Supplement of Atmos. Chem. Phys., 24, 1559–1570, 2024 https://doi.org/10.5194/acp-24-1559-2024-supplement © Author(s) 2024. CC BY 4.0 License.

Supplement of

Extreme weather exacerbates ozone pollution in the Pearl River Delta, China: role of natural processes

Nan Wang et al.

Correspondence to: Xiaopu Lyu (xiaopu_lyu@hkbu.edu.hk) and Fumo Yang (fmyang@scu.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

Supporting Information

Supporting Information includes 14 pages, 11 figures and 4 tables

SI Figures S1-S11

SI Tables S1-S4

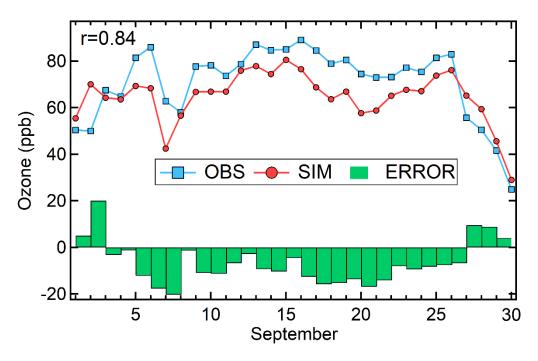


Figure S1 Validation of the stepwise regression model

Monthly Comparison

30°N

20°N

10°N

60°E

75°E

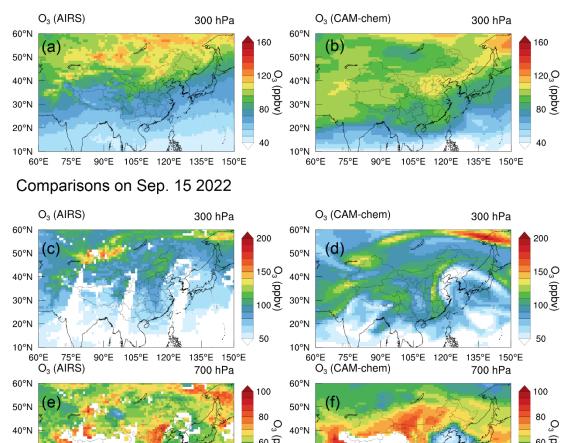


Figure S2 Comparisons of CAM-Chem simulated O3 and satellite retrieved O3 from AIRS. (a) and (b) distribution of monthly averaged O3 levels at 300hpa; (c) and (d) distribution of 300 hpa O3 levels on Sep. 15 2022 (illustrating the STE event); (e) and (f) same as (c) and (d) but at 700 hpa.

30°N

20°N

10°N

60°E

75°E

90°E

105°E 120°E 135°E 150°E

20

90°E 105°E 120°E 135°E 150°E

20

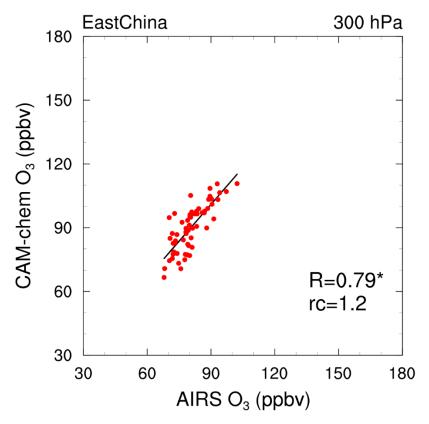


Figure. S3 Validation of AIRS O₃ and CAM-Chem simulated O₃ at 300hPa in Eastern China (R indicates correlation coefficient; rc indicates regression coefficient)

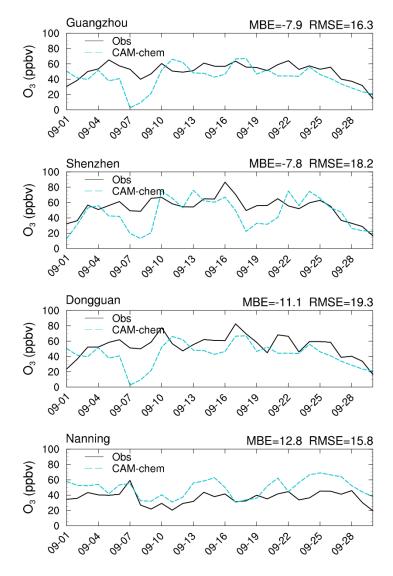


Figure S4 Comparisons of the CAM-Chem performance with surface monitrong O3 concentrations (MBE stands for mean bias error and RMSE stands for root mean square error. Obs refers to data from observations and CAM-Chem refers to the model simulated result.)

