
Atmos. Chem. Phys., 24, 14191–14208, 2024
https://doi.org/10.5194/acp-24-14191-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

M
easurem

entreportMeasurement report: Surface exchange fluxes of HONO
during the growth process of paddy fields in the Huaihe

River Basin, China

Fanhao Meng1,3,�, Baobin Han1,2,�, Min Qin1, Wu Fang1,8, Ke Tang4, Dou Shao1,2, Zhitang Liao1,2,
Jun Duan1, Yan Feng5,6, Yong Huang5,6, Ting Ni5,6, and Pinhua Xie1,2,7,8

1Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics,
Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China

2University of Science and Technology of China, Hefei, 230026, China
3State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology,

Hefei, 230037, China
4School of Electrical and Photoelectronic Engineering, West Anhui University, Lu’an, 237012, China

5Anhui Institute of Meteorological Sciences, Anhui Province Key Laboratory of Atmospheric Science and
Satellite Remote Sensing, Hefei, 230031, China

6Shouxian National Climatology Observatory, Huaihe River Basin Typical Farm Eco-meteorological
Experiment Field of CMA, Huainan, 232200, China

7CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment,
Chinese Academy of Sciences, Xiamen, 361021, China

8Institute of Environment, Hefei Comprehensive National Science Center, Hefei, 230031, China
�These authors contributed equally to this work.
Correspondence: Min Qin (mqin@aiofm.ac.cn)

Received: 9 July 2024 – Discussion started: 26 July 2024
Revised: 30 October 2024 – Accepted: 31 October 2024 – Published: 20 December 2024

Abstract. Significant amounts of nitrous acid (HONO) released from soil affect the chemistry of the tropo-
sphere, thereby serving as a major precursor to hydroxyl radicals. However, the scarcity of in situ data on soil–
atmosphere HONO exchange flux has constrained the understanding of emission mechanisms and the budget of
reactive nitrogen. Herein, we performed measurements of HONO and NOx fluxes over paddy fields in the Huaihe
River Basin. The entire experiment involved various agricultural-management activities, including rotary tillage,
flood irrigation, fertilization, paddy cultivation and growth, and top dressing. HONO and NO exhibited more up-
ward fluxes, whereas NO2 was deposited on the ground, with average hourly fluxes of 0.07± 0.22, 0.19± 0.53,
and −0.42± 0.44 nmol m−2 s−1, respectively. Continuous peaks in HONO and NO fluxes were observed dur-
ing the rotary tillage period, and they exhibited a significant correlation (R = 0.77). Moreover, a significant
correlation (R = 0.60) between HONO flux and the product of J (NO2) × NO2 was observed during the day-
time. The results indicate that both biological emissions from soil and light-driven NO2 conversion are likely
active, collectively influencing the diurnal pattern of HONO flux. A source analysis revealed that the unknown
HONO source (Punknown) exhibited a diurnal pattern with higher daytime and lower nighttime values. Sensitivity
tests demonstrated that photo-enhanced NO2 conversion on the ground could adequately explain Punknown, while
nocturnal HONO production derived from soil emission fluxes (ranging from 0.32 to 0.79 ppbv h−1) could suffi-
ciently elucidate nighttime Punknown values. Our study emphasized the variability in HONO fluxes across various
agricultural-management activities, as well as the importance of heterogeneous NO2 conversion on ground sur-
faces and soil emissions in HONO production.
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1 Introduction

Nitrous acid (HONO) and nitrogen oxides (NOx = NO +
NO2) are key components of cycles of reactive nitrogen (Nr)
and significantly influence the atmospheric oxidation capac-
ity through the hydroxyl radical (OH) and ozone (O3) atmo-
spheric cycles (Kratz et al., 2022; Monks et al., 2009; Weber
et al., 2015). The photolysis of HONO contributes to 20 %–
90 % of the OH budget, not only serving as an important
source of OH in the early morning but also playing a signif-
icant role throughout the entire day (Elshorbany et al., 2009;
Kim et al., 2014; Kleffmann et al., 2005; Nan et al., 2017;
Xue et al., 2020). Despite the significance of HONO in atmo-
spheric chemistry, the formation mechanism of HONO, espe-
cially that occurring during the daytime, is still not well un-
derstood. Unexpectedly large discrepancies have been found
between HONO measurements and predicted values from
known mechanisms, implying the existence of sources of
HONO that have not yet been identified (Lee et al., 2016;
Liu et al., 2019b; Sörgel et al., 2011; Su et al., 2011; Tang
et al., 2015). Several potential mechanisms have been pro-
posed to explain atmospheric HONO levels, including direct
emissions from combustion processes (Nakashima and Ka-
jii, 2017; Nie et al., 2015); the chemical equilibrium between
soil nitrite (NO−2 ) and hydrogen ions (Su et al., 2011); pho-
tosensitized reactions of NO2 on organic substances (George
et al., 2005), humic acids (Han et al., 2016; Stemmler et
al., 2006), soot (Monge et al., 2010), minerals (Ndour et al.,
2008), urban grime (J. Liu et al., 2019), plant leaves (Mar-
ion et al., 2021), etc.; the photolysis of adsorbed nitrates/ni-
tric acid (Ye et al., 2017; Zhou et al., 2003; Zhou et al.,
2011) and ortho-nitrophenols (Bejan et al., 2006; Guo and
Li, 2022); direct emissions from ammonia-oxidizing bacte-
ria and other microorganisms (Oswald et al., 2013; Scharko
et al., 2015); the desorption of adsorbed HONO from the sur-
face by means of acid displacement processes (Vandenboer
et al., 2013, 2014, 2015); and chemical reactions of hydrox-
ylamine on the surface of soil particles (Ermel et al., 2018).
Furthermore, the NH3-promoted heterogeneous reaction of
NO2 has recently been proposed based on laboratory and
field studies (Ge et al., 2019; Li et al., 2018; Xu et al., 2019);
however, this mechanism and its atmospheric influences re-
quire further investigation.

