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Abstract. High-altitude remote sites are unique places to study aerosol–cloud interactions, since they are lo-
cated at the altitude where clouds may form. At these remote sites, organic aerosols (OAs) are the main con-
stituents of the overall aerosol population, playing a crucial role in defining aerosol hygroscopicity (κ). To esti-
mate the cloud condensation nuclei (CCN) budget at OA-dominated sites, it is crucial to accurately characterize
OA hygroscopicity (κOA) and how its temporal variability affects the CCN activity of the aerosol population,
since κOA is not well established due to the complex nature of ambient OA. In this study, we performed CCN
closures at a high-altitude remote site during summer to investigate the role of κOA in predicting CCN concen-
trations under different atmospheric conditions. In addition, we performed an OA source apportionment using
positive matrix factorization (PMF). Three OA factors were identified from the PMF analysis: hydrocarbon-like
OA (HOA), less-oxidized oxygenated OA (LO-OOA), and more-oxidized oxygenated OA (MO-OOA), with av-
erage contributions of 5 %, 36 %, and 59 % of the total OA, respectively. This result highlights the predominance
of secondary organic aerosol (SOA) with a high degree of oxidation at this high-altitude site. To understand the
impact of each OA factor on the overall OA hygroscopicity, we defined three κOA schemes that assume differ-
ent hygroscopicity values for each OA factor. Our results show that the different κOA schemes lead to similar
CCN closure results between observations and predictions (slope and correlation ranging between 1.08–1.40 and
0.89–0.94, respectively). However, the predictions were not equally accurate across the day. During the night,
CCN predictions underestimated observations by 6 %–16 %, while, during morning and midday hours, when the
aerosol was influenced by vertical transport of particles and/or new particle formation events, CCN concentra-
tions were overestimated by 0 %–20 %. To further evaluate the role of κOA in CCN predictions, we established
a new OA scheme that uses the OA oxidation level (parameterized by the f44 factor) to calculate κOA and pre-
dict CCN. This method also shows a large bias, especially during midday hours (up to 40 %), indicating that
diurnal information about the oxygenation degree does not improve CCN predictions. Finally, we used a neural
network model with four inputs to predict CCN:N80 (number concentration of particles with diameter> 80 nm),
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OA fraction, f44, and solar global irradiance. This model matched the observations better than the previous ap-
proaches, with a bias within ± 10 % and with no daily variation, reproducing the CCN variability throughout
the day. Therefore, neural network models seem to be an appropriate tool to estimate CCN concentrations using
ancillary parameters accordingly.

1 Introduction

Cloud condensation nuclei (CCN) are those aerosol parti-
cles that act as the seeds for cloud droplet activation. The
number of CCN in the atmosphere determines the number of
cloud droplets that form. This in turn affects cloud properties
such as reflectivity and lifetime (Twomey, 1977; Albrecht,
1989), playing a critical role in the regulation of Earth’s en-
ergy balance, climate, and hydrological cycle (Lohmann and
Feichter, 2005).

The radiative forcing associated with the indirect ef-
fect of aerosols through aerosol–cloud interaction is larger
(−1.0± 0.7 Wm−2) than the direct effect of aerosol through
aerosol–radiation interaction (−0.25± 0.25 Wm−2) (Forster
et al., 2021). Therefore, understanding physicochemical
properties of aerosol particles that can act as CCN could min-
imize CCN prediction errors, which are essential to reducing
the uncertainty of global aerosol–cloud interactions (Seinfeld
et al., 2016). For that reason, the spatial and temporal varia-
tion in CCN, together with parameters controlling CCN con-
centrations, has been studied intensively around the world in
the last decades (Deng et al., 2018; Paramonov et al., 2015;
Rose et al., 2010; Salma et al., 2021; Schmale et al., 2018;
Park et al., 2023; Kulkarni et al., 2023; Rejano et al., 2021;
Che et al., 2016).

If ambient conditions that regulate water vapor supersat-
uration (SS) are disregarded, the main aerosol properties in-
fluencing the CCN activity are particle size, chemical com-
position, and mixing state (Dusek et al., 2006; Cubison et al.,
2008; Wang et al., 2010; Deng et al., 2018; Kuang et al.,
2020b). To assess how these aerosol properties control the
CCN activity under different ambient aerosol composition
and mixing conditions, closure studies (i.e., comprehensive
evaluation and comparison of measurements from different
instruments or methodologies that aim to measure the same
or related parameters) have proven to be very useful (Cai
et al., 2022; Crosbie et al., 2015; Ervens et al., 2010; Jurányi
et al., 2010; Ren et al., 2018; Kulkarni et al., 2023).

Particle number size distribution (PNSD) is the main fac-
tor controlling CCN estimations (Crosbie et al., 2015; Dusek
et al., 2006). Many studies assume an activation thresh-
old diameter from which all particles are considered acti-
vated (Asmi et al., 2011; Cho Cheung et al., 2020; Hoyle
et al., 2016; Rose et al., 2017; Casquero-Vera et al., 2023).
However, reducing aerosol–cloud interaction uncertainties
requires more accurate CCN predictions, which, in turn, re-

quires knowledge about the aerosol chemical composition
(Che et al., 2016, 2017).

The effect of chemical composition in CCN activity is usu-
ally treated through the hygroscopicity parameter κ (Petters
and Kreidenweis, 2007), which can be obtained using bulk or
size-resolved chemical composition measurements through a
simple volume mixing rule (Petters and Kreidenweis, 2007).
However, while the aerosol hygroscopicity of inorganic sub-
stances is well characterized, the quantification of organic
aerosol (OA) hygroscopicity (κOA) remains challenging. This
is due to the large variety of organic compounds within OA,
resulting in a wide range of hygroscopicity values that intro-
duce large uncertainties in CCN predictions (Casans et al.,
2023; Hallquist et al., 2009; Jimenez et al., 2009; Zhang
et al., 2007). It has been proven that CCN predictions are very
sensitive to κOA and that a poor knowledge of κOA variabil-
ity leads to large biases in CCN closures, especially at OA-
dominated sites (Cai et al., 2022; Deng et al., 2019; Thalman
et al., 2017; Gunthe et al., 2009; Liu and Wang, 2010).

To obtain an accurate estimation of κOA, knowledge of OA
sources and their time variability is required with high time
resolution (Wu et al., 2016; Deng et al., 2019; Ren et al.,
2023; Cai et al., 2018). Positive matrix factorization (PMF)
has proven to be a powerful tool for identifying the main OA
components by using the organic mass spectra (Via et al.,
2021; Minguillón et al., 2015; Crippa et al., 2013). Previous
studies explained κOA variability in terms of OA sources as-
suming specific hygroscopicity values for each source (Cai
et al., 2022; Cerully et al., 2015; Deng et al., 2019; Thalman
et al., 2017) or established κOA parameterizations based on
the oxidation degree (Duplissy et al., 2011; Mei et al., 2013;
Wu et al., 2016; Chen et al., 2017). However, assumptions
about κOA needed for accurate CCN predictions vary greatly
among studied sites (Ervens et al., 2010; Cubison et al., 2008;
Tao et al., 2021; Kuang et al., 2020b), due to the wide variety
of sources and atmospheric processes affecting OA.