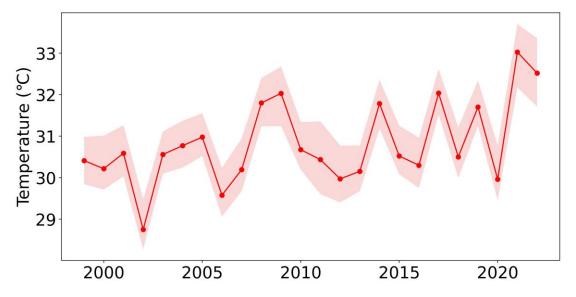


Figure S5 Historical variation of monthly average daily-maximum temperature in PRD in September from 1999 to 2022

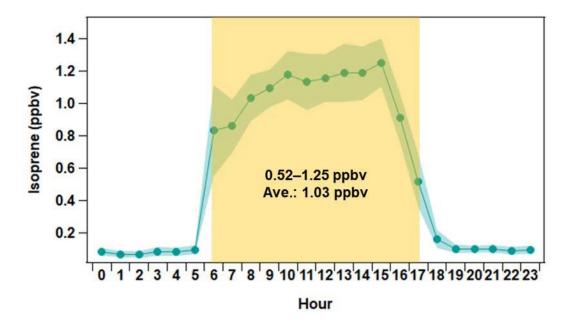


Figure S6 Diurnal variation of isoprene concentrations at HZ Base. (The yellow shaded highlights the daytime averaged concentrations, 0.51-1.25 ppbv. The daily averaged concentration was 1.03 ppbv.)

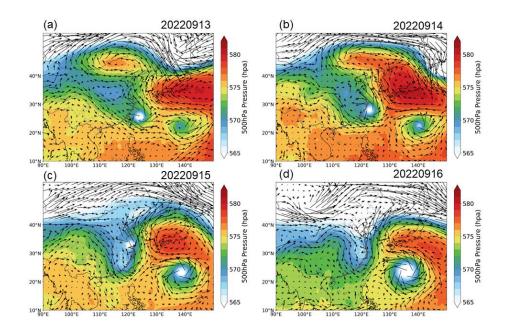


Figure S7 Synoptic weather from September 13 to September 16 2022

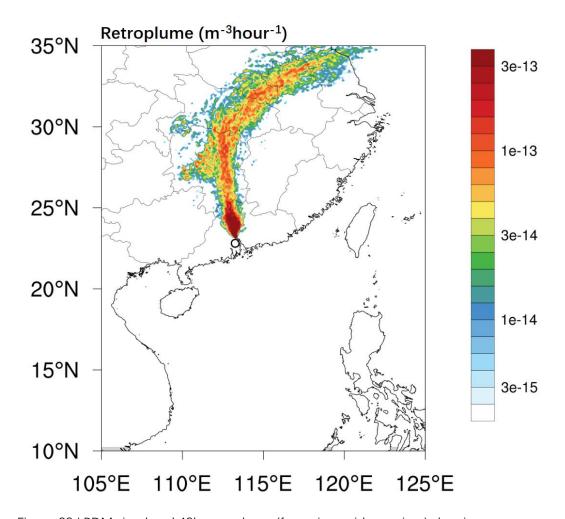


Figure S8 LPDM simulated 48h retroplume (footprint residence time) showing transport pathways of air masses impacting PRD

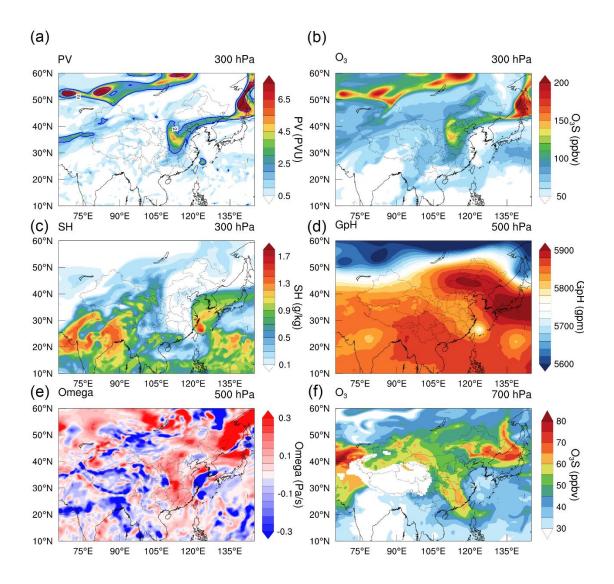


Figure S9 Evidence illustrating STE O_3 intrusion on September 13, 2022. (a) Spatial distribution of potential vorticity (PV) at 300hPa over China (The blue solid line indicates the dynamical tropopause of 2PVU, 1 PVU= 10^{-6} m² s⁻¹ K kg⁻¹); (b-e) The distribution of O_3 concentration (at 300 hPa), specific humidity (at 300 hPa, SH), geopotential height (at 500 hPa, Gph), vertical velocity (at 500 hPa, Omega), and O_3 concentration (at 700 hPa), respectively. All the data were identified based on ERA5 database.