Flux measurement has long been considered a useful tool
for quantifying ground-level sources of HONO, providing
direct insights into the production and loss processes at the
surface. In recent years, micrometeorological methods, such
as relaxed eddy accumulation (REA) and the aerodynamic
gradient (AG) method, have been developed and applied
in HONO flux research, with field observations primarily
conducted in Europe and North America. Using the REA
method, Ren et al. (2011), von der Heyden et al. (2022),
and Zhou et al. (2011) measured HONO fluxes in various

environments, such as agricultural fields, forests, and grass-
lands. These studies revealed that HONO fluxes are primar-
ily driven by photosensitized NO2 reduction and the pho-
tolysis of adsorbed HNO3. Laufs et al. (2017), Meng et
al. (2022), and Sörgel et al. (2015) performed measurements
utilizing the AG method over bare soil, corn canopies, for-
est canopies, and wheat canopies, obtaining similar conclu-
sions. Nevertheless, the chamber method provides greater
flexibility and is suitable for multipoint observations within
agricultural fields. Tang et al. (2020) and Xue et al. (2019)
investigated HONO emissions from agricultural soil in the
Huaihe River Basin and the North China Plain (NCP) by em-
ploying the open-top dynamic chamber method, confirming
that agricultural soil emissions are an important source of
atmospheric HONO. However, the limited number of avail-
able HONO flux studies indicates that there may be differ-
ent potential HONO precursors, demonstrating the neces-
sity for more HONO flux measurements to explore poten-
tial HONO formation pathways. Moreover, most flux mea-
surements are typically conducted over the short term (less
than 1 month) and cannot cover the entire growing season of
crops. Research on HONO fluxes in agriculture has primarily
focused on wheat–maize rotations and the effects of fertiliza-
tion. Paddy fields, which cultivate a major crop in southern
China under unique growth conditions, have received little
attention, resulting in limited understanding of the Nr budget
in paddy field ecosystems.

Croplands, which cover 50 % of global habitable areas
(FAO, 2022), play a crucial role in the global nitrogen budget.
The application of nitrogen fertilizers has been instrumen-
tal in boosting food production. Nevertheless, the overuse
of fertilizers has also resulted in soil degradation, declining
air quality, and adverse effects on human health. Simulta-
neously, the extensive application of synthetic nitrogen fer-
tilizers on cropland, coupled with the fertilizers’ low nitro-
gen use efficiency (< 50 % on average) (Mueller et al., 2017;
Zhang et al., 2015), has led to the release of excess Nr from
soil through microbial processes. Among these processes,
NOx mediates the production and destruction of O3, influ-
ences the formation of the OH radical, and can be oxidized
to nitric acid and nitrate, thereby increasing both the wet and
dry deposition of nitrogen in ecosystems (Pilegaard, 2013).
Notably, the positive effect of nitrogen fertilizers on HONO
emissions has been consistently verified (Wang et al., 2021).
Xue et al. (2019) reported an extraordinarily high HONO flux
of 1515 ng N m−2 s−1 under excessive fertilization condi-
tions, which greatly exceeded the emissions from unfertilized
farmland and even surpassed laboratory results. This under-
scores the significant potential for Nr emissions originating
from agricultural soil. Therefore, it is imperative to compre-
hend the fluxes within agricultural ecosystems to elucidate
the mechanisms of Nr production and loss. The lack of field
data on HONO fluxes in paddy fields, coupled with the am-
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Figure 1. The aerodynamic gradient measurement setup for the determination of HONO, NO, and NO2 fluxes. BBCEAS: broadband cavity-
enhanced absorption spectrometer.

biguous impacts of agricultural-management activities, hin-
ders our understanding of soil–atmosphere exchange mech-
anisms. Laboratory studies have also demonstrated HONO
and NO emissions at high levels of water content (Wang et
al., 2021; Wu et al., 2019), and anaerobic denitrification in
oxygen-limited environments can be an important source of
HONO (Bhattarai et al., 2021; Wang et al., 2021; Wu et al.,
2019). This highlights the necessity of further investigating
the effects of flooded paddy fields and agricultural practices
on soil HONO emissions.

In this study, soil–atmosphere exchange processes in
paddy fields located in the Huaihe River Basin were inves-
tigated using the AG method in conjunction with a broad-
band cavity-enhanced absorption spectrometer (BBCEAS)
system and an NOx analyzer. Variations in HONO and NOx
levels and fluxes were evaluated across various agricultural-
management processes from June to July, corresponding to
the paddy growing season. Additionally, particular focus was
placed on investigating the sources of HONO during the ro-
tary tillage period and their contribution to the atmospheric
oxidizing capacity.

2 Materials and methods

2.1 Measurement site

The field campaign was conducted at the Shouxian National
Climatology Observatory (32°25′ N, 116°47′ E; 25 m above
sea level), located 9 km south of Shouxian, Anhui (Fig. S1
in the Supplement). This location represents a typical rice–
wheat rotation ecosystem in the Huang–Huai agroecological
region, which serves as the primary grain production area in
China, contributing to 18 % of the nation’s total grain produc-

tion. Additionally, it is responsible for 76.3 % of the coun-
try’s total nitrogen fertilizer application (Cao et al., 2019).
The site covers a 17 ha field and is dedicated to the cultiva-
tion of rice–wheat rotations. It serves as an experimental site
for studying surface–atmosphere exchange. The site is situ-
ated amidst other agricultural fields, with a low-traffic road
to the north (250 m). The region has a prevailing subtropi-
cal monsoon climate, characterized by distinct seasons, with
high temperatures and rainfall occurring in the same season.
The average annual temperature is 14.8 °C, and the average
annual precipitation amount is 905 mm.

