

Supplement of

A possible unaccounted source of nitrogen-containing compound formation in aerosols: amines reacting with secondary ozonides

Junting Qiu et al.

Correspondence to: Taicheng An (antc99@gdut.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

Supplement

Schemes

Scheme S1 (A) H-atom and D-atom exchange between P1 and D₂O in AN/D₂O solution. (B) Oatom exchange between P1 and $H_2^{18}O$ in AN/ $H_2^{18}O$ solution.

Scheme S2 Possible structures of P2 and P4 generated from the reactions of β -C SOZ and α -H

SOZ with MA

Figures

Figure S1 Chemical structures of β -caryophyllene and α -humulene

Figure S2 Schematic setup and procedure used in this work

Figure S3 High-resolution positive-ion ESI mass spectra of the degradation products extracted in AN/D_2O (vol/vol = 4/1) from β -C reacting with O₃.

Figure S4 Positive-ion ESI mass spectra of the products extracted in AN/W (vol/vol = 4/1) from ozonolysis of β -C in addition of EA at different timings

Figure S5 High-resolution positive-ion ESI mass spectra of (A) P2 and (B) P4 extracted in AN/W (vol/vol = 4/1), AN/D₂O (vol/vol = 4/1) and AN/H₂¹⁸O (vol/vol = 4/1) solutions