

Supplement of

Heterogeneous formation and light absorption of secondary organic aerosols from acetone photochemical reactions: remarkably enhancing effects of seeds and ammonia

Si Zhang et al.

Correspondence to: Gehui Wang (ghwang@geo.ecnu.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

- *Supporting Information*
-

- This PDF file includes:
- 1. Supplementary Text S1-S5
- 2. Ten figures, Figure S1-S12
- 3. Three tables, Table S1-S3
- 4. References
-
-

13 **Text S1. Particle wall loss correction**

14 The particle wall loss was corrected by using a total-mass-concentration-based method 15 (Liu and Abbatt, 2021). The wall-loss-corrected sulfate concentration at time t $WC_{so_4^2-}(t)$ 16 can be calculated using the Eq. (1) .

17
$$
wC_{so_4^{2-}}(t) = C_{so_4^{2-}}^{\text{sus}}(t) + k \int_0^t C_{so_4^{2-}}^{\text{sus}}(t) dt \qquad (1)
$$

18 where $C_{\text{so}_4}^{\text{sus}}(t)$ is the measured sulfate concentration at time t, and k is the first order 19 particles wall loss rate constant, 1×10^{-4} s⁻¹ in this study. The wall loss rate constants of pure 20 (NH₄)₂SO₄ seed and NH₄NO₃ seed were similar under the experimental conditions in this 21 work.

22 **Text S2. NH³ concentration wall loss correction**

 According to the reports of Huang et al. (2018)and Zhang et al. (2014), the vapor wall loss of gas compounds in Teflon-walled chambers can be estimated by a two-layer model, and the overall mass transport coefficient across the gas-phase boundary layer and the air-Teflon 26 interface can be calculated by Eq.2-4. Then the first-order wall loss coefficient (k_w) can be 27 calculated by Eq.5. Therefore, the loss of NH₃ to the chamber wall is estimated by the k_w by considering the gas-phase transport within the chamber, as reported by Zhang et al. (2014)

$$
v_1 = \left(\frac{1}{v_e} + \frac{1}{v_c}\right)^{-1}
$$
 (2)

$$
v_{\rm e} = \frac{2}{\pi} \sqrt{k_{\rm e} \mathcal{D}_{\rm g}}
$$
 (3)

$$
v_{\rm c} = \frac{\alpha_{\rm w}\omega}{4} \tag{4}
$$

$$
k_{w} = \left(\frac{A}{V}\right)\nu_{1} = \left(\frac{A}{V}\right)\frac{\alpha_{w}\omega}{4 + \frac{\pi}{2}\left(\frac{\alpha_{w}\omega}{\sqrt{k_{e}D_{g}}}\right)}
$$
\n⁽⁵⁾

29 where A/V is the surface-to-volume ratio of the chamber; α_w is the mass accommodation 30 coefficient of NH³ onto the Teflon chamber walls at RH = 90% (0.01) (Bongartz et al., 1995); 31 ω is the mean molecular speed of NH₃ (603 m s⁻¹) (Seinfeld and Pandis, 2006); ke is the 32 coefficient of eddy diffusion and is estimated to be 0.31 for the chamber used in this work; D_g 33 is the gas-phase diffusion coefficient (1.98×10^{-5}) (Tang et al., 2014).

34 Therefore, the loss of NH₃ to the chamber wall is estimated by the k_w by considering the 35 gas-phase transport within the chamber (Zhang et al., 2014). The average concentration of 36 NH₃ is estimated by eq. 6,

$$
\left[\overline{\text{NH}}_3\right] = \frac{1 - e^{-k_w \Delta t}}{k_w \Delta t} \left[\text{NH}_3\right]_0
$$
\n(6)

38 where the first-order wall-loss coefficient (k_w) of NH₃ in this study is 9.5×10^{-3} s⁻¹ and Δt is 39 the reaction time. For an initial injection concentration of 1250 ppbv NH3, the average 40 concentration of NH³ in the chamber was corrected to be 73 ppbv.