2.2 Experimental design

The flux measurements were conducted from 1 June to
14 July 2021, immediately following the winter wheat har-
vest on 31 May 2021. The tillage process took place over
11 d, from 2 to 13 June, followed by periods of flood irriga-
tion and fertilization with a compound fertilizer (N–P2O5–
K2O (15 %–15 %–15 %)), applied at a rate of 67.5 kg N ha−1,
before 22 June 2021. Consequently, the surface was a mix-
ture of bare soil and sparse winter wheat residues before ir-
rigation took place (09:00 LT on 13 June; hereafter, all times
are given in local time), while the soil became waterlogged
after flood irrigation. The paddy seedlings were transplanted
on 26 and 27 June at a density of 1.8× 105 plants ha−1 and
grew from 0.14 m to approximately 0.22 m during the cam-
paign. Additionally, irrigation was employed following the
paddy transplantation to mitigate water deficiency during the
growth phase, thereby preventing the potential mortality of
paddy seedlings. The 46 % N urea solution (69 kg N ha−1)
was applied as a top dressing on 10 July.
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Figure 2. Temporal variations in meteorological parameters (wind speed, wind direction, air temperature, relative humidity, and precipita-
tion), soil temperature, water-filled pore space (WFPS), and PM2.5 measured from 1 June to 14 July 2021.

Concentrations of HONO and NO2 in the ambient air were
measured using a homemade BBCEAS instrument with a
time resolution of 1 min and detection limits of 54 pptv (2σ )
for HONO and 98 pptv (2σ ) for NO2. The measurement un-
certainties were 8.7 % for HONO and 8.1 % for NO2. Further
details regarding the BBCEAS, such as its principle, instru-
ment parameters, and quality control, are described in de-
tail elsewhere (Duan et al., 2018; Tang et al., 2019). NO
was measured using a custom-built chemiluminescence in-
strument (Model 42i-TL, Thermo Fisher Scientific, USA),
and O3 was measured using Model 49i (Thermo Fisher Sci-
entific), with detection limits of 50 pptv for NO and 500 pptv
for O3. Measurements of soil temperature and moisture, as
well as meteorological and micrometeorological parameters,
are presented in Sect. S1 in the Supplement.

Trace gas profiles of HONO, NO, and NO2 were obtained
using inlets positioned at heights of 0.2 and 1.6 m, which
were adjusted to 0.3 and 1.6 m, respectively, on 27 June to ac-
commodate the canopy height, ensuring they consistently ex-
ceeded the canopy height throughout the campaign (Fig. 1).
Two BBCEAS instruments were used to measure HONO
and NO2 at different heights. They were intercompared sev-
eral times throughout the campaign and exhibited excel-
lent agreement (R2

= 0.989 for HONO and R2
= 0.998 for

NO2), with slopes close to 1 (Fig. S2). An NOx analyzer for
NO measurements was connected to a Teflon solenoid valve
to enable sequential measurements at two different heights.
All instruments were placed in a thermostated container con-
trolled by an air conditioner, with external sampling inlets
affixed to a small mast. The sampling inlets were oriented
away from the mast and toward the prevailing wind direction
to minimize turbulence disruption. To prevent photolysis and
the condensation of water vapor, the perfluoroalkoxy (PFA)
inlet lines (7.5 m in length with a 6 mm external diameter)
were shielded from radiation and slightly heated using heat-
ing tape, with the heating temperature set to about 30 °C.

2.3 Aerodynamic gradient fluxes of HONO, NO, and
NO2

The HONO, NO, and NO2 fluxes were calculated using the
AG method at time intervals of 30 min, as elaborated upon in
previous studies (Laufs et al., 2017; Meng et al., 2022; Stella
et al., 2012) and briefly introduced here. The flux (Fχ ) of
trace gas is calculated from the friction velocity (u∗) and the
mixing-ratio scaling parameter (χ∗) as follows:

Fχ =−u∗χ∗, (1)
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Figure 3. Time series of O3, NO, and NO2, as well as those of the fluxes of HONO, NO, and NO2, were determined using the aerodynamic
gradient method. The mixing ratios of HONO, NO, NO2 (0.2–0.3 m for the lower level and 1.6 m for the upper level), and O3 were measured
above a crop rotation field and averaged over 30 min intervals. Periods of agricultural-management activities (rotary tillage, flood irrigation,
fertilization, after fertilization, paddy cultivation and growth, and top dressing) are indicated at the top of the graph.

where u∗ is calculated from eddy covariance measurements
and χ∗ is defined using the stability-corrected gradient of the

scalar mixing ratio (χ ) and height (z) as

χ∗ = κ ·
∂χ

∂
[
ln (z− d)−9H

(
z−d
L

)] . (2)
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Table 1. Statistical summary of HONO, NO, and NO2 concentrations, as well as HONO flux, NO flux, and NO2 flux, across various
agricultural activities spanning the period from 1 June to 14 July 2021.

Agricultural activities HONO (ppbv) NO (ppbv) NO2 (ppbv) HONO flux NO flux NO2 flux

0.2–0.3 m 1.6 m 0.2–0.3 m 1.6 m 0.2–0.3 m 1.6 m (nmol m−2 (nmol m−2 (nmol m−2

s−1) s−1) s−1)

Rotary tillage Ave 0.99 0.69 1.88 0.87 6.26 6.56 0.23 0.47 −0.72
Min 0.08 0.07 0.07 0.06 0.70 0.90 −0.62 −0.78 −3.50
Max 3.60 2.36 36.02 17.80 22.24 35.03 1.86 9.12 0.29

Flood irrigation Ave 0.19 0.18 0.66 0.46 4.62 4.91 0.02 0.18 −0.40
Min 0.04 0.06 0.13 0.08 1.11 1.11 −0.40 −0.78 −1.93
Max 0.52 0.44 9.22 2.12 17.31 19.92 0.32 1.18 0.50

