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Abstract. Secondary organic aerosols (SOAs) from highly volatile organic compounds (VOCs) are currently
not well represented in numerical models as their heterogeneous formation mechanisms in the atmosphere remain
unclear. Based on the smog chamber experiments, here we investigated the yield and formation pathway of SOA
from acetone photochemical reactions under low-NOx conditions in the presence of preexisting haze particles
((NH4)2SO4 and NH4HSO4) and saline mineral particles (Na2SO4) under ammonia-rich conditions. Our results
showed that the yield of acetone-derived SOA is remarkably enhanced via multiphase reactions in the presence of
these preexisting seeds, especially for the saline mineral particles. We found that aerosol acidity is a key factor
controlling the formation pathways of acetone-derived SOA, in which organic acids, alcohol, and carbonyls
produced from acetone photochemical reactions dissolve into the aqueous phase of the preexisting seeds and
subsequently esterify and/or oligomerize into SOAs that consist of larger molecules on the acidic aerosols but
smaller molecules on the neutral mineral aerosols. Moreover, the light absorption ability of the acetone-derived
SOA formed on (NH4)2SO4 aerosols is stronger than that formed on Na2SO4 mineral particles, especially in
the presence of ammonia, due to a formation of N-containing organics. Through comparison with that from
methylglyoxal (MGly), we found that the total SOA from acetone in the chamber is 2.8–8.2 times that from the
irreversible uptake of MGly, suggesting that only considering MGly as the precursor of acetone-derived SOA
will probably underestimate the role of acetone in global SOA production since acetone abundantly exists in the
troposphere.

1 Introduction

Secondary organic aerosols (SOAs) are the major compo-
nent of fine particles in the atmosphere and produced from
the photochemical oxidation of volatile organic compounds
(VOCs) (R. Zhang et al., 2015; Srivastava et al., 2022;
G. Wang et al., 2016), which significantly affects human
health and global climate change (Jo et al., 2023; Chowd-
hury et al., 2022). However, current numeric models cannot

predict the evolution of atmospheric SOA accurately; one of
the reasons is that models often only consider the partition-
ing process of condensable oxidation products of VOCs as
the major formation pathway of SOA and neglect the contri-
bution of heterogeneous reactions of highly volatile organic
compounds to atmospheric SOA (Heald et al., 2005; Li et
al., 2023).

A number of researchers have reported that SOA forma-
tion can be promoted significantly in the presence of hy-
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drated seeds by heterogeneous reactions (Wong et al., 2015;
Nguyen et al., 2014; Liu et al., 2018; Ge et al., 2017). For in-
stance, Wong et al. (2015) reported that more isoprene SOA
was formed on deliquescent ammonium sulfate seeds in com-
parison with that on the efflorescent ones. Such an enhanc-
ing effect of multiphase chemistry on SOA formation has
also be found by Liu et al. (2018) and Wang et al. (2022)
in their laboratory experiments. Their results showed that
SOA multiphase formation is affected by the aerosol liquid
phase properties such as acidity, ionic strength, and mixing
state, which can alter the gas-to-particle phase partitioning
of VOCs and change the formation process of SOA (Zhang
et al., 2023; Riva et al., 2016, 2019; Bateman et al., 2014;
Kampf et al., 2013; Wei et al., 2022). Amorim et al. (2020)
analyzed the OH reactivities of organic acids in aqueous
phases with different pH and found that all the organic acids
exhibited larger OH reactivities under basic conditions than
those under acidic conditions, indicating that aerosol acid-
ity can influence the gas–particle partitioning and the multi-
generation oxidation of volatile organics in liquid phase (Wei
et al., 2022; Amorim et al., 2020, 2021; Zhao et al., 2006;
Lv et al., 2022). Moreover, a few studies reported that the
uptake of VOC oxidation products by inorganic aerosols
can be affected by a salting-in/salting-out effect (Waxman
et al., 2015; C. Wang et al., 2016). These results suggest that
heterogeneous reactions of VOCs are important sources of
atmospheric SOA, which are complex and affected by many
factors. Currently, only a limited number of volatile organ-
ics, such as glyoxal, methylglyoxal (MGly), formaldehyde,
and epoxydiols, have been investigated by chemical trans-
port models for their contribution to the atmospheric SOA
through heterogeneous reactions (Heald et al., 2005; Li et
al., 2023; Fu et al., 2008; Moch et al., 2020), while the role of
heterogeneous reactions in SOA formation from many other
more volatile organics in the atmosphere is still unclear and
is ignored generally by model work.