Organic aerosol usually dominates aerosol mass concen-
tration in the fine fraction in high-altitude environments (e.g.,
Fröhlich et al., 2015; Ripoll et al., 2015; Zhang et al., 2023).
In addition, since cloud formation conditions can occur at
these sites, high-altitude sites are unique locations for study-
ing aerosol–cloud interactions (Friedman et al., 2013; Li
et al., 2020; Iwamoto et al., 2021; Jurányi et al., 2011). More-
over, these sites are often exposed to free-troposphere condi-
tions, where the submicron aerosol population tends to be
an internal mixture of background particles. In this case,
satisfactory CCN predictions can be obtained using simple
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assumptions about aerosol chemical composition (Jurányi
et al., 2010; Duan et al., 2023). However, during some con-
ditions, such as thermally driven upslope flow, high-altitude
sites might be influenced by planetary boundary layer (PBL)
air with pollution particles being efficiently transported to
high-altitude sites and affecting CCN activity (Jayachandran
et al., 2018; Rejano et al., 2021). Also, at these sites, high-
insolation conditions during midday hours promote photo-
chemical processes that can lead to new particle forma-
tion (NPF) events, completely transforming the background
aerosol population from a homogeneous aerosol population
to a complex mixture of particles with different chemical and
microphysical characteristics (Friedman et al., 2013; Rose
et al., 2017; Shang et al., 2018). During these more com-
plex conditions, when NPF and/or PBL transport affect the
aerosol population, simple approaches for CCN predictions
tend to overpredict the observations (Asmi et al., 2012; Che
et al., 2017; Hu et al., 2020; Zhang et al., 2017). Further in-
vestigation on how the changes in aerosol composition and
hygroscopicity affect CCN variability at these sites is re-
quired.

In this study, we investigate OA sources, their temporal
variability, and their influence on CCN predictions at a high-
altitude mountain site during an intensive summer field cam-
paign. To understand the influence of aerosol composition on
CCN, we calculate the overall aerosol hygroscopicity from
bulk chemical composition measurements and then assume
different OA schemes to retrieve κOA. We focus the analy-
sis on the influence that OA might have on the CCN pre-
dictions under different atmospheric conditions throughout
the day. Additionally, a non-analytical model approach using
neural networks was developed to predict CCN concentra-
tions based on ancillary information on particle number con-
centration, OA mass fraction and oxygenation degree, and
solar global irradiance.

2 Measurements

2.1 Experimental site

Aerosol measurements presented in this study were con-
ducted at the Sierra Nevada station (SNS) from 8 June to
13 July 2021 in the frame of the BioCloud field campaign
(Jaén et al., 2023). The main objective of the campaign was
to evaluate the impact of biogenic and anthropogenic emis-
sions on the CCN budget at this high-altitude mountain site.
SNS is located in the Sierra Nevada mountain range in south-
eastern Spain (37.10° N, 3.39° W; 2500 ma.s.l.) and is part
of the Andalusian Global Observatory of the Atmosphere
(AGORA). Measurements at SNS are performed following
the Aerosol, Cloud and Trace Gases Research Infrastructure
(ACTRIS; http://actris.eu, last access: 12 December 2024)
standards for in situ measurements at high-altitude observa-
tories (Pandolfi et al., 2018), and the station is part of the

NOAA Federated Aerosol Network (NFAN; Andrews et al.,
2019).

SNS is located at a horizontal distance of 21 km and has
an altitude difference of 1820 m from the city of Granada,
which is located downslope of the mountains in a valley.
Granada is a medium-sized city with a population of 232 208
(https://www.ine.es, last access: 12 December 2024), which
increases up to 530 000 if the wider metropolitan area is
considered. The main local aerosol source in Granada is
road traffic, including both motor vehicle exhaust and the
re-suspension of particulate material from the roadways
(Casquero-Vera et al., 2021; Rejano et al., 2023; Titos et al.,
2014). These pollutants emitted in the Granada area can in-
fluence the aerosol properties observed in Sierra Nevada (Re-
jano et al., 2023). Atmospheric aerosol at SNS has been re-
ported to be affected by the transport of particles from the
Granada metropolitan area because of planetary boundary
layer (PBL) growth and the mountain–valley breeze phe-
nomenon (Rejano et al., 2021; Jaén et al., 2023; Casquero-
Vera et al., 2020). Aerosol sources at SNS during summer
are primarily related to the transport of pollutants from lower
altitudes and regional transport, biogenic emissions from the
vegetation, and desert dust transported from the Sahara (Jaén
et al., 2023). Furthermore, new particle formation (NPF)
events are relatively frequent at midday, representing another
important source of aerosol particles at this site (Casquero-
Vera et al., 2020; Rejano et al., 2021; de Arruda Moreira
et al., 2019).

2.2 Aerosol sampling and instrumentation

Sample air for all instruments was obtained through a
stainless-steel tube located in the rooftop of the observatory,
which is a three-storey building. Inside this tube there are
several smaller stainless-steel pipes, which provide sample
air to the different instruments (Baron and Willeke, 2005).
All measurements reported here refer to ambient conditions
and were performed without aerosol size cut. Further in-
formation about the observatory and experimental condi-
tions can be found in previous studies performed at SNS
(Casquero-Vera et al., 2020; Rejano et al., 2021; Jaén et al.,
2023). In the following we describe the instruments used in
this study.

A time-of-flight aerosol chemical speciation monitor
(ToF-ACSM; Aerodyne Research Inc., Billerica, USA; Fröh-
lich et al., 2013) was deployed to measure the mass concen-
tration and chemical composition of non-refractory submi-
cron aerosol particles (NR-PM1) with a 10 min time reso-
lution. The chemical species determined by the instrument
were OA, SO−2

4 , NO−3 , NH+4 , and Cl−. The instrument was
operated at a flow rate of 3 Lmin−1, and the air sample
passed through a Nafion dryer, maintaining the incoming rel-
ative humidity below 40 %. During the campaign, the sample
flow into the instrument was 0.108 Lmin−1. A PM1 stan-
dard aerodynamic lens focused the sample flow into a nar-
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row beam and transmitted particles with a vacuum aerody-
namic diameter between 70 and 700 nm (Liu et al., 2007).
Non-refractory particles were flash vaporized at 600 °C with
a tungsten vaporizer and were ionized by electron impact
at 70 eV. The instrument was equipped with a capture va-
porizer that enhanced vaporization and gave a collection ef-
ficiency of 1. After sample ionization, the ions were intro-
duced into a time-of-flight mass spectrometer (ETOF, Tofw-
erk Inc.), where they were orthogonally extracted and sep-
arated according to their mass-to-charge ratio (m/z). The
mass spectra were obtained for m/z ions ranging from 12
to 200 Th. Finally, the mass spectral signals were converted
to mass concentration (in µgm−3) using the ionization effi-
ciency calculated from calibration curves of known reference
species (Fröhlich et al., 2013).

Flow calibrations for the ToF-ACSM were performed be-
fore and after the BioCloud field campaign. The relative
ionization efficiency (RIE) calibrations for NO−3 and SO−2

4
were performed before the campaign using dry, size-selected
300 nm particles of ammonium nitrate and ammonium sul-
fate generated by an Aerosol Generator atomizer (TSI 3076).
For more details about the ToF-ACSM calibrations, see Fröh-
lich et al. (2013). Data processing was performed using
the data analysis package “Tofware” (version 2.5.13, https:
//www.tofwerk.com/software/tofware/, last access: 12 De-
cember 2024) running in the Igor Pro 7 environment (Wave-
metrics Inc., Oregon, USA). During the campaign, data were
corrected for changes in the sample flow rate and the N2 sig-
nal (m/z 28), which is assumed to be constant in the atmo-
sphere.