Fertilization Ave 0.24 0.31 0.33 0.28 5.81 6.15 −0.06 0.03 −0.34
Min 0.08 0.07 0.06 0.05 0.39 0.64 −0.38 −0.13 −1.37
Max 0.61 0.71 7.02 4.14 30.30 29.07 0.11 0.31 0.07

After fertilization Ave 0.30 0.36 0.26 0.26 4.58 4.49 −0.05 0.001 −0.19
Min 0.06 0.05 0.05 0.06 0.69 0.88 −0.41 −0.23 −1.17
Max 1.05 1.29 4.09 4.61 19.25 20.32 0.26 0.12 0.26

Paddy cultivation Ave 0.18 0.21 0.42 0.39 3.45 3.76 −0.05 0.02 −0.34
and growth Min 0.04 0.05 0.05 0.05 0.29 0.53 −0.70 −1.01 −1.93

Max 0.63 0.69 15.21 12.40 14.32 15.85 0.42 0.44 0.50

Top dressing Ave 0.23 0.19 0.24 0.22 2.78 3.02 0.05 0.03 −0.29
Min 0.05 0.05 0.05 0.05 0.49 0.63 −0.34 −0.37 −3.26
Max 1.21 0.51 1.57 1.31 9.59 9.49 0.57 1.27 0.09

Note that Ave, Min, and Max represent the average, minimum, and maximum, respectively. Moreover, 0.2–0.3 and 1.6 m represent the lower and upper levels, respectively.

The fluxes (FHONO,NO, and NO2 ) of trace gases at the geomet-
ric mean height can be expressed as

FHONO,NO, and NO2 =−κ ·u∗·
∂c (HONO, NOandNO2)

∂
[
ln (z− d)−9H

(
z−d
L

)] , (3)

where κ is the von Kármán constant (κ = 0.4), z is the height
above the ground, d is the zero-plane displacement (taken as
2/3 ·hc, where hc is the canopy height), L is the Obukhov
length, and 9H is the integrated stability correction function
for scalars (Sutton et al., 1993).

Data from all instruments could not always be collected
simultaneously for flux calculations due to various factors,
such as calibration, malfunction, and disturbances from agri-
cultural activities. Consequently, the affected data were ex-
cluded when calculating fluxes. The dataset used for the de-
termination of HONO, NO, and NO2 fluxes comprised 68 %
of the HONO data, 81 % of the NO data, and 86 % of the NO2
data. The total uncertainty in the flux is composed of the gra-
dient error and the friction velocity error (Laufs et al., 2017;
Meng et al., 2022). The average uncertainties for HONO,
NO, and NO2 fluxes (each calculated using the median of the
25th–75th percentile range) corresponded to 11 %, 16 %, and
20 %, respectively. Furthermore, the fluxes were discarded
under very stable conditions with low wind speeds and fric-
tion velocities. It is important to note that HONO, NO, and
NO2 are subject to chemical reactions, which may lead to a

vertical divergence of flux between the surface and the mea-
surement height. The influence of chemical reactions dur-
ing turbulent transport was checked utilizing the Damköhler
number (DA), as detailed in Sect. S2. The divergence caused
by chemical reactions of HONO could be neglected when
interpreting the potential sources of HONO and the driving
factors of HONO flux. DA values for the NO–O3–NO2 triad
were generally less than 1; however, a sharp increase in flux
divergence occurred when DA values became greater than
1 (Stella et al., 2012). Additionally, the upward NO2 flux
exhibited a significant correlation (R = 0.82) with NO flux,
suggesting that the upward NO2 flux could be attributed to
the reaction of NO and O3. Consequently, in light of the in-
fluence of chemical reactions on the fluxes of NO and NO2,
these fluxes (5.9 % for NO flux and 10.5 % for NO2 flux)
were excluded from subsequent analysis.

3 Results and discussion

3.1 Overview of meteorological and soil parameters

Time series of meteorological parameters recorded through-
out the observation period are shown in Fig. 2. The cam-
paign weather was dominated by sunny days, with 64 %
of the days having a daily maximum global radiation level
above 700 W m−2. Ambient temperature ranged from 17.0
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Figure 4. (a) Diurnal variations in NO2 photolysis frequency (J (NO2)), air temperature, relative humidity, soil temperature, and WFPS
throughout the entire campaign. (b) Diurnal profiles of HONO, NO, and NO2 fluxes are presented for the entire campaign and the rotary
tillage period. The shaded areas denote the standard deviation.

to 36.6 °C, and soil temperature ranged from 20.0 to 34.8 °C,
with average values of 26.8± 3.5 and 26.5± 2.7 °C, respec-
tively. The relative humidity (RH) ranged from 22 % to
98 %, and the soil water-filled pore space (WFPS) ranged
from 44 % to 88 %, with average values of 77%± 17%
and 69%± 15%, respectively. The average wind speed was
3 m s−1, with a maximum wind speed of 11.0 m s−1 occur-
ring during the rotary tillage period. The PM2.5 concentra-
tion varied from 1 to 100 µg m−3, with its daily average value
remaining below the Class II threshold of the Chinese Na-
tional Ambient Air Quality Standard (75 µg m−3). Intermit-
tent rainfall occurred from 13 June to 5 July, with a total pre-
cipitation amount of 186.1 mm. Notably, after irrigation of

the agricultural field on 13 June, the WFPS increased from
45 % to 80 %.

3.2 Mixing-ratio differences and fluxes of HONO, NO,
and NO2

The field campaign was conducted across various
agricultural-management activities, including rotary tillage
(2–13 June), flood irrigation (13–19 June), fertilization
(19–21 June), paddy cultivation (26–27 June), and top
dressing (10 July). Figure 3 illustrates the time series of
HONO, NO, NO2, and O3 mixing ratios. Throughout the
campaign, ambient O3 concentrations varied from 0.54 to

https://doi.org/10.5194/acp-24-14191-2024 Atmos. Chem. Phys., 24, 14191–14208, 2024
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Table 2. Summary of the maximum and minimum HONO fluxes in field measurements across different soil types at remote, rural, and
suburban sites.