Compared to glyoxal, MGly, and formaldehyde, acetone
is much more volatile, which is of a Henry’s law constant
(KH) 2–4 orders of magnitude lower than the three species
and abundantly exists in the atmosphere from the ground sur-
face to the upper troposphere (Seinfeld and Pandis, 2006).
Acetone can be directly emitted from the natural and anthro-
pogenic sources and indirectly produced from oxidation of
hydrocarbons (Jacob et al., 2002; Wang et al., 2023). Photol-
ysis and OH oxidation are main sinks of acetone in the at-
mosphere, with photolysis contributing 45 % of the sink, OH
oxidation 30 %, and ocean uptake and dry deposition to land
25 % (Jacob et al., 2002). Numerous studies have reported
the reaction mechanisms of acetone’s photolysis and OH ox-
idation, and have estimated their contributions to hydroxyl
radicals in the upper troposphere and lower stratosphere, re-
spectively (Stefan and Bolton, 1999; Arnold et al., 2004; Raff
et al., 2005; Wang et al., 2020). However, the role of acetone
in SOA heterogeneous formation remains unclear. A labora-
tory experiment showed that deliquesced inorganic aerosols

may promote SOA formation from the photochemical oxi-
dation of acetone significantly (Ge et al., 2017), but up to
now the yield of SOA derived from acetone photochemical
reactions and the impact of inorganic aerosol physicochemi-
cal properties on SOA formation from acetone have not been
reported. Therefore, the formation mechanism and the im-
portance of acetone-derived SOA in the atmosphere remain
unclear, where acetone ubiquitously co-exists with NH3 and
preexisting aerosols. MGly is an important product of ace-
tone photochemical reactions, with 14 % molar yield as cal-
culated by GEOS-Chem, which can partition into the aque-
ous phase followed by oligomerization, oxidation by OH,
and/or reaction with NH3 or organic amine to form SOA
(De Haan et al., 2019; Aiona et al., 2017; Li et al., 2021b;
Yasmeen et al., 2010; Zhang et al., 2022). Currently, the
SOA module in chemical transport models primarily en-
compasses the homogeneous reactions of various volatility
VOCs and heterogeneous reactions of isoprene epoxydiol,
glyoxal, methylglyoxal, hydroxymethyl-methyl-a-lactone, 2-
methylglyceric acid, and 2-methyltetrols on the aerosol sur-
face. Notably, these models do not account for SOA for-
mation from the heterogeneous photochemical reactions of
acetone on aerosols (Fu et al., 2008; L. Huang et al., 2024;
Q. Huang et al., 2024; He et al., 2024; Zheng et al., 2023).
However, Ge et al. (2017) found that other products derived
from acetone photo-oxidation such as alcohols and organic
acids can also dissolve into the aqueous phase and transform
into SOA by esterification, indicating that only considering
the uptake of MGly will probably underestimate the contri-
bution of acetone to the global SOA production. Thus, it is
necessary to investigate the SOA formation from acetone and
compare it with MGly-SOA.

In this work, we quantitatively investigated the effects of
deliquescent seeds and NH3 on SOA formation from the pho-
tochemical reaction of acetone via chamber experiments, and
compared the difference of SOA formation processes in the
presence of different seed particles. For the first time we re-
vealed a key role of seed acidity in controlling the yield and
formation pathways of SOA from acetone photochemical re-
actions, in which NH3 and dust particles can greatly enhance
the production and light absorption of acetone-derived SOA.

2 Experiment section

2.1 Materials and methods

All batch-mode experiments in this study were performed in
a 4 m3 sealed Teflon smog chamber (Fig. S1 in the Supple-
ment). Firstly, zero air and seed particles were introduced
into the chamber. Then, acetone, H2O2, and NH3 were in-
troduced sequentially for the heterogeneous reactions. The
experiment details are reported by our previous studies (Ge
et al., 2019; Zhang et al., 2021; S. Liu et al., 2021).

Briefly, zero air produced by the Zero Air Supply
(Model 111 and Model 1150, Thermo Scientific, USA) was
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used as the background gas in this study. Saturated water va-
por flow produced by bubbling zero air through ultrapure
water (Milli Q, 18.2 M�, Millipore Ltd., USA) was intro-
duced into the chamber for adjusting the relative humidity
(85± 1.0 % RH). Three types of water solutions containing
Na2SO4, (NH4)2SO4, and NH4HSO4 were nebulized to pro-
duce seed particles. A polydisperse mode of wetted inorganic
aerosols was generated from the solutions using a single jet
atomizer (7388SJA, TSI) and directly introduced into the
chamber as droplets without any desiccation. Reactant gases
including acetone, H2O2, NH3, and SO2 were added sepa-
rately into the chamber along with a N2 flow using a glass
syringe (Liu et al., 2022; S. J. Liu et al., 2021).

2.2 Smog chamber experiments and characterization

2.2.1 Smog chamber experiments

In this study, the chamber experiments can be divided into
two phases:

– Phase I. SOA formation from the photochemical oxida-
tion and photolysis of acetone on aerosols was investi-
gated, in which the OH radicals were produced from the
photolysis of H2O2 under 254 nm UV irradiating condi-
tions.

– Phase II. The effect of NH3 on SOA formation was ex-
plored under dark conditions.

The H2O2 concentrations injected into the chamber were
2.95×1013 molec. cm−3 in all experiments. The influence of
different inorganic particles on the two phases was studied.
To compare the influence of different inorganic particles on
the SOA formation, SO2 was added into the chamber after
Phase II to produce (NH4)2SO4 aerosols during the Na2SO4
seed experiments. All the experiments were conducted un-
der 85± 1.0 % RH conditions, and thus all the seeds in the
chamber were deliquescent. At the end of each experiment,
aerosols in the chamber were collected on 47 mm quartz fil-
ters and stored at −20 °C prior to analysis. The experimental
conditions are shown in Table S1 in the Supplement.

