing node in its monsoon
season due to the weak geopotential gradient there and the
strong geopotential high on the west coast, all of which re-
duce the main moisture source, including that from the Gulf
of Mexico and the Gulf of California.

3.3 Long-term changes in precipitation

The results from the previous section suggest that dynamic
factors, specifically circulation and moisture transport, ac-
count for the majority of variance in precipitation anomalies
from daily to interannual variability. Our next objective is
to investigate whether there are long-term changes in pre-
cipitation and, if so, how these changes can be explained
by circulation changes, which are mainly related to internal
variability in the atmosphere and oceanic forcings. The PDO
has been demonstrated as a main oceanic forcing that con-
trols the multi-decadal variability in precipitation over North
America, as the PDO can generate atmospheric circulation
patterns that favor dry or wet conditions depending on its
phases (Lehner et al., 2018). Our period of analysis, spanning
from 1950 to 2021, encompasses three periods with shifting
PDO phases, including P1 (1950–1976, mostly negative), P2
(1977–1998, mostly positive), and P3 (1999–2021, mostly
negative).

Figure 8 (first column in each panel) shows the period
mean P ′ for different regions and contrasts them in three pe-
riods with different PDO phases. We can see that, overall, all
three regions show a significant increase in P ′ from P1 to P2,
followed by a decrease from P2 to P3. The SOMA compo-
nent P ′SOMA (Fig. 8, second column in each panel), though it
generally exhibits smaller-amplitude anomalies, captures the
multi-decadal changes in the P ′ in the three periods (from
14 % to 82 % for all seasons, Table 2), especially for the SW
(75 % and 82 % of the changes in P1−P2 and P2−P3).

To further determine how much of the dynamic contri-
bution to the multi-decadal changes in P ′ can be linked to
PDO changes, we first investigate whether the moist circu-
lation and precipitation anomalies associated with each node
may be modulated by PDO phases. We assess whether the
difference in frequency-weighted P ′SOMA between positive
and negative PDO phases is statistically significant through a
Monte Carlo test. Detailed steps are as follows. (a) For node k
in month m, calculate node frequency for the positive PDO
phase (monthly PDO index> 0.5) and the negative phase
(monthly PDO index<−0.5) for all years, i.e., fPDO+(k,m)
and fPDO−(k,m), as well as average SOMA-contributed
P ′, i.e., P ′SOMA,PDO+(k,m) and P ′SOMA,PDO−(k,m). (b) The
frequency-weighted P ′SOMA difference between positive
and negative PDO phases for node k in month m

can be calculated as 1PDOP
′

SOMA(k,m)= fPDO+(k,m)×
P ′SOMA,PDO+(k,m)−fPDO−(k,m)×P ′SOMA,PDO−(k,m), and
the overall PDO impact for node k can be repre-
sented by summing this difference across all months, i.e.,

1PDOP
′

SOMA(k)=
12∑
m=1
[1PDOP

′

SOMA(k,m)]. (c) Randomly

shuffle the sequence of years for the PDO index data and
recalculate the abovementioned statistics. (d) Repeat step (c)
many times (10 000 here) if1PDOP

′

SOMA(k,m) is larger than
90 % of all simulated values, and then for node k in monthm,
P ′SOMA is significantly larger during positive PDO phase than
negative phase; in contrast, if 1PDOP

′

SOMA(k,m) is smaller
than 90 % of all simulated values, then P ′SOMA is considered
significantly smaller during positive PDO phase. (e) Similar
conclusions can be drawn for node k overall by assessing
1PDOP

′

SOMA(k) instead of 1PDOP
′

SOMA(k,m). The result-
ing nodes statistically related to PDO (for each month and
overall) are shown in Fig. 9. Additionally, the selection of a
0.5 threshold for PDO phases is mainly based on two consid-
erations: (1) it has been commonly used in some prior stud-
ies (e.g., Hu and Guan, 2018; Kiem et al., 2003); (2) days or
months categorized as positive or negative PDO phases us-
ing the 0.5 threshold constitute about two-thirds of the total
samples (66.2 %), striking a balance between inclusivity and
specificity. Using a smaller threshold, such as 0.25, would
result in a much higher percentage (81.8 %) of samples cat-
egorized as positive or negative PDO-related, leading to re-
sults that are less representative of the true PDO impact due
to over-inclusiveness. Conversely, a larger threshold, like 1.0,
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Figure 6. Twelve-month moving average P ′ (assigned to the last month of a 12-month period) for the three regions. Black, blue, and red lines
represent the total anomaly P ′, the moist-circulation-contributed component P ′SOMA, and the residual component P ′RES, i.e., P ′−P ′SOMA.