41 **Text S3. VOCs concentration wall loss correction and estimation of MGly concentration** 42 The vapor wall loss coefficients of VOCs in chamber were also calculated by Eq.2. The 43 values of α_w , k_e , ω and D_g of VOCs were calculated by eq. 7-10, respectively (Huang et al., 44 2018).

$$
\alpha_w = 10^{-2.744} (c^*)^{-0.6566} \tag{7}
$$

$$
\log_{10} c^* = (n_C^0 - n_C) b_C - n_O b_O - 2 \frac{n_C n_O}{n_C + n_O} b_{CO}
$$

-n_Nb_N - n_Sb_S, (8)

$$
k_e = 0.004 + 10^{-2.25} (V)^{0.74}
$$
 (9)

$$
\omega = \sqrt{\frac{8RT}{\pi MW_{\text{voc}}}}
$$
(10)

45 where c^{*} is the vapor saturation concentration of VOCs, and the calculation method and all 46 parameters were explained in detail by Li et al. (2016); R is the gas constant, 8.314 (kg m² s⁻² 47 K^{-1} mol⁻¹); T is the temperature; MW_{voc} is the vapor molecular weight of VOCs; D_g of VOCs 48 were referred to the results of Tang et al. (2015).

49 In this study, the concentrations of MGly measured by PTR-MS were the equilibrium 50 concentrations after gas-particle partitioning and multiphase reactions, which would 51 underestimate the contribution of MGLY in the SOA formation. Hence, the total

52 concentrations of MGly in gas phase were estimated through the molar yield (14%) of MGLY 53 in acetone-OH oxidation reported by Fu et al. (2008). Then the total concentrations of MGly 54 were vapor wall loss corrected by k_w .

55 **Text S4. The calculation of the MAC of SOA**

In this study, the light absorption coefficient (Abs_λ, M m⁻¹) and the mass absorption 57 coefficient (MAC_λ, m² g⁻¹) at the wavelength of λ of SOA were calculated using eq.13 and 14, 58 respectively (Liu et al., 2023).

$$
Abs_{\lambda} = (A_{\lambda} - A_{700}) \frac{V_w}{V_a \times l} \times \ln(10)
$$
\n(13)

$$
MAC_{\lambda} = \frac{Abs_{\lambda}}{M}
$$
 (14)

59 where A_{λ} and A₇₀₀ represent the light absorption at the wavelengths of λ and 700 nm measured 60 by LWCC, respectively; V_w and V_a represent the volume of solvent and the volume of air 61 corresponding to the filter punch, respectively; and l is the absorbing path length (1 m) ; M is the concentration of water-soluble organic carbon (WSOC, μ gC m⁻³).

Text S5. The calculation of the partition coefficients of NH³ (ε(NH⁴ ⁺ 63 **))**

64 The partition coefficients of NH₃ (ε (NH₄⁺)) on different seeds were calculated by eq.15 65 and 16 (Guo et al., 2017; Nah et al., 2018).

$$
\varepsilon(NH_4^+) \cong \frac{\frac{\gamma_{H^+} 10^{-pH}}{\gamma_{NH_4^+}} H_{NH_3}^* W_i RT \times 0.987 \times 10^{-14}}{1 + \frac{\gamma_{H^+} 10^{-pH}}{\gamma_{NH_4^+}} H_{NH_3}^* W_i RT \times 0.987 \times 10^{-14}}
$$
(15)

$$
\ln(H_{NH_3}^*) = 25.393 - 10373.6(1/T_r - 1/T) + 4.131(T_r/T - (1 + \ln(T_r/T))) \tag{16}
$$

66 where γ_{H^+} and $\gamma_{NH_4^+}$ are activity coefficients of H⁺ and NH₄⁺, respectively, calculated from 67 E-AIM model; $H_{NH_3}^*$ is equilibrium constants calculated by eq.16; R is the gas constant; T is 68 temperature; W_i is particle liquid water content associated with inorganic species. 69

-
-

Figure S2. The times series of OH and HO² radical concentrations during Phase I.

 Figure S3. The mass spectra of acetone-derived SOA measured by HR-AMS during the Phase I and Phase II (a and b) and their difference between the two phases (c). Data were taken and analyzed at a high resolution but were summarized to a unit mass resolution for display.