Soil type Method HONO fluxa (nmol m−2 s−1) HONO fluxb (nmol m−2 s−1) Reference

Min Max Min Max

Grassland AG −0.09 0.53 – – Harrison and Kitto (1994)
−0.21 0.70

Forest AG 0.02 0.07 – – Sörgel et al. (2015)

Maize AG – – 0.01 0.16 Laufs et al. (2017)

Wheat AG −0.39 1.10 −0.003 0.20 Meng et al. (2022)

Agricultural field REA −0.30 0.50 −0.007 0.10 Ren et al. (2011)

Forest REA −0.50 1.31 0.03 0.19 Zhou et al. (2011)

Forest REA 0.03 0.19 – – Zhang et al. (2012)

Grassland REA −0.06 0.16 0.02 0.07 Von der Heyden et al. (2022)

Maize OTDC 0.04 0.23 – – Xue et al. (2019)
0.41 2.89 – –

– 108.21 – –

Maize OTDC – 2.84 -0.06 1.45 Tang et al. (2019)

Wheat OTDC −0.09 0.55 – – Tang et al. (2020)

Maize OTDC −0.61 22.79 0.01 10.86 Song et al. (2023)

Maize OTDC – 0.33 – – Xue et al. (2024)
– 11.50 – –
– 24.86 – –

Paddy AG −0.70 1.86 0.01 0.15 This study

AG: aerodynamic gradient. REA: relaxed eddy accumulation. OTDC: open-top dynamic chamber. a Values in the time series. b Values in the diurnal variations.

131.57 ppbv, with an average of 48.44± 26.29 ppbv. The
peak NO mixing ratio reached 36.02 ppbv during rotary
tillage, and the average mixing ratios of NO at lower
(0.2–0.3 m) and upper (1.6 m) levels were 0.75± 2.21 and
0.46± 1.16 ppbv, respectively. Higher NO mixing ratios
were measured at the lower level, likely due to soil NO
emissions caused by microbiological activity (Bargsten et
al., 2010; Ludwig et al., 2001). Moreover, the average NO2
mixing ratios were 4.48± 4.96 and 4.75± 4.38 ppbv at the
lower and upper levels, respectively. The synchronous peaks
of NO and NO2 and the decrease in O3 (e.g., in the early
hours of 7 June) indicate that NO release from soil may
react rapidly with O3 to form NO2. Ambient HONO mixing
ratios ranged from below detection limits to 3.60 ppbv at the
lower level and 2.36 ppbv at the upper level, with averages of
0.46± 0.59 and 0.37± 0.37 ppbv, respectively. The average
HONO /NOx ratio of 0.079±0.059 was significantly higher
than the values in the range for direct emissions from vehicle
exhausts, as reported in previous studies (0.003–0.018)
(Kirchstetter et al., 1996; Kurtenbach et al., 2001; Liang
et al., 2017; Liu et al., 2017; Nakashima and Kajii, 2017;

Nakashima and Kondo, 2022), and was comparable to the
value observed for summer agricultural fields in the NCP
(0.0929; Song et al., 2022). Notably, successive HONO
peaks were measured during rotary tillage, with HONO
mixing ratios reaching 3.60 ppbv at the lower level. These
values exceeded those observed during the winter at the
same site (Meng et al., 2022) and were comparable to
observations at suburban sites in the Pearl River Delta (Li et
al., 2012; Su et al., 2008) and those at rural sites in the NCP
(Xue et al., 2020). However, HONO levels declined rapidly
following flood irrigation (see Fig. 3 and Table 1). After
fertilization and top dressing, a noticeable rise in HONO
levels was observed, which can be attributed to the increase
in HONO release due to fertilizer application at high levels
of water content (Tang et al., 2019; Wang et al., 2021; Wu et
al., 2019; Xue et al., 2019). Nevertheless, these levels were
significantly lower than the mixing ratios observed during
rotary tillage.

The fluxes of HONO, NO, and NO2 determined by the
AG method are illustrated in Fig. 3. Upward fluxes were
commonly observed for HONO and NO, while NO2 was de-
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Figure 5. Correlation of HONO flux with NO flux during rotary
tillage.

posited on the ground. The magnitude of observed HONO
fluxes ranged from −0.70 to 1.86 nmol m−2 s−1, with an av-
erage of 0.07± 0.22 nmol m−2 s−1, which falls within the
range of HONO flux measurements for rural and suburban re-
gions reported in the literature (see Table 2). Upward HONO
fluxes were mostly observed during rotary tillage, reaching
up to 1.86 nmol m−2 s−1. After irrigation, an increase in soil
moisture content (∼ 80% WFPS) led to a significant reduc-
tion in HONO flux. Previous laboratory studies have also
demonstrated that lower levels of HONO flux at high water-
holding capacities, low gas diffusion rates, and high solubil-
ity levels could limit the release of HONO from soil (Ermel
et al., 2018; Meusel et al., 2018; Wu et al., 2014). Observa-
tions from before and after irrigation demonstrate the regu-
latory role of soil moisture in the HONO exchange process,
which has been systematically investigated in previous stud-
ies by examining HONO emission flux as a function of soil
moisture (Mamtimin et al., 2016; Wang et al., 2021). Soil
moisture determines whether nitrification or denitrification
processes dominate gas emissions and strongly influences the
corresponding gas emission rates and concentration compen-
sation points (Cheng, 2013). Several laboratory findings in-
dicate that nitrification under conditions of low soil moisture
is the dominant process behind HONO emissions (Oswald
et al., 2013; Scharko et al., 2015), and field observations of
HONO have predominantly focused on dryland ecosystems
(Ren et al., 2011). Conversely, Wu et al. (2019) demonstrated
that soil with a high water content (with a 75 %–140 % water-
holding capacity (WHC)) can also exhibit substantial emis-
sions of HONO, with the average ratio of the highest HONO
flux during the wet peak to that during the dry peak being
approximately 30 %. However, actual field observations have
revealed that HONO fluxes are very low (close to zero) un-
der conditions of high water content, which may be attributed
to the influence of soil moisture on microbial metabolic ac-