2.2.2 Online monitoring

RH and temperature inside the chamber were monitored
online. The temperature in the chamber was stabilized at
25± 1°C using air conditioners. Concentrations of VOCs
and SO2 in the chamber were monitored by a proton-transfer-
reaction time-of-flight mass spectrometer (PTR-TOF-MS,
Ionicon Analytik, Innsbruck, Austria) and a SO2 analyzer
(Model 43i, Thermos scientific), respectively. Size distribu-
tion and mass concentration of aerosols during the reaction
process were measured by a scanning mobility particle sizer
(SMPS; model 3082, USA). The real-time chemical compo-
sition evolution of aerosols in the chamber was measured

by a high-resolution time-of-flight aerosol mass spectrom-
eter (HR-ToF-AMS; Aerodyne Research Ltd, USA), which
was operated in high-sensitivity V mode with a 30 s time res-
olution. Prior to the experiments, ionization efficiency of the
AMS was calibrated using 300 nm NH4NO3 particles, and
the value was 5.01× 10−8, and the relative ionization effi-
ciency (RIE) for ammonium was 4.6. The RIE for sulfate
was calibrated using (NH4)2SO4 particles, and the value was
0.8.

Particle wall loss in the chamber was corrected using a
total-mass-concentration-based method, and the detailed de-
scriptions are shown in Sect. S1 in the Supplement (Liu and
Abbatt, 2021; Zhang et al., 2024). The wall loss of NH3
and VOCs in the chamber was also corrected (see the de-
tails in Sects. S2 and S3) (Li et al., 2021a; Huang et al., 2018;
X. Zhang et al., 2015). Aerosol liquid water content (ALWC)
was estimated using the Extended Aerosol Inorganics Model
(E-AIM) IV, and the pH values of aerosols were calculated
by Eq. (1).

pH=−log10 (γH+mH+ ) , (1)

where γH+ and mH+ were the activity coefficient and molal-
ity of H+ calculated by the E-AIM, respectively.

2.2.3 Offline analysis of particles

The collected samples were extracted with 15 mL of Milli-
Q pure water in an ultrasonic bath for 30 min and filtered
by a 0.45 µm PES syringe filter. The concentration of water-
soluble organic carbon (WSOC) and the light absorption of
the extracts were analyzed by a total organic carbon analyzer
(model TOC/TN-LCPH, Shimadzu Inc. Japan) and a liquid
waveguide capillary cell (model LWCC3000, Ocean Insight.
USA) coupled with a UV–Vis spectrophotometer (ocean in-
sight) over a wavelength range of 200–900 nm, respectively.
Light absorption (Absλ) and the mass absorption coefficient
(MAC) of the water extracts were calculated (see details in
Sect. S4). In addition, the collected particles were extracted
with pure methanol and analyzed for their chemical composi-
tions using an ultrahigh-resolution Orbitrap mass spectrom-
eter (Q-Exactive Orbitrap mass spectrometer, Thermo Sci-
entific, Germany) (Jia et al., 2023). Specifically, imidazole
compounds (IMs) were determined using the Orbitrap mass
spectrometer, and detailed analysis methods were reported in
our previous study (Liu et al., 2023).

2.2.4 Observation-based chemical box model

In this work, an observation-based model (OBM) incorpo-
rating the latest version 3.3.1 of the Master Chemical Mech-
anism (MCM v3.3.1; available at http://mcm.leeds.ac.uk/
MCM/, last access: 10 September 2024; hereafter referred to
as OBM-MCM) was utilized to simulate the acetone photo-
chemical reactions in the chamber. The observation levels of
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acetone, acetaldehyde, formic acid and acetic acid through-
out the photochemical reactions, along with meteorological
parameters (temperature and relative humidity) and the ini-
tial H2O2 concentration, were incorporated into the OBM-
MCM as constraints. The comprehensive MCM mechanisms
related to the photochemical reactions of acetone and other
VOCs observed in this work were also incorporated into the
OBM-MCM. The photolysis rate for H2O2 is 9.1×10−6 s−1.
The average concentration of OH radicals during the reac-
tions is 5.89× 106 molec. cm−3. The time series of OH and
HO2 radical concentrations are shown in Fig. S2.