The CCN measurements were performed using a cloud
condensation nuclei counter (CCNc; Droplet Measurement
Technologies, model CCN-200), which is based on a cylin-
drical continuous-flow thermal-gradient diffusion chamber
where constant temperature gradients are applied, generating
different SS conditions (Roberts and Nenes, 2005). One of
the columns sampled polydisperse particles, while the other
column was connected to a differential mobility analyzer
(DMA) to measure size-resolved CCN. For both columns,
CCN concentrations were measured at four SS values, 0.2 %,
0.4 %, 0.6 %, and 0.8 %, taking 10 min at each SS value.
Only polydisperse measurements at 0.2 %, 0.4 %, and 0.6 %
SS are shown in this study. To ensure data quality due to
instabilities of the instrument at each SS, CCN concentra-
tions were filtered according to the criteria of Rejano et al.
(2021) to ensure that CCN number concentrations (NCCN)
measured at SS that differed by more than 20 % from the
SS set point were disregarded. The total flow rate of the in-
strument was fixed at 0.5 Lmin−1 with an aerosol flow of
0.05 Lmin−1 and a sheath flow of 0.45 Lmin−1. The flow
rates were calibrated on site before and after the campaign
and were checked regularly during the campaign. SS cali-
bration using monodisperse ammonium sulfate was also per-
formed on site at the beginning and at the end of the cam-
paign following the procedure described in ACTRIS guide-

lines (http://actris.nilu.no/Content/SOP, last access: 12 De-
cember 2024). Both calibrations provided satisfactory results
and showed no change in instrument performance.

The particle number size distribution (PNSD) was mea-
sured in the mobility diameter range between 12–535 nm ev-
ery 5 min using a scanning mobility particle sizer (SMPS;
TSI model 3938) composed of a differential mobility ana-
lyzer (DMA; TSI 3081) and a condensation particle counter
(CPC; TSI 3750). The aerosol flow rate was 1 Lmin−1, and
the sheath flow was 5 Lmin−1. The quality of the SMPS
measurements was assured by frequently checking the flow
rates and performing 203 nm PSL checks, following the AC-
TRIS and Global Atmospheric Watch (GAW) recommenda-
tions (Wiedensohler et al., 2012).

An aethalometer (Model AE-33, Magee Scientific) was
used to determine the equivalent black carbon (eBC)
mass concentration with a time resolution of 1 min. The
aethalometer draws the ambient air at a constant flow rate
of 4 Lmin−1. The eBC was determined from the aerosol ab-
sorption coefficient at 880 nm using a mass absorption cross-
section of 7.77 m2 g−1 as recommended by the manufacturer.
The PM1 mass concentration was estimated as the sum of the
mass of non-refractory components obtained by ToF-ACSM
and eBC mass concentration measured by the aethalometer
as suggested by the second deliverable of the COST Action
CA16109 COLOSSAL.

Finally, a Hukseflux LP02-05 pyranometer was used to
measure the horizontal solar global irradiance with 5 min res-
olution.

3 Methodology

3.1 Source apportionment of organic aerosol

The source apportionment of organic aerosol was per-
formed using the positive matrix factorization (PMF) method
(Paatero and Tapper, 1994) using the multilinear engine ME-
2 (Paatero, 1999). The PMF is a multivariate factor analy-
sis technique that allows the decomposition of the measured
OA mass spectral matrix (X), where the matrix columns are
the variables (m/z ions) and the matrix rows are the obser-
vations (ToF-ACSM timestamps), into two matrices, the fac-
tors or source profiles matrix (F) and the contributions ma-
trix (G):

xij =
∑p

k=1
gik · fkj + eij , (1)

where eij represents the elements of the residual matrix (E),
accounting for unexplained information of X in the p factors
solution. The number of PMF factors, p, is a pre-set param-
eter that must be established. Once the number of factors is
fixed, the algorithm solves Eq. (3) iteratively, minimizing the
Q function, which is defined as

Q=
∑
i,j

(
eij

σij

)2

, (2)
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where σij is the measurement uncertainties corresponding to
the xij input data. The solution with the correct number of
factors should give Q/Qexp near unity, with Qexp being the
expected value of Q, and is calculated as Qexp= n ·m−p ·

(n+m), with n being the number of observations andm being
the number of variables.

To improve the source apportionment characterization and
achieve environmentally meaningful solutions, the ME-2
methodology allows the establishment of a priori mass pro-
files of known OA sources, the so-called anchor profiles,
based on previous scientific knowledge at an experimental
site (Canonaco et al., 2013) or on chamber data. The strength
of this a priori constraint is modulated through the a-value
approach (Paatero and Hopke, 2009; Brown et al., 2012).
The a-value establishes how much deviation from the an-
chor profile the model allows to the solution factor. Thus,
a fully constrained factor has an a-value equal to 0, whereas
for unconstrained factors the a-value is equal to 1. The ME-2
engine initialization and the results analysis were done using
the SoFi v.8 toolkit (Source Finder; Canonaco et al., 2013)
for Igor Pro environment. The PMF was run for a range of
solutions from three to five factors, and the mass spectra con-
sidered ranged between 12 and 120 Th, since higherm/z ions
contribute only marginally to the mass spectra and exhibit a
low signal-to-noise ratio (SNR< 0.2).

3.2 CCN estimations and activation properties using
κ-Köhler theory

The κ-Köhler theory establishes a mathematical relation be-
tween the water vapor supersaturation ratio, the droplet di-
ameter (D), the dry particle size (Ddry) acting as CCN, and
the κ parameter (Petters and Kreidenweis, 2007) as follows:

SS=
D3
−D3

dry

D3− (1− κ)D3
dry

exp
(

4σs/aMw

RT ρwD

)
− 1, (3)

where ρw and Mw are the density and molar mass of water,
respectively;R is the universal gas constant; T is the absolute
temperature; and σs/a is the surface tension of the solution–
air interface (assumed to be equal to the surface tension of
pure water). Therefore, from the overall κ of an aerosol popu-
lation, we can estimate theDcrit, which is the threshold size at
which particles become CCN, at a certain SS using κ-Köhler
theory. This method assumes a homogenous aerosol popu-
lation mixture (internally mixed) where all particles larger
than this cutoff diameter activate (Jurányi et al., 2011). Thus,
NCCN is estimated by summing up the PNSD from Dcrit to
the upper limit of the size distribution as follows:

NCCN(SS)=

Dmax∫
Dcrit(SS)

dN
dlogD

dlogD. (4)

Alternatively, we can perform the inverse calculation in-
tegrating the PNSD from its upper limit to the diameter at

which the integral value equals the simultaneously measured
NCCN(SS) with the CCNc. Then, the effective hygroscopic-
ity parameter can be retrieved using the κ-Köhler equation
from aerosol size distribution and CCN concentration mea-
surements (Jurányi et al., 2011), substituting Ddry with Dcrit
in Eq. (3), being by definition the maximum of the curve of
the instrument SS at whichDcrit was calculated. These CCN-
derived κ values (κCCN) quantify the effective hygroscopicity
of activated particles in the CCNc and exhibit a dependency
on SS (Kammermann et al., 2010).