tivity and gas diffusion in the soil (Hu et al., 2015; Linn
and Doran, 1984). Furthermore, Wang et al. (2021) reported
the promoting effect of fertilization on HONO flux under
conditions of high soil moisture (75 %–95 % WHC). Nev-
ertheless, we did not observe this phenomenon in our field
experiments conducted in paddy fields. This discrepancy is
probably attributed to the anaerobic or microaerobic condi-
tions created by pre-fertilization irrigation, which exerted a
greater inhibitory effect on the nitrification process than the
promoting effect of fertilization. Currently, the estimation of
HONO flux at the regional scale relies more on laboratory
research findings (Gan et al., 2024; Wu et al., 2022). This
study highlights discrepancies between laboratory and field
observations corresponding to high levels of soil water con-
tent, which pose significant challenges to the uncertainty in
estimation results.

The agricultural field acted as a well-known source
of atmospheric NO, with an average flux of 0.19±
0.53 nmol m−2 s−1 observed in this study. Similar to HONO
fluxes, upward NO fluxes were mostly observed during ro-
tary tillage, with a maximum flux of 9.12 nmol m−2 s−1 dur-
ing the early morning (Table 1). This finding is consistent
with previous studies that show that tillage increases NO
emissions (Chatskikh and Olesen, 2007; Fang et al., 2006;
Fang and Yujing, 2009; Liu et al., 2005; Pinto et al., 2004;
Sehy et al., 2003; Yao et al., 2009; Yamulki and Jarvis, 2002).
However, the NO fluxes were close to zero when the paddy
field was waterlogged, probably because the nitrification pro-
cess that dominates NO production in soil was greatly hin-
dered in water-saturated soil and at anoxic microsites (Fang
and Yujing, 2009). Similarly, we also did not observe signifi-
cant emissions of HONO under sustained conditions of high
moisture. The coinciding peaks in HONO flux and NO flux
during rotary tillage suggest that HONO release from soil,
similar to NO release, is associated with microbial activity
in the soil (Bargsten et al., 2010; Skiba et al., 1993). Fur-
thermore, notably elevated fluxes of HONO and NO were
observed during rotary tillage compared to other phases of
agricultural activities (Fig. S3). The higher emission rates
of NO and HONO may account for the successive peaks
in their concentrations and fluxes. Similar to NO emission,
the emission of HONO from soil may be significantly stim-
ulated by soil tillage. Additionally, an average NO2 flux of
−0.42± 0.44 nmol m−2 s−1 (with flux values ranging from
−3.50 to 0.50 nmol m−2 s−1) indicates that the agricultural
field acted as a sink for atmospheric NO2 (Fang and Yujing,
2009; Tang et al., 2020).

3.3 Diurnal profiles of fluxes and HONO sources during
rotary tillage

Diurnal variations in NO2 photolysis frequency (J (NO2)),
air temperature, relative humidity, soil temperature, WFPS,
NO flux, NO2 flux, and HONO flux are illustrated in Fig. 4.
The diurnal HONO flux exhibited no discernible diurnal
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Figure 6. Correlation of daytime HONO flux with (a) NO2, (b) J (NO2), and (c) the product of J (NO2) × [NO2] during rotary tillage.

pattern throughout the entire campaign, similar to the di-
urnal profile observed during BEARPEX 2009 in Califor-
nia (Ren et al., 2011). Significant HONO emissions were
primarily observed during rotary tillage, and their daily
pattern is depicted in Fig. 4. Upward HONO fluxes were
observed throughout the day, with a maximum value of
0.55 nmol m−2 s−1 in the early morning. Distinct HONO
emissions were observed in the morning after sunrise.
Moreover, the magnitudes of the daytime fluxes (0.25±
0.13 nmol m−2 s−1) were comparable to the nocturnal val-
ues (0.27± 0.13 nmol m−2 s−1). The diurnal profile of NO
flux exhibited consistent levels of NO emissions throughout
the day, except during a noticeable peak in the early morn-
ing. It is worth noting that synchronous peaks in HONO
flux and NO flux were observed in the morning. Unlike for
the fluxes of HONO and NO, deposition was the prevail-
ing process for NO2 flux. A greater downward NO2 flux of
−0.85± 0.27 nmol m−2 s−1 (−0.57± 0.23 nmol m−2 s−1 at
night) was observed during the daytime, potentially due to
an increase in the dry-deposition velocity of NO2 during the
day.