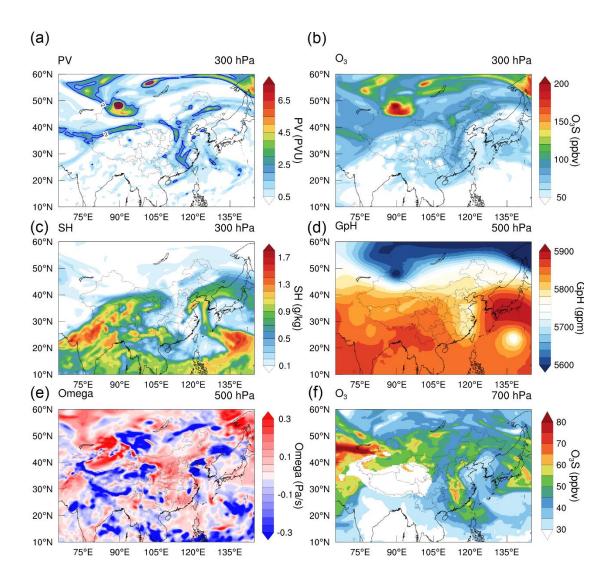


Figure S10 Same as Fig S9 but on September 15

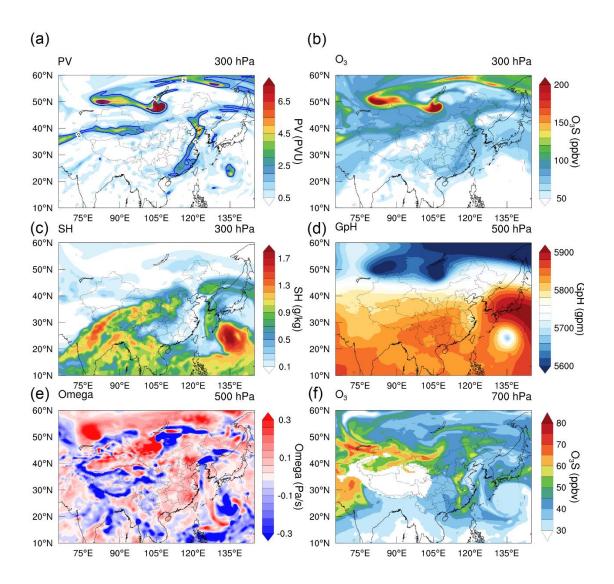


Figure S11 Same as Fig S9 but on September 16

Table S1 Introduction of monitoring instruments used in this work

Parameter	Manufacture	Model	Resolution
O_3	Thermo Scientific	49i-D1NAA	5min
NOx	Thermo Scientific	42i-DNMSDAA	5min
CO	Thermo Scientific	48i-DNSAA	5min
SO_2	Thermo Scientific	43i-DNSAA	5min
VOC	AMA, Germany	GC5000-FID	1h

Table S2 Configuration and settings of WRF-CMAQ modeling system

Item	Scheme Scheme		
Grid resolution	12×12 km		
Initial/boundary	WRF: NCEP FNL reanalysis data		
conditions	CMAQ: Mother domain (36k×36km grid resolution)		
Microphysics	WRF single-moment 5-class microphysics		
Short-wave radiation	Goddard		
Long-Wave radiation	RRTM		
WRF nudging	Yes		
Boundary Layer	ACM2		
Gas-phase Chemistry	CB05		
Aerosol option	AERO5		
Dry deposition	M3DRY		
Anthropogenic emissions	MEIC		
Natural emissions	MEGAN		

Table S3 WRF-CMAQ Model performance of O3, and NO2 in Guangzhou

Variables	O ₃ (ppb)*	NO ₂ (ppb)*
MB	-8.08	1.76
NME	-0.28	0.11
RMSE	27.74	9.42
IOA	0.74	0.72

^{*}The WRF-CMAQ simulated O₃ and NO₂ were validated with observed O₃ and NO₂ in Guangzhou using statistical metrics (MB stands for mean bias, NME stands for normalized mean bias, RMSE stands for root mean square error and IOA stands for index of agreement)

Table S4 The recorded tropical cyclones influencing PRD in September 2022

Name	Start time	End time	Max intensity
Hinnamnor	Aug 27	Sept 8	SuperTY*
Muifa	Sept 6	Sept 16	STY**
Nanmadol	Sept 12	Sept 20	SuperTY
Noru	Sept 21	Sept 29	SuperTY

^{*}SuperTY refers to super typhoon

^{**}STY refers to severe typhoon. The classification was based on China Grade of tropical cyclones (GB/T 19201-2006)