3.3 Estimation of aerosol hygroscopicity from chemical
composition measurements

One of the most commonly used approaches to estimate
the total aerosol hygroscopicity from chemical composition
measurements is based on the Zdanovskii–Stokes–Robinson
(ZSR) approach. By regarding ambient aerosols as a mixture
of individual compounds, the hygroscopicity parameter can
be retrieved using a mixing rule in terms of the volume frac-
tions of the chemical species (Petters and Kreidenweis, 2007)
as follows:

κchem =
∑
i

κiεi, (5)

where εi is the volume fraction of each chemical species and
κi its corresponding hygroscopicity. This approximation pro-
vides a successful explanation of observations as shown in
previous studies (Bougiatioti et al., 2009, 2016; Rose et al.,
2010; Wang et al., 2010). The summation is performed over
all chemical species considered for the calculation of the
κchem parameter. In this study we have considered three main
terms in Eq. (3): OA, inorganic aerosol (IA), and eBC. Thus,
κchem can be estimated as follows:

κchem = κOAεOA+ κIAεIA+ κBCεBC, (6)

where κOA (εOA), κIA (εIA), and κBC (εBC) are the hygro-
scopicity parameters (volume fractions) of organic aerosols,
inorganic aerosols, and BC, respectively. The contribution
of IA to κchem considers some inorganic salts (ammonium
nitrate, ammonium sulfate, ammonium bisulfate, and sulfu-
ric acid) present in the atmosphere. The volume fractions of
these inorganic salts were obtained by the simplified ion pair-
ing scheme presented by Gysel et al. (2007) using the inor-
ganic species measured by the ToF-ACSM (SO−2

4 , NO−3 , and
NH+4 ions). The density and hygroscopicity parameters for
each inorganic salt were taken from previous studies (Kuang
et al., 2020b; Wu et al., 2016) and are summarized in Ta-
ble S1 in the Supplement.

The inorganic contribution to κchem is assumed to be a
well-defined term in Eq. (5). We assumed that BC parti-
cles were completely hydrophobic (κBC = 0) for calculat-
ing κchem, which is a reasonable assumption, as suggested
in previous studies (Deng et al., 2019; Kuang et al., 2020b;
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Figure 1. (a) Pie chart of PM1 inorganic species (SO−2
4 , NO−3 , NH+4 , Cl−), organic aerosol, and eBC mass concentration averaged over the

BioCloud campaign and (b) mean diurnal pattern evolution for each species.

Schmale et al., 2018). Unlike inorganic species that exhibit
a well-characterized hygroscopic behavior, the water uptake
capacity of OA species is poorly understood because of the
presence of diverse organic species (Casans et al., 2023; Hal-
lquist et al., 2009; Kanakidou et al., 2005; Rastak et al.,
2017). This diversity makes determining κOA extremely chal-
lenging (Kuang et al., 2020a). In Sect. 4.2, we present differ-
ent OA schemes in terms of the PMF solution to estimate
κOA, assuming different density and hygroscopicity values
for each OA source.

3.4 Performing non-analytical solutions for CCN
predictions: neural networks

Apart from analytical solutions based on predefined relation-
ships between variables, non-analytical solutions like ma-
chine learning techniques have become a powerful alterna-
tive to predict certain variables using ancillary information
as input. Indeed, neural networks have been applied with re-
markable success in recent years for regression problems in
the framework of atmospheric sciences (Biancofiore et al.,
2017; Comrie, 1997; Spellman, 1999) to relate atmospheric
variables with non-linear and highly complex behavior.

For our regression problem, we built a neural network
which uses four input parameters and hasNCCN as the output
parameter. Our neural network consists of a two-layer feed-
forward network with sigmoid hidden neurons and linear out-
put neurons. We chose a hidden layer of 10 neurons after
verifying that results did not improve with more neurons. We
used the back-propagation algorithm (Rumelhart et al., 1986)
with Bayesian regularization (Foresee and Hagan, 1997) for
training the network. Data were split into training, validation,

and test, using 55 % of the data for training, 20 % of the data
to halt training when generalization stops improving (neural
network validation), and the remaining 25 % of data for test-
ing. Each subset of data was obtained by a random selection
of observations. The entire modeling process was performed
using the Neural Net Fitting tool of MATLAB.

4 Results

4.1 BioCloud field campaign overview

In this section we present an overview of the PM1 chemical
composition including identification of OA sources and the
analysis of CCN activation properties from 8 June to 13 July
2021 within the framework of the BioCloud field campaign.

4.1.1 Submicron aerosol chemical composition and
source apportionment

The average PM1 concentration during the campaign was
3.85± 2.88 µgm−3, with 10 min average concentrations
ranging from 0.15 to 15.3 µgm−3. Figure 1a shows the mean
PM1 concentration and relative contribution of the consid-
ered species (OA, SO−2

4 , NO−3 , NH+4 , Cl−, eBC) to the total
PM1. On average, the most abundant aerosol component is
OA (2.68 µgm−3), followed by SO−2

4 (0.46 µgm−3) and eBC
(0.33 µgm−3), with relative contributions of 70 %, 12 %, and
9 %, respectively. Inorganic components (SO−2

4 , NO−3 , NH+4 ,
Cl−) represent 20 % of the total PM1 concentration on aver-
age, indicating the large contribution of organics at this high-
altitude remote site during summer. Similar OA dominance
is observed in remote sites worldwide in summer (Fröhlich
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Figure 2. Mass spectra of the three OA factors (left panels) and their time series evolution (right panels) during the BioCloud field campaign.

et al., 2015; Heikkinen et al., 2020; Jimenez et al., 2009;
Ripoll et al., 2015; Zhang et al., 2007). The most abundant in-
organic component is SO−2

4 , which is expected during sum-
mer with high temperature and insolation conditions that fa-
vor the formation of this compound (Pey et al., 2009; Titos
et al., 2014). NO−3 and NH+4 species exhibit similar low mass
concentrations (0.15 µgm−3), probably due to the high sum-
mer temperatures that favor the instability of ammonium ni-
trate. Cl− shows a negligible concentration, near to the de-
tection limit of the instrument. The mean eBC mass concen-
tration (0.33 µgm−3) is in the range of those previously ob-
served at SNS (Rejano et al., 2021) and in the range of values
reported at other high-altitude remote sites during summer,
with values ranging between 0.2 and 0.5 µgm−3 across all
sites (Ripoll et al., 2015; Zeb et al., 2020; Gramsch et al.,
2020).

To gain insight into the local and regional aerosol sources
and the underlying atmospheric aerosol processes that con-
trol aerosol evolution, diurnal variations in the mass con-
centration of the measured aerosol species were investigated
(Fig. 1b). The mass concentration of inorganic species ex-
hibited an increase throughout the day, starting at 08:00 UTC
(local time minus 2 h). NH+4 , SO−2

4 , and NO−3 mass concen-
trations followed a similar diurnal pattern. Based on these
diurnal patterns, inorganic species are most likely trans-
ported from the Granada urban area due to upslope moun-
tain breezes and the increase in the PBL height during the
daytime. OA also increased at midday, but the increase was
sharper, reaching a maximum between 12:00–16:00 UTC.
OA exhibits a larger increase in concentration at midday
hours compared to the other species (Fig. 1b), which might
suggest the influence of upslope transport but also addi-

tional sources of OA in the vicinity of the measurement
site (such as local emissions or secondary processes like nu-
cleation). Finally, eBC mass concentration increased more
gradually, starting at 03:00 UTC and reaching a maximum at
11:00 UTC. The earlier increase in eBC with respect to IA
and OA species might be related to some local primary emis-
sions during the early morning, although most of the eBC
observed at SNS is due to upslope transport (Rejano et al.,
2021).