Throughout the rotary tillage period, the emissions
of HONO and NO were significant, with maximum
fluxes reaching 1.86 nmol m−2 s−1 for HONO and
9.12 nmol m−2 s−1 for NO. The concurrent peaks in
HONO and NO fluxes indicate that HONO emissions
may originate from soil sources as it is well established
that NO is primarily generated by and released from soil
microbial processes (Feig et al., 2008; Rende et al., 1989).
As shown in Fig. 5, a significant correlation (R = 0.77)
was observed between the fluxes of HONO and NO during
the rotary tillage period, suggesting a shared source for
both gases. This could be attributed to the generation and
release of HONO and NO via soil microbial processes,
aligning with the results reported by Tang et al. (2020).
A Gaussian fitting was employed to analyze variations in
HONO and NO fluxes with soil temperature (Fig. S4). It
was found that both HONO and NO exhibited maximum
emission fluxes at approximately 25 and 24 °C, respectively,
which correspond to the optimal temperature (25 °C) for soil
microbial nitrification and denitrification processes (Agehara
and Warncke, 2005; Fang and Yujing, 2009). This finding

Atmos. Chem. Phys., 24, 14191–14208, 2024 https://doi.org/10.5194/acp-24-14191-2024



F. Meng et al.: Surface exchange fluxes of HONO 14201

Figure 7. Diurnal variation in the HONO budget during rotary
tillage.

further supports the hypothesis that HONO is generated by
and released from soil biological processes. Additionally,
there was an indication of an elevation in HONO flux during
periods of intense solar radiation in the morning. Although
the correlations between HONO flux and NO2, J (NO2),
or NO2 fluxes were found to be low (R = 0.28, 0.12, and
0.25, respectively), we observed a significant correlation
(R = 0.60) between HONO flux and the product of J (NO2)
× NO2 (Fig. 6), as well as a moderate correlation (R = 0.41)
between HONO flux and the product of J (NO2) × NO2 flux
(Fig. S5). This indicates that light-induced NO2 conversion
serves as an important source of HONO during the day.
Furthermore, another mechanism of acid displacement can
be ruled out as the major strong acid, HNO3, is primarily
generated during the daytime and subsequently deposited on
the ground. Consequently, the peak of the HONO source is
expected to occur in the afternoon (Vandenboer et al., 2015).
Finally, the results indicate that both mechanisms – release
from soil biological processes and that from light-induced
NO2 conversion – are likely active, together affecting the
diurnal HONO flux pattern.

3.4 HONO budget during rotary tillage

In Sect. 3.3, we presented the potential sources of HONO
flux during rotary tillage by conducting a correlation analy-
sis. Here, we will further calculate the specific contributions
of HONO sources through a budget analysis. The HONO
budget can be derived from known HONO sources and
sinks, and the potential unknown HONO source during ro-
tary tillage was estimated. The lower-level data that better
describe ground source processes were used for the budget
analysis. In this study, the investigated HONO sources in-
cluded the homogeneous reaction (POH+NO) and the hetero-

Figure 8. Diurnal variation in the light-induced conversion of NO2
and HONO flux rates derived from soil emissions.

geneous reactions of NO2 on the aerosol surface and that
on the ground surface (Paerosol and Pground, respectively).
The HONO sinks included the reaction of HONO with OH
(LOH+HONO), the photolysis of HONO (Lphoto), and the dry-
deposition loss of HONO (Ldep). The calculations of HONO
sources and sinks, as well as the estimates of the mixing-
layer height (MLH), are described in detail in Sect. S3.

dHONO
dt

=
(
POH+NO+Punknown+Paerosol+Pground

)
−

(
LOH+HONO+Lphoto+Ldep

)
(4)

Simplifying Eq. (4), dHONO/dt is approximated by
1HONO/1t . Then, Eq. (4) becomes Eq. (5) as follows:

Punknown =
1HONO
1t

+LOH+HONO+Lphoto+Ldep

−POH+NO−Paerosol−Pground . (5)

The average production and loss rates for the diurnal HONO
budget are shown in Fig. 7. The homogeneous reaction of
NO and OH accounted for 12.8 % of HONO production,
with an average POH+NO value of 0.15±0.10 ppbv h−1. The
heterogeneous conversion of NO2 on the ground surface
accounted for 12.4 % (0.1± 0.07 ppbv h−1) of HONO pro-
duction at night. Paerosol (0.01± 0.006 ppbv h−1) was neg-
ligible compared to other HONO sources due to its rela-
tively small aerosol surface area (Fig. S6). Photodecompo-
sition (Lphoto) was the primary sink of HONO during the
daytime, with a peak of 2.03 ppbv h−1 at 11:00 and an av-
erage of 1.44± 0.69 ppbv h−1, while LOH+HONO was very
small and accounted for less than 5 % of Lphoto. The dry
deposition of HONO (Ldep) was influenced by the mixing-
layer height (MLH) and dominated the loss of HONO at
night, with a rate exceeding 0.6 ppbv h−1. Punknown exhib-
ited an obvious diurnal variation, with higher values during
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Figure 9. Diurnal variation in net OH production rates from the photolysis of HONO (P (OH)HONO) and O3 (P (OH)O3 ) during (a) the
entire campaign and (b) rotary tillage.

the daytime (1.31±0.54 ppbv h−1) and lower values at night
(0.53± 0.25 ppbv h−1). The peak of Punknown occurred from
07:00–12:00, with a maximum value of 2.18 ppb h−1. The
peak value of Punknown is comparable to the value measured
in Taizhou (2.5 ppbv h−1) (Ye et al., 2023) and larger than
the values measured in Wangdu (0.62 ppbv h−1) (Song et al.,
2022) and Nanjing (1.04 ppbv h−1) (Liu et al., 2019a). Sim-
ilar to the observed asymmetry around noon reported in pre-
vious studies, this could be attributed to the combined effect
of solar radiation and variations in precursor NO2 (Song et
al., 2022; Xue et al., 2022). Due to the significantly larger
unknown source strength of HONO during the daytime, we
focused on analyzing the unknown source of HONO during
the day. Based on the above analysis, we evaluated the con-
tribution of the photo-enhanced heterogeneous pathways.