3 Results and discussion

3.1 Formation of acetone-derived SOA

Figure 1 shows the time evolution of gas- and particle-phase
species during the reaction in the presence of (NH4)2SO4
seeds. In this study the whole smog chamber reaction process
consists of two phases, of which Phase I is a photochem-
ical reaction of acetone without NH3(g), and Phase II is a
dark reaction with introduced NH3. During Phase I, once the
light was turned on, the gas-phase concentrations of MGly,
acetaldehyde, formic acid, and acetic acid quickly increased
with decreasing acetone (Phase I, Fig. 1a), while SOAs were
instantly produced and sharply increased to over 90 µgm−3

(Phase I, Fig. 1b). When the concentration of SOA during
Phase I did not change and even started to decease, the light
was turned off, and NH3(g) was introduced into the cham-
ber (Phase II). According to the formation time of these gas
products, acetaldehyde and MGly are often considered the
first-generation products, while formic and acetic acids are
usually considered the final-generation products (Poulain et
al., 2010). The oxidation state of compounds (OSc) and O/C
elemental ratio of SOA in the aerosol phase continuously
increased during the reaction process (Fig. 1c), which cor-
responds to a decreasing fraction of CHO+ plus C2H3O+

and an increasing fraction of CO+2 (Fig. 1d), indicating an
efficient conversion of carbonyl compounds to carboxylic
acid compounds. In Phase I, we observed an aerosol-phase
decreasing trend of molar ratio of NH+4 to SO2−

4 , which
was accompanied by an increasing trend of the N/C ratio
of SOA (Fig. 1b and c), indicating a transformation of in-
organic NH+4 to N-containing organic compounds. Such a
phenomenon can be ascribed to the uptake of organic acid
products and a reaction of carbonyl compounds with the
(NH4)2SO4 seeds during Phase I (Liu et al., 2023; Li et
al., 2021b). The pH value of particles reduced rapidly from
the initial 4.89 to 1.77 after a 30 min reaction due to the
formation of NH4HSO4. The increased acidity can hinder
the gas–particle partitioning of gas-phase reaction products
such as formic acid, acetic acid, and methylglyoxal (Lv et
al., 2022; Zhao et al., 2006), as most weak acids are unable
to dissociate at pH< 2 (Tilgner et al., 2021). Therefore, SOA
formation by the partitioning process sharply decreased af-

ter the 30 min reaction time, resulting in a slow increase in
the SOA concentration. Subsequently, the SOA is primarily
formed through aqueous reactions on aerosols, leading to a
persistent increase in the O/C ratio, N/C ratio, and oxida-
tion state of SOA.

As shown in Fig. 1a and b, after NH3 was introduced
(Phase II), the formic and acetic acids decreased dramati-
cally, while SOA did not change obviously, suggesting that
the decreases of the gas acids were mainly resulted from
the enhanced wall loss due to the neutralization of NH3 on
the chamber wall. Interestingly, we found that during the
dark reaction, OSc and the O/C ratio of SOA decreased
slightly, but their N/C ratio increased significantly by a fac-
tor of approximately 2 (Fig. 1c), implying that chemical
composition of SOA changed remarkably after NH3 was in-
troduced, although the SOA mass did not change evidently
(Fig. 1c, Phase II). Moreover, such a slight decrement of
O/C and a significant increment of N/C in the elemental
compositions of SOA (Fig. 1c) were also accompanied by
a sharp increase in CHN family fragment fractions (Fig. 1d,
Phase II), which can be explained by carbonyl–ammonium
condensation under the dark conditions that forms a C–N
bond and loses a H2O molecule (Aiona et al., 2017; Li et
al., 2021b; Liu et al., 2023). Such an aqueous-phase dark
reaction after NH3 was introduced can be further revealed
by a change in SOA composition during Phase II, which
is characterized by higher fractions of CxHyN1 fragments
in Phase II than those in Phase I (Fig. 2). Organic ammo-
nium salt would contribute NHx fragments instead of frag-
ments containing N, C, and O elements. Therefore, the CHN
species should be generated from the reactions of carbonyls
with NH3 rather than the acid–base neutralization of organic
acid with NH3 (Liu et al., 2015). As seen in Fig. S3, the CHN
family species mainly include CHN, CH4N, C2H6N, C2H7N,
C2H4N, CH5N, and C3H6N ions, which are similar to the
fragments of N-containing organics produced from the re-
action of carbonyls with (NH4)2SO4 (De Haan et al., 2010)
and increased significantly during Phase II, resulting in an
enhancing role of NH3 in the SOA formation from acetone
photochemical reaction.

3.2 Enhancing effect of seeds on the SOA formation

As shown in Fig. S4, the concentration of SOA derived
from acetone photochemical reactions in the presence of
(NH4)2SO4 seeds is 20 times higher than that in the absence
of the seeds, suggesting that the occurrence of (NH4)2SO4
seeds remarkably promoted the SOA formation. Such an
enhancing role was also found for Na2SO4 and NH4HSO4
seeds (Fig. S5). Because of the significant influence of sur-
face area of aerosols on the multiphase reactions (Huang et
al., 2016), the SOA formation amounts were normalized by
the aerosol surface area (SA) to eliminate the interference
of the difference in seed concentrations. As seen in Fig. 3a,
the normalized concentration of SOA on Na2SO4 seeds is 2
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Figure 1. Time evolution of gas-phase and aerosol-phase species in the presence of (NH4)2SO4 seeds during the acetone oxidation process
(Phase I, photochemical reactions of acetone by OH radicals without NH3, and Phase II, reaction of acetone oxidation products with NH3
under dark conditions). (a) Gas-phase compounds; (b) SOA and molar ratio of NH+4 to SO2−

4 in the aerosol-phase; (c) N/C and O/C
elemental ratios and oxidation state of compounds (OSc; 2×O/C−H/C) of SOA; (d) relative abundances of CO+2 , the sum of CHO+ plus
C2H3O+, and CHN family fragments of SOA.