By analyzing the OA mass spectra using PMF method-
ology, it is possible to infer whether the OA origin is lo-
cally formed and/or transported. To further explore the phe-
nomenology of OA, the OA mass concentration was sepa-
rated into different OA factors according to the PMF anal-
ysis. According to the Q/Qexp values and the physical in-
terpretation of the PMF solution, the most reliable solution
was the three-factor solution with the following OA sources:
hydrocarbon-like OA (HOA), less-oxidized oxygenated OA
(LO-OOA), and more-oxidized oxygenated OA (MO-OOA).
Once the three OA sources were identified, a new constrained
PMF solution was obtained to improve the source apportion-
ment. We constrained the HOA factor to the Crippa et al.
(2013) anchor profile, which is considered the standard mass
profile for HOA, with an a-value equal to 0.1. The LO-OOA
and MO-OOA factors were kept unconstrained to adapt bet-
ter to the site-specific aerosol characteristics.

The mass spectra profiles and the time series for each OA
factor are presented in Fig. 2. As mentioned above, the first
factor was constrained to the standard HOA profile; there-
fore, the obtained mass spectrum has a high contribution of
CxH+y fragments (m/z 41, 43, 55, 57, 69, 71; Fig. 2a1), also
known as aliphatic hydrocarbons. These ions are typically
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related to primary emissions of diesel exhaust (Canagaratna
et al., 2010; Crippa et al., 2013). The other two factors ac-
counted for virtually all OA at SNS (around 95 %) and were
resolved freely by the model. Both secondary factors (LO-
OOA and MO-OOA) are quite oxidized, with large contribu-
tions of m/z 28 and 44 (Fig. 2b1 and c1). OA at this site is
mostly composed of oxygenated OA, which agrees with pre-
vious observations at mountain sites during summer, when
secondary organic aerosol (SOA) formation through photo-
chemical oxidation is more efficient (Ripoll et al., 2015). The
fraction of m/z 43 (C2H3O+) and 44 (CO+2 ) ions relative to
the whole mass spectra (f43 and f44, respectively) indicates
the aerosol oxidation degree and allows differentiation of the
OOA into less-oxidized OOA (i.e., LO-OOA with a higher
f43/f44 ratio) and more oxidized OOA (i.e., MO-OOA with
a lower f43/f44 ratio) (Fröhlich et al., 2015; Ng et al., 2010).

The results of the PMF show average contributions of 5 %,
36 %, and 59 % of HOA, LO-OOA, and MO-OOA, respec-
tively, to the total OA concentrations during the measure-
ment campaign. The low contribution of the HOA factor
(which represents 3.5 % of the total PM1 during the cam-
paign) highlights the absence of important local primary OA
(POA) sources close to the measurement site. However, spo-
radic peaks were observed throughout the field campaign
(Fig. 2a2), probably related to occasional local combustion
emissions (Jaén et al., 2023). The first half of the campaign
(before 26 June) was characterized by a higher contribution
of MO-OOA (mean values for this period were 2.0± 1.4 and
0.7± 0.8 µgm−3 for MO-OOA and LO-OOA, respectively),
while LO-OOA became more relevant during the second half
of the campaign (mean values for this period were 1.1± 0.9
and 1.2± 1.6 µgm−3 for MO-OOA and LO-OOA, respec-
tively) (Fig. 2). The higher abundance of MO-OOA in the
first half of the campaign might be associated with less effi-
cient transport and the predominance of stagnant conditions
favoring the presence of aged aerosols, while the higher LO-
OOA concentration might be associated with more efficient
transport to SNS due to vertical transport of particles and
gaseous precursors from lower altitudes by orographic buoy-
ant upward flow. These differences in the OA origin during
each period can be related to different meteorological condi-
tions for the two periods.

Figure S1 in the Supplement shows the time series of me-
teorological variables (temperature, pressure, and relative hu-
midity) during the campaign. The second half of the cam-
paign is characterized by higher temperatures, higher pres-
sure, and lower relative humidity compared to the first half.
In addition, we observed that the diurnal pattern of wind
speed is very similar during the whole campaign (with higher
wind speeds during the evening and lower wind speeds in the
central hours of the day), but the second half of the campaign
shows higher values of the wind speed with respect to the first
half of the campaign (Fig. S2 in the Supplement). The wind
direction was also predominantly from the west for the whole
campaign, but we observed that the first half of the campaign

shows a more pronounced diurnal pattern and more influence
of other wind directions (Fig. S2). During the second half of
the campaign, a more constant wind direction is observed,
suggesting a continuous transport of aerosol from the valley
to the mountain. The significant difference between the me-
teorological conditions in both halves of the campaign can
be associated to a more efficient transport of aerosol from
the valley to the mountain during the second half of the cam-
paign, which would involve differences in the aerosol physic-
ochemical properties and, in particular, in the predominance
of the OA factors (50 % contribution of LO-OOA and 48 %
contribution of MO-OOA during the second half compared
to 26 % and 72 % during the first half). A detailed analysis
of the air masses and wind influence in aerosol composition
during the BioCloud campaign is shown in Jaén et al. (2023).

To check the effectiveness of aerosol transport due to the
mountain–valley breeze regime, eBC concentration can be
used as a tracer of transported aerosols from lower altitudes,
due to absence of local BC sources. During the second half
of the campaign, eBC shows a more pronounced diurnal pat-
tern, reaching higher concentrations during midday hours
compared with the first half of the campaign (Fig. S3 in the
Supplement); however, differences between both diurnal pat-
terns are not enough to assure us that the predominance of
each OA factor is related to different atmospheric conditions.

4.1.2 CCN activation properties

Aerosol chemical composition plays an important role in
defining aerosol hygroscopicity and CCN activation prop-
erties (Svenningsson et al., 2006; Liu et al., 2018). In this
sub-section, we link some aerosol physical properties which
are directly related to the CCN activity, such as total par-
ticle concentration (Ntot), nucleation mode particle concen-
tration (Nnucl; defined as the concentration of particles be-
low 25 nm), Aitken mode particle concentration (NAit; di-
ameters between 25 and 100 nm), accumulation mode par-
ticle concentration (Nacc; defined as the particle concentra-
tion above 100 nm), and some activation parameters (NCCN,
Dcrit, κCCN) at different SS values with the submicron chem-
ical composition described previously. A statistical overview
of these parameters (mean, median, standard deviation, and
percentiles 25 and 75) is shown in Table S2 in the Supple-
ment. The mean NCCN values range from 320± 280cm−3

at SS= 0.2 % to 800± 700 cm−3 at SS= 0.6 %. The mean
Dcrit value at SS= 0.2 % is 111± 21 nm, indicating that par-
ticle activation is limited to accumulation mode particles. At
higher SS, some Aitken mode particles start to contribute to
NCCN, since meanDcrit values decrease with SS (72± 18 nm
at 0.4 % and 58± 16 nm at 0.6 %). In contrast, CCN-derived
κ values (κCCN) are mainly constrained to the range between
0.1–0.25 (which is the interquartile range for all SS; see Ta-
ble S2), showing little dependence on SS, with median val-
ues of 0.18, 0.15, and 0.13 at SS= 0.2 %, 0.4 %, and 0.6 %,
respectively. Overall, the aerosol activation properties agree
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with previous observations of these parameters at SNS (Re-
jano et al., 2021; Casquero-Vera et al., 2020) and with those
reported at other mountain sites during summer (Asmi et al.,
2012; Georgakaki et al., 2021; Jurányi et al., 2011; Rejano
et al., 2021).