Figure 7. Average moist circulation contribution (SOMA; a–c) and residual (RES; d–f) to P ′ from each node in each 3-month season
(January–March, April–June, July–September, and October–December) over each region (SGP, NGP, SW). The colors of nodes are assigned
in such a manner that adjacent nodes exhibit greater similarity in color compared to nodes that are farther apart.
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Figure 8. Mean P ′, P ′SOMA, and P ′SOMA-PDO during three periods with shifting PDO phases (P1: 1950–1976; P2: 1977–1998; P3: 1999–
2021) in the three regions (a) SGP, (b) NGP, and (c) SW. Error bars in (a) and (b) represent the 95 % confidence intervals of the mean P ′

and P ′SOMA.

Figure 9. Frequency-weighted P ′SOMA difference between positive and negative PDO phases (monthly PDO index> 0.5 and <−0.5) for
different nodes in different months. For each row or month, nodes marked with a circle (with a plus sign) indicate that the frequency
differences are significant positive or negative at the 0.10 (0.05) level, and they can be considered PDO-related nodes for that month.

would yield fewer (40.6 %) samples, although it is still fea-
sible, which could introduce greater sampling uncertainty
due to limited data availability. Results obtained using the
1.0 threshold can be found in the Supplement (Figs. S2–
S4) for reference; overall, the 0.5 and 1.0 thresholds produce
slightly different results, but these differences do not impact
our subsequent discussion.

A significant 1PDOP
′

SOMA value could be due to differ-
ences in node frequency, node-mean P ′SOMA, or both between
the two PDO phases. Our result in Fig. 9 indicates that, for
most nodes, PDO phases can have very different influences
on precipitation through moist circulation conditions identi-
fied in this study, for different seasons and regions. For ex-
ample, node A1, characterized by geopotential high anoma-
lies along the west and east coasts and low anomalies over

the central US, mirrors a Pacific North America (PNA)-like
pattern, previously linked to Pacific variability and its impact
on precipitation in the western US and GP (e.g., Ciancarelli
et al., 2014; Zhuang et al., 2021a). Interestingly, node A1
does not display a significantly higher frequency during the
positive PDO phase compared to the negative phase (even
lower in January to April; Fig. 10). However, it stands out
as one of the nodes exhibiting the most substantial contrast
in P ′SOMA between the two PDO phases over the SGP. This
contrast arises because the composite circulation pattern for
node A1 during the positive PDO phase exhibits stronger
negative Z′500 over the central US, which can promote up-
ward motion and is generally linked to reduced convection
inhibition (Fig. S5), thereby leading to larger P ′SOMA.
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Figure 10. Same as Fig. 9 but for frequency difference.

Table 1. Long-term mean precipitation anomaly changes across three periods with shifting PDO phases (P1: 1950–1976, PDO-; P2: 1977–
1998, PDO+; P3: 1999–2021, PDO−) and the total and PDO-related moist circulation (SOMA) contribution.

Region Observed change (mm d−1) SOMA contribution (%)

Total PDO-related

P1→P2 P2→P3 P1→P2 P2→P3 P1→P2 P2→P3

SGP +0.260 −0.087 62.4 28.4 23.3 24.9
NGP +0.195 −0.043 36.4 14.4 6.9 28.0
SW +0.211 −0.133 74.9 81.9 32.1 39.0

Overall, when analyzing node frequency alone (Fig. 10),
there are considerably more PDO-related nodes in the cold
season from October to March (∼ 13.5 nodes per month)
than in the warm season from April to September (∼
6.8 nodes per month). This aligns with previous studies in-
dicating that oceanic forcing has more influence on North
American precipitation variability in the cold season than in
the warm season, largely due to increased atmospheric wave
train activities excited by Pacific SST anomalies (Ciancarelli
et al., 2014; Ropelewski and Halpert, 1986). However, when
we account for the potential PDO impact on specific circu-
lation patterns and corresponding within each node, the sea-
sonal contrast in 1PDOP

′

SOMA (Fig. 9) is reduced; 6.5, 9.3,
and 10.3 nodes per month in the cold season and 5.7, 6.5,
and 9.0 nodes per month in the warm season are considered
PDO-related for the three regions.

Once the PDO-related nodes are identified, we accu-
mulate P ′SOMA only for days associated with significant
1PDOP

′

SOMA as PDO-related circulation contributed P ′

(P ′SOMA-PDO), and the result is shown in Fig. 8 (third column
in each panel). We can see that although the PDO-related
nodes we identified only constitute a small fraction of all
nodes (about 22 %, 28 %, and 35 % for SGP, NGP, and SW,
respectively), P ′SOMA-PDO shows very similar multi-decadal
changes as the total P ′SOMA. Table 1 summarizes the total
and PDO-related dynamic contribution to the multi-decadal
changes in P ′. The dynamic contributions are highest for
the SW (75 % to 82 %), with about one-third being PDO-
related (32 % to 39 %). For the other two regions (SGP and
NGP) with smaller dynamic contributions, P ′SOMA-PDO also

explains a relatively smaller portion of the total P ′ change
(mostly below 30 %).