Figure 2. Fragment compositions of acetone-derived SOA in the
presence of (NH4)2SO4 seeds between the two reaction phases
(Phase I, oxidation of acetone by OH radicals without NH3, and
Phase II, reaction of acetone oxidation products with NH3 under
dark conditions).

times larger than that on (NH4)2SO4 and NH4HSO4 seeds,
respectively, indicating that the difference in physicochem-
ical properties of seeds is of different promoting effects on
the SOA formation. MGly is one of the first-generation ox-
idation products of the acetone photochemical reactions and

also one of the critical precursors of SOA (Li et al., 2021b).
Therefore, we choose it as the target compound to explore
the effect of the seeds on the SOA formation. The multi-
phase reactions of acetone-derived MGly in the chamber can
be divided into two processes: the gas–particle partitioning
and the subsequent aqueous phase reactions (Srivastava et
al., 2022; Waxman et al., 2015), which are further discussed
in the following.

3.2.1 The effects on the gas-to-particle phase
partitioning

It has been reported that the presence of salts in aerosol aque-
ous phase can significantly influence the gas–particle phase
partitioning of MGly, which can decrease the solubility of
MGly, i.e., a salting-out effect (Waxman et al., 2015). In this
study, the effective Henry’s law constants (KH, salt) of MGly
in the aqueous phase of various seeds were further estimated
by Eq. (2) (Waxman et al., 2015; Cui et al., 2021).

log
(
KH,w

KH,salt

)
=KScsalt , (2)

where KH,w and KH, salt are the Henry’s law constants of
MGly in pure water (3.71×103 M atm−1) (Curry et al., 2018)
and in a salt solution, respectively; KS is the salting constant
or Setschenow constant, which is 0.16 M−1, used in this work
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Figure 3. Effect of seed acidity on SOA formation. (a) The amount SOA normalized by the surface area (SA) of aerosols and OSc of SOA in
the presence of different seeds in Phase I. (b) Effective Henry’s law constants (KH, salt) of MGly and acidity (pH) of inorganic aerosols during
the reaction. (c, d) Mass spectra of SOA from acetone oxidations by OH radicals with no NH3 in the presence of Na2SO4 and (NH4)2SO4
seeds, respectively.

(Waxman et al., 2015), supposing that theKS values are sim-
ilar in the three types of inorganic aerosols (Gen et al., 2018);
and csalt is the salt concentration in molality.

As shown in Fig. 3b, KH, salt of MGly on Na2SO4 seeds
in this study is more than 2 times that on (NH4)2SO4
and NH4HSO4 seeds, respectively, because of its lower salt
concentration and weaker salting-out effect. The acidity of
the aerosol aqueous phase can also affect the uptake of
MGly. For instance, Zhao et al. (2006) found that the ef-
fective Henry’s law constant of MGly decreased with an in-
crease in aqueous acidity in their laboratory experiments. As
shown in Fig. 3b, the pH values of Na2SO4, (NH4)2SO4,
and NH4HSO4 seeds in our chamber study are 7.0, 4.9,
and −0.2, respectively, indicating that the neutral nature of
Na2SO4 seeds is more favorable for the uptake of MGly
compared to the two other acidic seeds. The SOA forma-
tion with NH4HSO4 seeds is similar to that with (NH4)2SO4
seeds, which is possibly caused by the promotion of residual
trace NH3 in the chamber on the uptake of acidic organics
(Fig. 3a).

In addition, the higher OSc and larger fraction of CxHyOz
signals of SOA on Na2SO4 seeds (Figs. 3a and S6) may
also be caused by enhanced uptake of carboxylic acids (e.g.,
formic and acetic acids) in comparison with those by the two
other kinds of acidic seeds (Huang et al., 2016), which also

resulted in the less abundant formic and acetic acids in the
gas phase at the end of Phase I during the Na2SO4 seed ex-
periment (Fig. S7).