Figure S4. Concentrations of acetone-derived SOA in the chamber during the Phase I

 Figure S5. Normalized concentrations of SOA to the surface area (SA) of different seeds at Phase I as a function of reaction time during the exposure of various seeds to 99 750 ppb acetone and 5.3×10^8 molecules cm⁻³ OH radicals under 85% RH.

 Figure S6. (a-c) The fraction of various organic species family signal of acetone- derived SOA at different reaction phases. (Phase I: Photoreaction of acetone by OH radicals without NH3; Phase II: Reaction of acetone oxidation products with NH³ under dark conditions; Phase III: Addition of 500 ppb SO² into the chamber after Phase II in the presence of Na2SO⁴ seeds); (d) The enhancement of the fraction of CHN ions family of Phase II over Phase I on different seeds (the value on Na2SO⁴ seed with SO2 is the enhancement of Phase III over Phase I).

-
-
-
-

 Figure S7. The concentrations (a) and yield (b) of formic and acetic acids in gas phase during steady state of reaction on various seeds.

Figure S8. The enhancement of the total N mass in particle phase at Phase II.

 124 **Figure S9.** (a) The mass concentration of SOA, NH_4^+ and SO $_4^2$ - during the reaction given by HR-ToF-AMS, which were corrected according to the results of SMPS; (b) The variations of fractions of N-containing organic species signals during the reaction 127 on $Na₂SO₄$ seed with $NH₃$ and $SO₂$.

 Figure S10. The ESI-Orbitrap MS spectra of the 1H-Imidazole-4-carboxylic acid standard.

150 **Figure S11.** The times series of three main RO₂ concentrations during Phase I.

155
156 Figure S12. Loss rates of RO₂+HO₂ and RO₂+RO₂ pathways in acetone photoreaction during the experiment

158 **Table S1.** The reaction conditions of the experiments

Exp. No.	Acetone (ppb)	OH ^a (molecules cm^{-3})	NH ₃ b (ppb)	SO ₂ (ppb)	Seeds	RH (%)
	750	5.89×10^{6}	73		$(NH_4)_2SO_4$	85 ± 1
2	750	5.89×10^{6}	73		(NH ₄)HSO ₄	85 ± 1
3	750	5.89×10^{6}	73		Na ₂ SO ₄	85 ± 1
4	750	5.89×10^{6}	73	500	Na ₂ SO ₄	85 ± 1
	750	5.89×10^{6}	73			85 ± 1

^a The concentrations of OH radicals in all experiments are average concentrations during Phase I. These concentrations are determined using an OBM-MCM.

 b The concentrations of NH₃ are wall-loss corrected average concentrations during Phase II, without considering the reaction process.

159

162 **Table S2.** ESI-Orbitrap MS measured products in acetone SOA

Measured Mass $[M+H]^+$	Mass	Theory Suggested Formula	Molecular Structure	Seeds	Ref.
$72\,$	$7\sqrt{1}$	C ₃ H ₅ NO	ŃН		De Haan et al. (2019)
117	116	$C_5H_8O_3$			
133	132	$C_5H_8O_4$			
163	162	$C_6H_{10}O_5$	ÒН	$(NH_4)_2SO_4$	Li et al. (2021b)
195	194	$C_9H_{10}N_2O_3$	H N O		Aiona et al. (2017)
235	234	$C_9H_{14}O_7$	O ÒН O_{H_O}		Li et al. (2021b)
341	340	$C_{15}H_{20}O_7N_2$	OH O Ņ O N H Ő J O ÒН ÒΗ		Aiona et al. (2017)
105	104	$C_3H_4O_4$	O O ÒН ÒН		Altieri et al. (2008)
119	118	$C_4H_6O_4$	HO ÒН O		Altieri et al. (2008)
135	134	$C_4H_6O_5$	ЮH HO Ó HÓ		Altieri et al. (2008)
161	160	$\rm{C}_6H_8O_5$		Na ₂ SO ₄	
179	178	$C_6H_{10}O_6$	OН .OH HO HО Ω		Guzmán et al. (2006)
217	216	$C_9H_{12}O_6$	O. O		Zhao et al. (2006)