In addition to the change in mean P ′, the change in P ′

extremes is also of interest because these extremes are more
impactful. Figure 11 shows the probability density plot of
percentile precipitation anomalies for P ′ and P ′SOMA in the
three periods. During P1→P2, all three regions show a re-
duced probability of dry extremes and an increased probabil-
ity of wet extremes. For the SGP and NGP, this decrease in
dry extremes was more prominent in the warm season than
in the cold season; the increase in wet extremes, though it
also varies seasonally, shows a larger change than dry ex-
tremes and can be found in all seasons. In the second period
change P2→P3, as the PDO shifted back to the negative
phase, all three regions showed an increase in dry extremes
and a decrease in wet extremes, but it did not recover to the
level as in P1, i.e., less dry extremes and more wet extremes
than in P1. This is potentially because anthropogenic warm-
ing has increased the moisture in the atmosphere; thus the
recent P3 period favored wetter conditions and wet extremes
more than the P1 period with the same negative PDO phase.

The moist circulation contribution P ′SOMA has relatively
flat curves at the drier side of the distribution (< 10th per-
centile; defined as dry extremes), inconsistent with the P ′

distribution, as dry extremes tend to be accompanied by
stronger thermodynamic feedback; on the wetter side of the
distribution (>90th percentile; defined as wet extremes), a
higher consistency between P ′ and P ′SOMA can be observed.
Table 2 summarizes these observed changes in dry and wet
extreme days and the corresponding total and PDO-related
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Table 2. Same as Table 1 but for change in extreme dry days (P ′ below 10th percentile) and wet days (P ′ above 90th percentile).

Extreme Region Observed change (d yr−1) Moist circulation contribution (%)

type Total PDO-related

P1→P2 P2→P3 P1→P2 P2→P3 P1→P2 P2→P3

Dry
SGP −4.8 +0.1 93.1 940.6 117.3 994.7
NGP −6.1 −3.3 10.3 18.2 −19.3 70.5
SW −24.2 +5.2 23.8 50.8 11.6 76.7

Wet
SGP +9.7 +1.2 93.8 −59.3 130.7 −196.3
NGP +11.0 −4.7 59.9 54.0 29.2 121.3
SW +16.8 −14.2 115.27 94.7 150.7 130.0

Figure 11. Kernel density plot of percentile P ′ and P ′SOMA during the three periods with shifting PDO phases (P1: 1950–1976; P2: 1977–
1998; P3: 1999–2021) in three regions: (a) SGP, (b) NGP, and (c) SW. Solid and dashed lines represent percentile P ′ and P ′SOMA, respec-
tively.

dynamic contribution. For the SGP and NGP, there is a ∼
5 d yr−1 decrease in dry extremes and a ∼ 10 d yr−1 increase
in wet extremes during the earlier PDO shift (P1→P2, neg-
ative to positive); both the total and PDO-related circulation
contribution accounts for over 90 % to the change in the SGP,
while the percentages are much smaller for the NGP. How-
ever, during the recent PDO shift (P2→P3, positive to neg-
ative), the change in both dry and wet extremes in the SGP
and NGP have a considerably smaller amplitude compared
to that during P1→P2, which could be related to the anthro-
pogenic warming-induced increase in atmospheric moisture.
SW has a greater change in extremes (−24 and +17 d yr−1

for dry and wet in P1→P2, +5 and −14 d yr−1 in P2→P3)
compared to the other two regions. Moist circulation over-
all explains a significant portion of the changes, and most of
the circulation contribution can be potentially related to PDO
phase shift, especially for wet extremes; a lower circulation
contribution for dry extremes (both overall and PDO-related
circulation) may be due to the larger influence of thermody-
namic feedback in the development of a dry event.

4 Summary and discussion

SOM has been demonstrated as an effective way of identify-
ing and visualizing large-scale circulation patterns related to

various surface anomalies, such as precipitation and temper-
ature (Liu and Weisberg, 2011). However, the SOM-based
approach to quantify the contribution of anomalous circu-
lation patterns on surface anomalies is not as reliable. On
the other hand, flow analogue (including many of its vari-
ants) or the so-called dynamical adjustment technique has
long been used as an important empirical approach to ac-
quire or remove circulation anomaly variability, though it is
not an effective way in terms of demonstrating what types of
circulation are responsible for specific surface anomalies or
quantifying the contribution from a specific group of circula-
tion. Building upon the previous studies related to these two
methods, we develop a circulation contribution quantification
approach based on both the two above-mentioned methods
and use it to investigate the large-scale atmospheric circula-
tion and moisture transport pattern related to the dry and wet
precipitation anomalies over the US Great Plains (SGP and
NGP) and the southwest (SW), as well as the moist circula-
tion contribution to these anomalies in terms of their daily to
interannual variability and long-term multi-decadal changes.