To evaluate the influence of chemical species on the activa-
tion properties, Fig. 3 shows the mean diurnal patterns of OA
factors, IA, eBC, and particle concentration for each aerosol
mode (Nnuc, NAit, and Nacc), along with κCCN and particle
and CCN number concentrations. All variables exhibit a clear
diurnal pattern but with some differences among them. To
prove the significance of the difference between night and
day hours for all variables presented in Fig. 3, we performed
the Wilcoxon rank-sum test (also called Mann–Whitney U ).
The test demonstrated the significance of the difference be-
tween day and night data for all variables (NCCN, Ntot,
Nnucl, NAitk, Nacc, κ , and chemical species mass concen-
trations) with a p-value lower than 10−10, in all cases. Re-
garding particle number concentration in the different modes,
Nnucl exhibits a clear and sharp peak around midday hours
(maximum at 14:00 UTC) due to the impact of new parti-
cle formation (NPF) events (Fig. 3a). Nacc exhibits a flat-
ter pattern, with the increase in concentrations observed at
midday mostly associated with vertical transport due to the
mountain–valley breeze regime and PBL height increase
throughout the day. NCCN at all SS values follows a simi-
lar diurnal evolution (Fig. 3b) to Nacc, with maximum CCN
concentrations observed during the midday hours and mini-
mum concentrations during the night.

The overall hygroscopicity of the activated particles
(κCCN) exhibits an inverse diurnal pattern to the other aerosol
variables (Fig. 3d), with a decrease during morning and mid-
day hours coinciding with the NCCN increase. This decrease
in κCCN is accompanied by an increase in the OA con-
tribution to PM1 (Fig. 3d); however, it is not directly re-
lated because κCCN starts to decrease around 03:00 UTC and
the OA/PM1 ratio starts to increase around 06:00 UTC. The
OA/PM1 ratio maximum (values higher than 0.75) was ob-
served between 12:00–15:00 UTC due to the higher relative
increase in LO-OOA and MO-OOA with respect to IA and
eBC during those hours (Fig. 3c), coinciding with the κCCN
minimum between 13:00–14:00 UTC for all SS. Figure 3c
reveals that all species are affected by vertical upslope trans-
port during morning and midday hours; however, LO-OOA
can also be affected during midday hours by SOA formation
linked to photochemical oxidation induced by high solar ir-
radiance values together with high temperatures (Fig. S4b in
the Supplement) and a high concentration of O3 and NOx
(Fig. S4a) (Minguillón et al., 2016; Via et al., 2021). Dur-
ing the night, we observed the highest values of κCCN; this
is probably related to the large contribution of inorganics to
PM1 in this period, since IA species have the highest hy-
groscopicity values. At all SS investigated, κCCN values are
very similar during the night (around 0.32), while κCCN dif-
ferences among SS values are enhanced during midday hours

(Fig. 3d). This difference is likely due to the aerosol popula-
tion becoming more dominated by OA (mainly LO-OOA)
at midday and requiring higher SS to activate less hygro-
scopic particles. Note that the diurnal pattern of κCCN at
all SS is constrained between 0.15 to 0.3, which is in the
typical range for hygroscopic organic species (Kuang et al.,
2020a), in agreement with the predominance of MO-OOA
in our PM1 measurements. These observations indicate that
OA and its oxygenation degree (higher or lower contribution
of MO-OOA/LO-OOA) might be an important factor con-
trolling the overall aerosol hygroscopicity at SNS during the
day.

4.2 Predicting CCN concentration: the role of organic
aerosol

In the previous section, we observed that the diurnal vari-
ability in the κ parameter might be related to both the OA
content and its oxidation degree. In this section, we apply
different approaches to predict CCN concentrations and eval-
uate the impact of OA sources in the overall performance
of the closure scheme depending on the underlying assump-
tions. We use the total aerosol hygroscopicity calculated
from PM1 chemical composition measurements (κchem) us-
ing three different organic hygroscopicity schemes for CCN
calculation and discuss the degree of agreement of the dif-
ferent CCN closures under different atmospheric conditions.
Then, another approach to estimate κOA in terms of the
f44 parameter is presented to link the hygroscopicity changes
with the aerosol oxidation degree. Finally, a neural-network-
based approach using ancillary parameters is used to predict
the CCN concentrations at Sierra Nevada.

4.2.1 Using different OA hygroscopicity schemes

Using the bulk chemical composition measurements, we es-
timated the overall κchem as explained in Sect. 3.3 to pre-
dict NCCN using κ-Köhler theory and PNSD data. For the IA
contribution to κchem, the Cl− species was neglected due to
its low contribution at SNS (Cl− concentrations were very
close to the detection limit of the instrument), as shown in
Sect. 4.1.1. In this study we used different κ values for the
obtained OA factors (HOA, LO-OOA, and MO-OOA) to
compute the overall κchem in three different ways:

– Scheme 1. We assume that κHOA = κLO-OOA =

κMO-OOA = 0.1, which is the typical value observed for
κOA in a wide variety of environments (Gunthe et al.,
2009; Jurányi et al., 2011; Rose et al., 2010; Schmale
et al., 2018).

– Scheme 2. We assume that HOA are hydrophobic parti-
cles, κHOA = 0 (Cappa et al., 2011; Jimenez et al., 2009;
Kanakidou et al., 2005; Thalman et al., 2017), and that
LO-OOA and MO-OOA components have a constant
κ value of 0.1.
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Figure 3. Mean diurnal pattern of (a) particle number concentration and each aerosol mode (Ntot, Nnucl, NAit, Nacc), (b) CCN concentra-
tions, (c) OA factors and IA species mass concentration, and (d) OA and PM1 ratio and CCN-derived kappa.

Table 1. Assumed densities and hygroscopicity values for each OA
factor in the different OA schemes.

OA factor Parameter

ρ κ

(gcm−3) Scheme 1 Scheme 2 Scheme 3

HOA 1 0.1 0 0
LO-OOA 1.4 0.1 0.1 0.08
MO-OOA 1.4 0.1 0.1 0.16

– Scheme 3. Since the level of oxidation of OA affects its
hygroscopicity, we assume specific hygroscopicity val-
ues for LO-OOA and MO-OOA (κLO-OOA = 0.08 and
κMO-OOA = 0.16), as reported by Cerully et al. (2015).
HOA is again assumed to be non-hygroscopic (κHOA =

0).

Table 1 summarizes the densities and hygroscopicity val-
ues of HOA, LO-OOA, and MO-OOA used for calculating
the κchem value for the different OA schemes. The volume
fractions of OA components were obtained assuming the
density of OOA as 1.4 gm−3, and for HOA the typical POA
density of 1 gm−3 was assumed (Kuang et al., 2020a; Wu
et al., 2016).