3.2.2 The effects on the aqueous reaction

The aqueous formation of SOA could be affected by the
phase state and acidity of aerosols (Amorim et al., 2020,
2021; Shen et al., 2022). Since particles in all the exper-
iments of this work are deliquesced under 85 % RH con-
ditions (Wong et al., 2015; Bateman et al., 2015), the in-
fluence of the phase state can be neglected. Here, we fo-
cus on the impact of aerosol acidity on the SOA forma-
tion pathway by characterizing the chemical composition
of SOA in the chamber using ESI-Q-MS technique. The
mass spectra of SOA formed on different seeds are shown
in Fig. 3c and d, and the detail peak assignments are pre-
sented in Table S2, respectively. As shown by Fig. 3c and d,
the main peaks of SOA formed on Na2SO4 seeds are lo-
cated in the mass range lower than m/z= 200, whereas the
main peaks of SOA formed on (NH4)2SO4 seeds are lo-
cated in the mass range larger thanm/z= 200, clearly show-
ing that SOAs formed on neutral aerosols are dominantly
smaller molecules, while those formed on acidic aerosols are
dominantly larger molecules. The phenomenon can be at-
tributed to the promotion of the acid-catalyzed reactions in
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the formation of high-order oligomers on the acidic seeds
(Jang et al., 2002; R. Zhang et al., 2015). On the other hand,
such different formation pathways of SOA can also be ex-
plained by the difference of reactive oxygen species formed
in the aqueous phase of the different aerosols. On neutral
aerosols, organic hydroperoxides produced from the reac-
tion of peroxides radicals and HO2 radicals decompose and
generate OH radicals through the cleavage of the weaker O–
O bond (Wei et al., 2022). Then, the OH radicals oxidize
the oligomers to low-molecular-weight (LMW) compounds
(Zhao et al., 2017). In contrast, on acidic aerosols, the acid-
catalyzed thermal decomposition of the organic hydroperox-
ides leads to the formation of alcohol and ketone as the end
products, which does not involve radical formation (Wei et
al., 2022; Yaremenko et al., 2016). Then, the carbonyls in the
aqueous phase will undergo hydration, oligomerization, and
acid-catalyzed aldol condensation to form high-molecular-
weight (HMW) compounds (R. Zhang et al., 2015; Kenseth
et al., 2023; Li et al., 2021b). Such an explanation can be
supported by the higher OSc of SOA formed on the neutral
aerosols (Fig. 3a). On the other hand, the lower SOA mass
formed on acidic aerosols can also be attributed in part to the
different reactivity of OH radical to carboxylic group; the
OH radical does not react with the carboxyl group (COOH)
rapidly through H abstraction from an O–H bond, but the OH
radical is more reactive to the carboxylate group (ROO−)
by abstracting an electron, which can result in a high SOA
yield on neutral aerosols (Amorim et al., 2021; Herrmann et
al., 2015).

3.3 The different effect of NH3 on SOA formation on
different seeds

As shown in Fig. 4a, when NH3 was introduced into the re-
action system (Phase II), the ratio of N/C of SOA increased
significantly because of the reaction of NH+4 /NH3 with car-
bonyls on acidic (NH4)2SO4 and NH4HSO4 seeds, but such
an evident change was not observed in the presence of NH3
for neutral Na2SO4 seeds. One of the reasons is that NH3 dis-
solves more readily on acidic aerosols. The gas-to-particle
phase partition coefficients of NH3 (ε(NH+4 )) on different
seeds were calculated (Sect. S5) (Guo et al., 2017; Lv et
al., 2023). As shown in Fig. 4b, ε(NH+4 ) is zero and 1.0
for Na2SO4 and NH4HSO4 seeds, respectively, suggesting
that NH3 was almost not absorbed by Na2SO4 seeds but effi-
ciently absorbed by NH4HSO4 seeds. The phenomenon can
be confirmed by Fig. S8; more N mass partitioned on more
acidic aerosols. Liu et al. (2015) analyzed the uptake of NH3
onto SOA and also found that the uptake coefficient posi-
tively correlated with particle acidity. Several studies put for-
ward that the reaction of NH3 with carbonyl is likely acid-
catalyzed (R. Zhang et al., 2015; Liu et al., 2015). However,
such a conclusion was inconsistent with the phenomenon ob-
served by Yang et al. (2024); they found that the light ab-
sorption ability of brown carbon produced from the aque-

ous reactions of α-dicarbonyls with ammonium or amine in-
creased exponentially with the increase in pH. To resolve
such a disagreement, we analyzed the chemical composition
of SOA detected by the HR-ToF-AMS in different reaction
phases. As shown in Fig. S6a–d, no change was observed
on Na2SO4 particles in Phase II after NH3 was introduced,
but the fraction of the CHN family species increased dramat-
ically on (NH4)2SO4 and NH4HSO4 particles in Phase II.
Hence, we supposed that NH3 can promote the formation of
N-containing SOA on acidic aerosols significantly via react-
ing with carbonyl compounds. To verify such an assumption,
we performed additional experiments by introducing 500 ppb
SO2 into the chamber in the presence of Na2SO4 seeds after
Phase II (Phase III, Fig. S9). The addition of SO2 resulted
in (NH4)2SO4 being produced immediately in the chamber
(Phase III, Fig. S9a), and then the fraction of CHN species
increased sharply (Phase III, Fig. S9b). Such results again
demonstrate the pivotal role of acidic particles in the forma-
tion of N-containing SOA.

The optical properties of the acetone-derived SOA on dif-
ferent particles were measured by the LWCC. Compared
with the light absorption spectra of SOA formed on Na2SO4
seeds in the absence of SO2, an enhanced MAC peak at
∼ 270 nm was observed for SOA formed on (NH4)2SO4
seeds and on Na2SO4 seeds with SO2, respectively (Fig. 4c).
Such enhanced absorption is in agreement with that of the
products from the MGly and (NH4)2SO4 reaction, which
displays prominent peaks at < 240 and ∼ 270 nm, with a
tail extending to > 350 nm (Kasthuriarachchi et al., 2020).
The increased absorption peak at 270 nm can be ascribed
to a formation of imidazoles through the reaction of MGly
with NH+4 (You et al., 2020). In this work, 1H-imidazole-
4-carboxylic acid was observed for the SOA formed on
(NH4)2SO4 seeds (Fig. 4d). However, the absorption peak
at ∼ 270 nm for the products of the Na2SO4 particles in the
absence of SO2 was weaker than that with (NH4)2SO4 seeds
significantly (Fig. 4c), further confirming the enhancement
effect of acidic particles on the formation of light-absorbing
SOA, which is often termed as brown carbon.