The coefficients widely adopted in previous studies gener-
ally range from 10−6 to 10−4 (Chen et al., 2023; Liu et al.,
2019b; Song et al., 2022; Wong et al., 2013). Here, we used
1× 10−5 for the photo-enhanced uptake coefficients (γa+hv
and γg+hv) to calculate Paerosol+hv and Pground+hv (Qin et
al., 2023; Xue et al., 2020). As shown in Fig. 8, the aver-
age Paerosol+hv and Pground+hv values were 0.02± 0.009 and
0.53± 0.50 ppbv h−1, respectively, during the day, account-
ing for 1.4 % and 40.2 % of Punknown, respectively. Moreover,
Paerosol+hv was a negligible source of daytime HONO forma-
tion. The photo-enhanced NO2 heterogeneous reaction on the
surface matched the calculated Punknown value and effectively
explained the HONO budget for the morning. Furthermore, a
higher photo-enhanced uptake coefficient of 3.5× 10−5 was
adopted as the upper limit for calculating the production of
the photosensitive conversion of NO2 (Chen et al., 2023).
The calculation results demonstrated that the daytime value
of Punknown could be explained when the upper limit of the
photo-enhanced uptake coefficient was used (Fig. S8).

However, there could be other light-driven reaction path-
ways for producing HONO in the afternoon, as indicated

by the diurnal variation in Punknown. Previous studies have
demonstrated that the photolysis of pNO3 /HNO3 can con-
tribute to HONO production (Chen et al., 2023; Laufs et al.,
2017). Recently, Chen et al. (2023) found that the photoly-
sis of HNO3 at the surface interface could effectively explain
the observed Punknown value for the afternoon. However, the
lack of information about HNO3 concentration prevents us
from directly estimating the contribution of HNO3 photolysis
in the present study. Future studies should include measure-
ments of pNO3 /HNO3 to better characterize the contribu-
tion of this potentially important HONO formation pathway.

Based on the measured fluxes, we also estimated the
HONO emission rate from soil (Psoil). The nighttime HONO
fluxes ranged from 0.15 to 0.43 nmol m−2 s−1, with corre-
sponding HONO flux rates of 0.32 to 0.79 ppbv h−1; these
values were sufficient for explaining Punknown (ranging from
0.012 to 0.90 ppbv h−1). Therefore, light-induced HONO
sources (i.e., the photosensitive conversion of NO2 and pho-
tolysis of pNO3 /HNO3) and soil emissions may together
serve as significant HONO sources in agricultural fields,
thereby influencing the overall atmospheric HONO budget.

3.5 Implications for atmospheric oxidizing capacity

The significant increase in atmospheric HONO from agricul-
tural fields can enhance the formation of OH radicals via the
photolysis of HONO (see the detailed OH production rate
calculation in Sect. S4). Figure 9a exhibits the OH produc-
tion rates from the photolysis of HONO (P (OH)HONO) and
O3 (P (OH)O3 ). P (OH)HONO and P (OH)O3 were found to be
0.82 and 1.49 ppbv h−1, respectively, meaning they were sig-
nificantly higher than the corresponding winter levels at the
same site (Fig. S9). The higher O3 concentration in summer
plays a primary role in the generation of OH radicals through
daytime O3 photolysis, accounting for 70 % of the total OH
production rate. However, the contribution of P (OH)HONO,
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approximately 30 %, is still significant and cannot be ig-
nored.

During the rotary tillage period, continuous peaks in
HONO concentration and flux were observed, with max-
imum values of 3.06 ppbv and 1.86 nmol m−2 s−1, respec-
tively. P (OH)HONO was calculated to be 1.42 ppbv h−1, and
P (OH)O3 was determined to be 1.35 ppbv h−1, accounting
for 51 % and 49 % of the total OH production rate, respec-
tively (Fig. 9b). P (OH)HONO dominated in the early morn-
ing, with a value of 2.48 ppbv h−1, while P (OH)O3 became
the main source at midday, with a value of 2.74 ppbv h−1.
The comparable peak magnitudes of P (OH)HONO and
P (OH)O3 indicate that HONO photolysis is an important
source of daytime OH radicals. Furthermore, the peaks in
both P (OH)HONO and HONO flux co-occur in the early
morning, revealing the significant contribution of agricultural
HONO emissions to the regional atmospheric oxidation ca-
pacity of the Huaihe River Basin.

4 Conclusions

Extensive agricultural fields and increased agricultural ac-
tivity have contributed to certain areas in China becom-
ing hotspots for atmospheric nitrogen oxides, underscor-
ing the increasing importance of regional and global ni-
trogen budgets. However, available HONO emission flux
data from agricultural soils are relatively limited. In this
study, we utilized the AG method to measure HONO and
NOx fluxes from agricultural fields in the Huaihe River
Basin. For HONO and NO, upward fluxes of 0.07± 0.22
and 0.19± 0.53 nmol m−2 s−1, respectively, were observed,
while NO2 exhibited a deposition flux to the ground of
−0.42±0.44 nmol m−2 s−1. The successive peaks in HONO
and NO fluxes were measured during rotary tillage, suggest-
ing a potentially enhanced release of HONO and NO due to
soil tillage activities. However, an increased WFPS inhibited
microbial nitrification processes after irrigation, leading to
a significant decrease in HONO and NO fluxes. Under this
inhibitory effect, no significant peaks in HONO flux were
observed after fertilization, in contrast to those observed dur-
ing rotary tillage. Considering the limited field observations
of HONO flux under high levels of soil water content, future
studies should pay more attention to paddy fields to validate
the mechanisms observed in the laboratory.

Significant fluxes were observed during rotary tillage,
prompting an investigation into the sources and budget of
HONO during this period. Biological processes and light-
driven NO2 reactions on the ground surface may both be
sources of HONO and influence the local HONO budget.
Higher levels of P (OH)HONO were observed in the early
morning, consistent with the peak emission flux of soil
HONO. This reveals the significant contribution of agricul-
tural HONO emissions to the regional atmospheric oxida-
tion capacity of the Huaihe River Basin. Overall, this study

provides valuable insights into the dynamics of soil HONO
emissions in agricultural fields, elucidating their environ-
mental implications and the role of agricultural activities in
the atmospheric chemistry of HONO.
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