Figure 4 shows the violin plots of the retrieved κ values for
each OA scheme, κchem, and the calculated κ values from the
CCNc measurements, κCCN, at different SS. The κchem values

exhibit lower variability (ranging from 0.1 to 0.35) compared
to the κCCN values (from 0.06 to 0.7). The probability density
function (PDF) values of κchem for schemes 1 and 2 are very
similar, with a maximum around 0.14. The main difference
in the data distribution between both schemes is observed
at low hygroscopicity values, which have been identified as
periods of higher HOA contribution (i.e., during HOA peak
events), as can be observed in Fig. S5 in the Supplement.
Scheme 3 exhibits a clearly different data distribution com-
pared to schemes 1 and 2 due to the assumption of different
κ values for the LO-OOA and MO-OOA factors. In general,
scheme 3 results in higher κchem values (mean and median
values are 0.20), since we assumed a higher hygroscopicity
for the MO-OOA factor, which is the main factor controlling
OA at SNS. Also, Fig. 4 shows that the data are more ho-
mogenously distributed around the mean value for scheme 3,
while the distributions for schemes 1 and 2 are skewed to-
wards lower values.

The κCCN values exhibit very different data distributions
relative to the κchem values. All κCCN PDFs show a clear max-
imum and positive skewness with some outlier observations
(higher mean than median values). This is likely due to the
larger variability in the parameters used to retrieve aerosol
hygroscopicity in the supersaturated regime (i.e., NCCN and
PNSD via κ-Köhler theory) compared to smaller changes in
chemical composition. This is particularly important in the
case of SNS, since the submicron chemical composition is
dominated by OA, and, despite the changes in hygroscop-
icity among OA constituents, the range of change in κchem
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Figure 4. Violin plot of κ distribution data for the chemical schemes (κchem) and the CCN calculation at different SS values (κCCN). The
boxes represent the interquartile distance, and the asterisk is the mean value. The shaded area for each variable represents the probability
density function (PDF).

is quite limited because κchem is less sensitive to temporal
changes in composition. As anticipated, higher SS values re-
sult in a shift to lower values in the data distribution due to
activation of less hygroscopic particles. Across all SS val-
ues, mean κCCN values are higher than κchem for the differ-
ent OA schemes. However, the differences between κCCN and
κchem median values are minimal. It is important to note that
the κCCN accounts only for activated particles in the CCNc,
whereas κchem accounts only for aerosol particles in the size
range allowed by the aerodynamic lens in the ToF-ACSM.
Moreover, both methods assume internally mixed particles to
estimate the overall κ , which is an important limitation in the
case of externally mixed particles (Wang et al., 2010; Ren
et al., 2018; Kulkarni et al., 2023). In this study, we would
expect that, during midday hours at SNS, the aerosol popula-
tion would be more externally mixed due to the influence of
NPF events and the vertical transport of particles; however,
with the instrumentation and methods used here, we cannot
give conclusive information about the aerosol mixing state
and its impact on the different scheme’s performance.

Based on the calculated κchem values, we retrieved Dcrit at
a specific SS using Eq. (3) and then estimated NCCN by in-
tegrating the PNSD using Eq. (4) with a time resolution of
30 min. In addition, we used a simpler approach to estimate
NCCN from PNSD data, which consists of assuming that par-
ticles above a certain size are activated. In this case, we se-
lected 80 nm as the fixed activation diameter, and N80 (num-
ber concentration of particles with a diameter larger than
80 nm) is used as a proxy for NCCN. This threshold diam-
eter has been selected because, at medium SS values (0.4 %–
0.5 %), the Dcrit for a wide variety of aerosol types is con-
strained between 70–90 nm (Rejano et al., 2023). The com-
parison between predicted and measured NCCN at the differ-

ent SS values for the different OA schemes is shown in Fig. 5.
The results show that CCN closure dependence depends on
SS when the N80 approach is used. This is expected, since
this simple approach does not include the Dcrit dependence
on SS. In this case, the predicted NCCN values overestimate
the measurements at low SS (meanDcrit is 111± 21 nm) and
underestimate the measurements at high SS (mean Dcrit is
58± 16 nm). At SS= 0.4 % the mean Dcrit is 72± 18 nm,
and, therefore, despite the diurnal and day-to-day variabil-
ity in Dcrit which might hamper the predictions using N80,
the N80 proxy very accurately explains the NCCN observa-
tions at this specific SS with the best correlation coefficient
(r = 0.94) and slope of the regression (1.06).

For the chemical CCN closure approach (OA schemes 1–
3), all the schemes overestimate the CCN observations with
slope values ranging from 1.08 to 1.4 and correlation coeffi-
cients between 0.89–0.94 (Fig. 5), indicating similar CCN
closure for all SS and schemes. A slightly worse agree-
ment between predictions and observations is observed at
SS= 0.2 % probably due to the higher discrepancy between
κCCN and κchem at this SS, as previous studies have pointed
out for low SS values (Cai et al., 2018; Mei et al., 2013).
Closure results for schemes 1 and 2 are very similar, de-
spite the observed difference in κchem values between both
schemes. This similarity is due to the low contribution of
HOA at SNS. For scheme 3, the results indicate that, assum-
ing a lower/higher κ for LO-OOA/MO-OOA, respectively,
rather than the standard κOA = 0.1, leads to a larger over-
estimation of the predicted NCCN (especially at SS= 0.2).
Moreover, scheme 3 results show no improvement in the cor-
relation coefficients compared to the other OA schemes. De-
spite the large variability observed in the OA components,
our results demonstrate that the simple approach of assum-
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Figure 5. Log–log scatter plot of predicted CCN concentrations (NCCN pred) as a function of observed CCN concentrations (NCCN obs)
using the four prediction schemes. The solid blue line represents the 1 : 1 line, and the dashed lines are the ± 10 %. The linear equation and
Pearson correlation coefficient (r) are also included.

ing a constant κOA of 0.1, even for a complex environment
dominated by OA, seems to provide satisfactory predictions
of CCN concentration.

These results agree with other CCN closures studies based
on bulk chemical composition under varying assumptions of
OA hygroscopicity (e.g., Kulkarni et al., 2023b; Meng et al.,
2014; Ren et al., 2018b; Zhang et al., 2017b). Mei et al.
(2013) obtained good CCN closures at OA-dominated condi-
tions (70 %–80 % of PM1) assuming constant κOA values of
0.08 and 0.13 (which are very close to κOA = 0.1 used in this
study). Rose et al. (2011) reported NCCN overestimations of
20 % assuming κOA= 0.1 near the Guangzhou area (China),
but better results (overestimation of 10 %) were observed
when further assumptions about the hygroscopicity of low-
volatility particles were included. Assuming κOA= 0.1 us-
ing both bulk and size-resolved chemical composition, Meng
et al. (2014) showed at a coastal site in Hong Kong thatNCCN
overestimations reached values of 26 % and 10 %, respec-

tively. These authors concluded that CCN closures can be
less sensitive to hygroscopicity considerations and that some
mixing state considerations may play a role. In contrast, Ren
et al. (2018b) demonstrated in an urban environment that the
aerosol mixing state plays a minor role in CCN prediction
when κOA exceeds 0.1. They obtained good closure (closure
ratios of 1.0–1.16) using bulk chemical and internal mixture
assumptions in the Beijing urban area under clean conditions.
Siegel et al. (2022) also obtained accurate NCCN closure re-
sults (slopes between 0.82–0.91) in the Arctic under inter-
nally mixed assumptions by characterizing very precisely the
organic hygroscopicity based on laboratory experiments and
field observations. When considering remote sites without
the influence of local emissions, Cai et al. (2018) demon-
strated that either bulk or size-resolved chemical composition
measurements can achieve practically the same agreement in
NCCN predictions. Therefore, the accuracy of NCCN predic-
tions can exhibit a wide variety of results depending on the
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characteristics of the experimental site and the atmospheric
conditions.