164

165

166 **Table S3** The concentrations and saturation mass concentration of VOCs products 167 formed from acetone photooxidation in gas phase

Gaseous	Molecular	Concentration	C^*		K_H
products	structure	(ppb)	$($ ug m ⁻³ $)$	Volatility	$(M \text{ atm}^{-1})$
$C_3H_4O_2$		1.82	2.3×10^{7}	VOC	3.7×10^3
$C_2H_4O_2$	HO	22.95	3.2×10^{7}	VOC	1.8×10^3
CH ₂ O ₂	HO_{max}	7.84	2.7×10^{7}	VOC	1.3×10^{3}
$C_2H_4O_3$	OH	4.16	1.4×10^{6}	IVOC	7.2×10^2
CH ₄ O ₂	\sim_{Ω} _{OH}	7.95	2.7×10^{7}	VOC	1.5×10^{2}
CH ₄ O	HO_{\sim}	0.35	6.7×10^{8}	VOC	2.3×10^{2}
$C_3H_6O_3$	OН	1.65	1.5×10^{6}	IVOC	3.1×10^{4}
$C_3H_6O_2$	OН	0.12	2.3×10^{7}	VOC	1.3×10^{2}

168

173

174

175

176

177

Reference:

- Aiona, P. K., Lee, H. J., Leslie, R., Lin, P., Laskin, A., Laskin, J., and Nizkorodov, S. A.: Photochemistry of products of the aqueous reaction of methylglyoxal with ammonium sulfate, ACS Earth Space Chem., 1, 522-532, 10.1021/acsearthspacechem.7b00075, 2017.
- Altieri, K. E., Seitzinger, S. P., Carlton, A. G., Turpin, B. J., Klein, G. C., and Marshall, A. G.: Oligomers formed through in-cloud methylglyoxal reactions: Chemical composition, properties, and mechanisms investigated by ultra-high resolution FT-ICR mass spectrometry, Atmospheric Environment, 42, 1476- 1490, 10.1016/j.atmosenv.2007.11.015, 2008.
- Bongartz, A., Schweighoefer, S., Roose, C., and Schurath, U.: The mass accommodation coefficient of ammonia on water, Journal of Atmospheric Chemistry, 20, 35-58, 10.1007/bf01099917, 1995.
- De Haan, D. O., Pajunoja, A., Hawkins, L. N., Welsh, H. G., Jimenez, N. G., De Loera, A., Zauscher, M.,
- Andretta, A. D., Joyce, B. W., De Haan, A. C., Riva, M., Cui, T. Q., Surratt, J. D., Cazaunau, M., Formenti, P., Gratien, A., Pangui, E., and Doussin, J. F.: Methylamine's Effects on Methylglyoxal-Containing Aerosol: Chemical, Physical, and Optical Changes, Acs Earth and Space Chemistry, 3,
- 1706-1716, 10.1021/acsearthspacechem.9b00103, 2019.
- Fu, T. M., Jacob, D. J., Wittrock, F., Burrows, J. P., Vrekoussis, M., and Henze, D. K.: Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols, J. Geophys. Res.: Atmos., 113, D15303, 10.1029/2007jd009505, 2008.
- Guo, H., Liu, J., Froyd, K. D., Roberts, J. M., Veres, P. R., Hayes, P. L., Jimenez, J. L., Nenes, A., and Weber, R. J.: Fine particle pH and gas–particle phase partitioning of inorganic species in Pasadena, California, during the 2010 CalNex campaign, Atmos. Chem. Phys., 17, 5703-5719, 10.5194/acp-17- 5703-2017, 2017.
- Guzmán, M. I., Colussi, A. J., and Hoffmann, M. R.: Photoinduced Oligomerization of Aqueous Pyruvic Acid, The Journal of Physical Chemistry A, 110, 3619-3626, 10.1021/jp056097z, 2006.
- Huang, Y., Zhao, R., Charan, S. M., Kenseth, C. M., Zhang, X., and Seinfeld, J. H.: Unified theory of vapor–wall mass transport in Teflon-walled environmental chambers, Environ. Sci. Technol., 52, 2134-2142, 10.1021/acs.est.7b05575, 2018.
- Li, Y., Pöschl, U., and Shiraiwa, M.: Molecular corridors and parameterizations of volatility in the chemical evolution of organic aerosols, Atmospheric Chemistry and Physics, 16, 3327 -3344, 10.5194/acp-16-3327-2016, 2016.