The first part of our results is a traditional SOM clustering
analysis based on the large-scale atmospheric moist circula-
tion anomaly pattern, including mid-tropospheric geopoten-
tial height (Z′500) and moisture transport (IVT′). We showed
that many of these SOM nodes, i.e., types of circulation,
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have distinctive seasonal variations in terms of their frequen-
cies of occurrence and regional precipitation anomalies re-
lated to them. This change in the circulation–precipitation
relationship is in part due to the seasonal difference in the
main mechanisms producing the precipitation. For exam-
ple, warm-season precipitation is mainly convectively driven,
so it is more related to convective energy and atmospheric
stability; therefore nodes favoring wet conditions in the
cold season which feature intense moisture transport (e.g.,
node D1, Fig. 4) could be linked to dry or neutral precipita-
tion anomalies due to the less desirable convective statistics
related to the same circulation condition.

We then went on to develop a SOM–analogue approach
and used the trained SOM to estimate the moist circulation
contribution to precipitation anomalies over the SGP, NGP,
and SW regions. Overall, the moist circulation condition rep-
resented by Z500 and IVT explains the majority of the vari-
ability and amplitude of P ′, with a higher explained ratio in
the cold season than in the warm season and a higher one over
the northern region (NGP) than the southern regions (SGP
and SW). We also showed that the main nodes responsible
for dry or wet anomalies could differ largely depending on
seasons and regions of interest.

The last part of the study further uses the partition re-
sults to estimate how much circulation can explain the multi-
decadal shift in dry and wet mean P ′ and extremes between
1950–1976, 1977–1998, and 1999–2021 and how much the
PDO-related circulation can explain them given the overall
distinctive PDO phase in each of the three periods. Our re-
sult suggests circulation explains the shift in mean P ′ best in
the SW (75 %–82 %), with the PDO-related circulation occu-
pying a large portion (32 %–39 %); while circulation may ac-
count for a greater proportion of variability and amplitude in
daily P ′ over the NGP compared to the other two more south-
ern regions, it contributes less to the multi-decadal change
in mean P ′. The result is somewhat similar for the change
in wet extreme days between the periods, with circulation
and PDO-related circulation explaining a higher portion over
the SW than over the SGP and NGP; circulation contribution
drops significantly for change in dry extreme days than that
of wet extreme days, indicating that thermodynamic factors
such as land surface feedbacks and anthropogenic warming
may play a more important role in the increase in dry ex-
tremes during the past decades.

This work demonstrates the effectiveness of the proposed
SOM–analogue in estimating circulation contribution to pre-
cipitation anomalies. This approach has the advantages of
the C2007 SOM-based method, i.e., easy visualization of
the circulation–precipitation anomaly relationship and quan-
tification of contribution from different types of circulation,
yet is less sensitive to the choice of node numbers. It also
has a comparable performance as the constructed flow ana-
logue method (Zhuang et al., 2021b) in terms of R2

SOMA (not
shown), but P ′SOMA calculated with SOM–analogue does not
contain a thermodynamic residual like that in the analogue

method. However, this is still a statistical method with cer-
tain assumptions, so limitations still exist. For example, it
could become less reliable when fewer samples are pre-
sented; both the analogue and SOM–analogue approaches
all assume a constant circulation–precipitation anomaly re-
lationship which might not hold true in a changing climate.
Furthermore, the identified PDO-related SOM nodes and P ′

are likely also modulated by tropical SST variability. This
is due to the well-established understanding that ENSO and
PDO can generate similar atmospheric and oceanic anomaly
patterns (e.g., Hu and Huang, 2009). Additionally, other in-
ternal climate variability modes, such as the Atlantic Multi-
decadal Oscillation (AMO; e.g., Hu et al., 2011), North At-
lantic Oscillation (NAO; e.g., Whan and Zwiers, 2017), and
Interdecadal Pacific Oscillation (IPO; e.g., Dai, 2013), can
also influence these patterns. The SOM circulation patterns
defined by Z′500 and IVT′ simply represent a regional-scale
manifestation of larger-scale variability simultaneously in-
fluenced by multiple internal climate modes. Attempting to
isolate the individual contribution of these modes using sta-
tistical methods with limited data, such as SOM or SOMA,
can be a complex challenge. Therefore, our results related to
PDO contribution serve as a preliminary starting point which
demonstrates the combined contribution of the SOM node
patterns statistically linked to the PDO. To gain a more de-
tailed quantification of the PDO’s influence excluding the ef-
fects of other climate variability modes, further research in-
tegrating both observational data and climate model output is
needed.
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