3.4 Formation mechanisms of acetone-derived SOA on
different seeds

Figure 5 shows the mass yield and MAC of acetone-derived
SOA at the end of Phase II. Clearly, SOA is formed more
readily on neutral Na2SO4 seeds than on acidic (NH4)2SO4
seeds. However, in the presence of NH3, SOAs formed
on (NH4)2SO4 seeds are more light-absorbing than those
formed on Na2SO4 aerosols, suggesting that a stronger acid-
ity of aerosol phase is favorable for the formation of light-
absorbing organics because NH3 cannot be taken up by neu-
tral aerosols, and thus carbonyl–ammonium condensation
is only active under acidic conditions and produces light-
absorbing N-containing organics.
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Figure 4. Effect of ammonia on SOA formation. (a) The difference in N/C ratio of Phase II relative to Phase I on different seeds. (b) Parti-
tioning coefficients of NH3 (ε(NH+4 )) on different seeds in the chamber. (c) MAC of acetone-derived SOA in the presence of different seeds.
(d) Mass spectrum of 1H-imidazole-4-carboxylic acid formed during the heterogeneous oxidation of acetone in the presence of (NH4)2SO4
seed.

Figure 5. SOA yield (green) and MACλ=270 nm (red) of acetone-
derived SOA in the presence of Na2SO4 and (NH4)2SO4 seeds with
NH3 under dark conditions (Phase II), respectively.

By combining the gas- and aerosol-phase chemistry evo-
lution in the chamber, a chemical mechanism for SOA for-
mation from acetone multiphase photochemical reactions
on different aerosols in the presence of NH3 was proposed
(Fig. 6). The photochemical reactions of acetone in this
work include photolysis and oxidation by OH radicals. Ac-
cording to the results of OBM-MCM, the reaction rates
of photolysis and OH oxidation are 3.66× 106 and 1.32×

107 molec. cm−3 s−1, respectively. These two photochemi-
cal reactions produce various peroxy radical (RO2) and un-
dergo two RO2 fates, RO2+HO2 and RO2+RO2 reactions.
The concentrations of three main RO2 concentrations and
loss rates of two RO2 pathways during the experiments are
shown in Figs. S11 and S12, respectively. Initially, CH3O2
and CH3CO3 are predominantly formed from the photolysis
of acetone, and CH3COCH2O2 is generated from oxidation
by OH radicals (Ge et al., 2017). Meanwhile, both CH3O2
and CH3CO2 can be produced within the CH3COCH2O2
chemistry, resulting in their higher concentrations compared
to CH3COCH2O2 and a consistent increase in concentrations
throughout the experiments. Obviously, RO2+HO2 was the
main pathway in RO2 chemistry, the loss rate of which was
3.19 times that of the RO2+RO2 pathway. Concentrations of
the main gaseous products from RO2 chemistry are shown in
Table S3. C2H4O3 and C3H6O3 are intermediate-volatility
organic compounds (IVOCs) and can undergo gas–particle
partitioning readily to form SOA. Moreover, there are abun-
dant gas-phase intermediate products containing hydrophilic
functional groups such as alcohol, ketone, and organic acids
formed from acetone photochemical reactions, which can
dissolve into aqueous phase and undergo further oxidation
reactions, esterification reactions, and radical–radical reac-
tions to form SOA on particles (Poulain et al., 2010; Ge
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Figure 6. A diagram for the formation pathway of SOA derived from acetone oxidation in the atmosphere.

et al., 2017). For example, the dissolved MGly can be hy-
drolyzed and then oxidized into organic acids such as pyruvic
and oxalic acids, or it proceeds to a series of oligomerization
to produce many oligomers, giving rise to SOA formation.
The acetone alcohol can react with acetic acid to form esters
C5H8O3 in the aqueous phase. The organic hydroperoxide
C3H6O3 produced from the acetone–RO2+HO2 pathway can
also react with acetic acid and pyruvic acid to form C5H8O4
and C6H8O5 in the particle phase, respectively. These ester-
ification reactions can also contribute to SOA formation ef-
fectively.

In the presence of NH+4 , carbonyl compounds in the
aerosol phase can react with free NH3 molecules and produce
N-containing SOA including imine, imidazole, and other
oligomers (Liu et al., 2023). LMW SOAs are formed read-
ily in the neutral aerosol phase, while HMW SOA and N-
containing brown carbon are formed favorably in the acidic
aerosol phase because the acidic condition is favorable for
the uptake of NH3. The carbenium cations, which are pro-

duced from protonation and dehydration of the hydration
products of MGly under acidic conditions, are the key in-
termediates for formation and propagation of oligomeriza-
tion (Ji et al., 2020). The oligomers and N heterocycles are
produced from the nucleophilic addition of the negative hy-
droxyl O atom of hydration products and the negative N-
atom of NH3 to the carbenium cations, respectively (Li et
al., 2021b, a).