- Li, Y. X., Zhao, J. Y., Wang, Y., Seinfeld, J. H., and Zhang, R. Y.: Multigeneration production of secondary organic aerosol from toluene photooxidation, Environ. Sci. Technol., 55, 8592 -8603, 10.1021/acs.est.1c02026, 2021a.
- Li, Y. X., Ji, Y. M., Zhao, J. Y., Wang, Y., Shi, Q. J., Peng, J. F., Wang, Y. Y., Wang, C. Y., Zhang, F., Wang, Y. X., Seinfeld, J. H., and Zhang, R. Y.: Unexpected oligomerization of small alpha -dicarbonyls for secondary organic aerosol and brown carbon formation, Environ. Sci. Technol., 55, 4430 -4439, 10.1021/acs.est.0c08066, 2021b.
- Liu, T. and Abbatt, J. P. D.: Oxidation of sulfur dioxide by nitrogen dioxide accelerated at the interface of deliquesced aerosol particles, Nat. Chem., 13, 1173–1177, 10.1038/s41557-021-00777-0, 2021.
- Liu, X., Wang, H., Wang, F., Lv, S., Wu, C., Zhao, Y., Zhang, S., Liu, S., Xu, X., Lei, Y., and Wang, G.:
- Secondary formation of atmospheric brown carbon in China haze: Implication for an enhancing role of ammonia, Environ. Sci. Technol., 57, 11163-11172, 10.1021/acs.est.3c03948, 2023.
- Nah, T., Guo, H., Sullivan, A. P., Chen, Y., Tanner, D. J., Nenes, A., Russell, A., Ng, N. L., Huey, L. G.,
- and Weber, R. J.: Characterization of aerosol composition, aerosol acidity, and organic acid
- partitioning at an agriculturally intensive rural southeastern US site, Atmospheric Chemistry and Physics, 18, 11471-11491, 10.5194/acp-18-11471-2018, 2018.
- Seinfeld, J. H. and Pandis, S. N.: ATMOSPHERIC CHEMISTRY AND PHYSICS: from air pollution to 226 climate change, John Wliey & Sons, 2^{nd} ed., ISBN: 978-0-471-72018-8, 2006.
- Tan, Y., Lim, Y. B., Altieri, K. E., Seitzinger, S. P., and Turpin, B. J.: Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and
- methylglyoxal, Atmospheric Chemistry and Physics, 12, 801-813, 10.5194/acp-12-801-2012, 2012.
- Tang, M. J., Cox, R. A., and Kalberer, M.: Compilation and evaluation of gas phase diffusion coefficients of reactive trace gases in the atmosphere: volume 1. Inorganic compounds, Atmospheric Chemistry and Physics, 14, 9233-9247, 10.5194/acp-14-9233-2014, 2014.
- Tang, M. J., Shiraiwa, M., Pöschl, U., Cox, R. A., and Kalberer, M.: Compilation and evaluation of gas phase diffusion coefficients of reactive trace gases in the atmosphere: Volume 2. Diffusivities of organic compounds, pressure-normalised mean free paths, and average Knudsen numbers for gas uptake calculations, Atmospheric Chemistry and Physics, 15, 5585-5598, 10.5194/acp-15-5585-2015, 2015.
- Zhang, X., Cappa, C. D., Jathar, S. H., McVay, R. C., Ensberg, J. J., Kleeman, M. J., and Seinfeld, J. H.: Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol, Proc Natl
- Acad Sci U S A, 111, 5802-5807, 10.1073/pnas.1404727111, 2014.
- Zhao, J., Levitt, N. P., Zhang, R. Y., and Chen, J. M.: Heterogeneous reactions of methylglyoxal in acidic media: Implications for secondary organic aerosol formation, Environmental Science & Technology, 40, 7682-7687, 10.1021/es060610k, 2006.