3.5 Comparison of SOA from acetone with that from
MGly in the chamber

Currently, estimations of acetone-derived SOA by models
only consider its product MGly as the precursor (Fu et
al., 2008). The uptake coefficient (γ ) of MGly used in their
work is 2.9× 10−3 without taking into account the influ-
ence of salting effects. Curry et al. (2018) revised the γ to
10−10–10−6 after considering salting effects, aerosol ther-
modynamics, mass transfer, and irreversible reactions of or-
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Table 1. Concentrations of total SOA formed in the chamber and that formed only from the uptake of methylglyoxal (MGly) in the chamber.

Seed SOAa Surface area of seeds MGly γ b SOAc
MGly SOA/SOAMGly

(µgm−3) (m2 m−3) (µgm−3) (µgm−3)

Na2SO4 140 9.30× 10−3 26.74 2.6× 10−4 17.17 8.2
(NH4)2SO4 101 1.95× 10−2 42.95 2.6× 10−4 28.88 3.5
NH4HSO4 57 1.14× 10−2 38.43 2.6× 10−4 20.17 2.8

a SOA values are the concentrations of SOA on different seeds observed in the experiments. b The values of γ are consistent with the parameters
of the irreversible uptake of MGly used in CMAQ v5.3. c SOAMGly is the estimated concentration of SOA formed from the irreversible uptake
of MGly on different aerosols.

ganic species with OH in the aqueous phase. In addition,
previous laboratory studies showed a large difference among
the uptake coefficients of MGly, ranging from 4.0× 10−7 to
2.4× 10−2 (Li et al., 2023, 2021b). Salting effects and other
VOCs such as formaldehyde and acetaldehyde can also in-
fluence the SOA formation from aqueous reaction of MGly
(Rodriguez et al., 2017; Waxman et al., 2015). These docu-
mented values suggest a big uncertainty for SOA model work
on MGly. Currently, the uptake coefficient (γ ) of MGly is
set as 2.6× 10−4 in CMAQ v5.3 (Chen et al., 2021). Hence,
the concentration of SOA in the chamber formed only from
the irreversible uptake of MGly can be calculated by Eq. (3)
(Chen et al., 2021; Li et al., 2023).

∂aqSOA
∂t

=

(
a

Dg
+

4
νMGLYγMGLY

)−1

A[MGLY] , (3)

where ∂aqSOA
∂t

is the formation rate of SOA in experiments,
α is the effective radius of aerosols, Dg is the gas-phase
molecular diffusion coefficient, VMGly is the gas-phase mean
molecular speed of MGly, A is the aerosol surface area per
unit air volume, and [MGly] is the vapor-wall-loss-corrected
concentration of MGly (see details in Sect. S3).

As shown in Table 1, the concentration of the total SOA-
derived from acetone photochemical reaction in the chamber
is 2.8–8.2 times that formed only from the irreversible uptake
of MGly, suggesting that only considering the role of MGly
will inevitably underestimate the contribution of acetone to
SOA production in a continental atmosphere, which is often
characterized by high loadings of acetone and aerosols.

4 Conclusions

In this study we investigated the mass yield and formation
mechanism of SOA from acetone photochemical reactions
in the presence of preexisting haze particles ((NH4)2SO4
and NH4HSO4) and saline mineral particles (Na2SO4) un-
der ammonia-rich conditions. We found that the presence
of seeds can significantly promote the formation of acetone-
derived SOA, and the SOA yield on Na2SO4 seeds is larger
than that on acidic (NH4)2SO4 and NH4HSO4 seeds, indi-
cating that the differences in physicochemical properties of

preexisting aerosols are of different promoting effects on the
acetone-derived SOA formation. In comparison with those
of (NH4)2SO4 and NH4HSO4 seeds, the weaker salting-out
effect and lower acidity of Na2SO4 seeds are in favor of
the gas-to-particle partitioning of the SOA precursors. More-
over, SOAs formed on the neutral seeds are dominated by
smaller molecules with a higher OSc, while those formed on
the acidic seeds are dominated by larger molecules with a
lower OSc.

Because NH3 cannot be taken up by neutral aerosols,
the heterogeneous reaction of carbonyl with ammonium is
only active under acidic conditions, which produces light-
absorbing N-containing compounds such as imidazoles, re-
sulting in acetone-derived SOAs formed on (NH4)2SO4
seeds that are more light-absorbing than those formed on
Na2SO4 seeds. In the chamber the total SOA derived from
the acetone photochemical reaction is 2.8–8.2 times that
formed only from the irreversible uptake of MGly, suggest-
ing that only considering the irreversible uptake of MGly will
inevitably underestimate the contribution of acetone photo-
chemical reactions to SOA in the atmosphere.
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