To obtain a deeper understanding of the performance of
CCN predictions and gain knowledge about how the differ-
ences in OA composition during the day may or may not af-
fect the CCN predictions, we calculated the diurnal evolution
of the relative bias ([Npred

CCN−N
obs
CCN]/N

obs
CCN) of the N80 ap-

proach and each OA scheme. Since the SS did not appear
to cause significant differences in the estimation of the CCN
among the three OA schemes, from now on, we focus the
analysis at SS= 0.4 %. Figure 6 shows the median diurnal
evolution of the relative bias of each scheme for SS= 0.4 %.
In this analysis we consider CCN predictions to be accurate
when the associated uncertainty is within the range of± 10 %
(gray shaded area in Fig. 6), which is associated with the
instrument uncertainty (Schmale et al., 2017). All schemes
exhibit similar diurnal patterns in relative bias with nega-
tive values during nighttime hours and positive values dur-
ing midday hours. There is a clear difference between the
relative bias pattern obtained by N80 and the OA schemes.
Figure 6a shows both the diurnal pattern of Dcrit at 0.4 %
and the threshold size of 80 nm. As expected, the difference
between the observed Dcrit and the assumed threshold size
(80 nm) is clearly related to the bias value, and, in general,
the positive/negative bias is associated withDcrit values larg-
er/smaller than 80 nm. The largest deviations with respect to
observations are found during nighttime hours (underestima-
tion of Nobs

CCN between 20 %–30 %), when the Dcrit is con-
siderably below 80 nm. Therefore, the use of this approach
should be limited to situations when the Dcrit is fairly con-
stant and restricted to a specific SS.

For the OA schemes, the diurnal evolution of the relative
bias is similar to theN80 approach, with negative relative bias
during the night and positive relative bias during the day-
time. The relative bias ranges from −6 % to −16 % for all
OA schemes during the nighttime period, which is a smaller
range than observed for theDcrit= 80 nm scheme. The night-
time period is associated with free tropospheric conditions
dominated by aged aerosol (OA is dominated by MO-OOA).
Conversely, during morning/midday hours, the relative bias
increases from its minimum value at 06:00 UTC (3 %–8 %
underestimation) to its maximum value at 10:00 UTC (14 %–
20 % overestimation) (Fig. 6b). The LO-OOA / MO-OOA ra-
tio and relative bias diurnal patterns show a similar shape
(Fig. 6b) but with 1 h of delay between the maximum values
for each parameter. This suggests that the largest bias occurs
when the relative contribution of LO-OOA and MO-OOA
starts changing. When the ratio of LO-OOA / MO-OOA is
constant, the relative bias remains constant as well. These
results indicate that the relative bias in CCN predictions is
highly dependent on the LO-OOA and MO-OOA variabil-
ity and their relative contribution to OA. Since these factors
have different degrees of oxidation, in the next section we

present a new OA scheme that describes κOA in terms of OA
oxidation degree.

4.2.2 Parameterizing κOA in terms of OA oxidation
degree using the f44 parameter

In this sub-section, we calculate κOA from Eq. (5) using the
overall aerosol hygroscopicity as κCCN, κIA obtained from
ToF-ACSM measurements assuming specific hygroscopicity
values for each species shown in Table S1, and κBC assumed
as 0 (Cerully et al., 2015; Kuang et al., 2020b; Thalman et al.,
2017):

κOA =
κCCN− κIAεIA− κBCεBC

εOA
. (7)

With this approach, the mean and median values of cal-
culated κOA are 0.18 and 0.15 at SS= 0.4 %, respectively,
which are values higher than the standard value of κOA = 0.1
but are within the range of ambient κOA observations in
the supersaturated regime (Levin et al., 2014; Gunthe et al.,
2011; Kawana et al., 2016). The inferred values of κOA con-
firm the predominance of MO-OOA species in the activated
particles at SS= 0.4 %, since it is very close to the assumed
value of 0.16 for κMO-OOA in OA scheme 3 (Table 1). Fig-
ure S6 in the Supplement shows the probability density func-
tion (PDF) for the effective κOA at SS= 0.4 % retrieved with
this method. The PDF distribution shows its maximum at
κOA = 0.11, which is similar to the assumed κOA (∼ 0.1)
for scheme 1. The PDF also exhibits a clear positive skew-
ness revealing the influence of more hygroscopic species at
SS= 0.4 %

Previous studies parameterized κOA as a function of the
oxidation degree using the f44 parameter (Kuang et al.,
2020a). Therefore, we explore a potential improvement in
the κOA calculation at SNS by establishing a new OA scheme
(named here as scheme 4) based on a linear relationship be-
tween κOA and f44. This enables calculation of the κchem as
follows:

κchem = (m · f44+ n)εOA+ κIAεIA+ κBCεBC, (8)

where m and n are the slope and the intercept of the linear
relationship between κOA and f44. To establish the param-
eterization, the dataset is split randomly in two subsets: the
first is used to obtain the linear regression, and the second is
used to check its performance for CCN calculation. Each data
subset consists of 50 % of the data. In the first subset of data,
we re-sampled the f44 values into 80 bins and calculated the
corresponding average κOA values for each f44 bin. Then,
the empirical parameterization was obtained by establishing
a linear regression between the averaged κOA values and f44.
As shown in Fig. 7, there is a clear linear trend between the
binned values of κOA and f44. For high values of f44 (espe-
cially above 0.26), the κOA values exhibit higher dispersion.
The κOA and f44 relationship obtained in this analysis (slope
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Figure 6. Diurnal evolution of the median relative bias in CCN predictions at SS= 0.4 % for each prediction scheme. The gray shaded area
in all panels represents the± 10 % relative bias. TheDcrit at SS= 0.4 % is shown in panel (a), and the horizontal line represents the threshold
size of 80 nm. The ratio between LO-OOA and MO-OOA mass concentrations is shown in panel (b).

of 3.24) is for 0.2<f44< 0.32. These high values of f44 are
due to the high oxidation degree of OA and the low con-
tribution of HOA at this site. Previous studies that reported
a linear relationship between κOA and f44 were developed
for less-oxidized aerosol with f44 values ranging from 0.05
to 0.20 (Duplissy et al., 2011; Kuang et al., 2020b; Chen
et al., 2017; Mei et al., 2013). Those studies also reported
lower slopes for the κOA–f44 relationship, ranging between
2.1–2.4. Like the SNS analysis being reported on here, these
studies from the literature were performed at OA-dominated
sites during the warm season. However, these other sites
observed lower f44 values due to a higher contribution of
HOA and biomass-burning-related OA (Duplissy et al., 2011;
Mei et al., 2013; Chang et al., 2010). For freshly emitted
biomass burning particles, Chen et al. (2017) also obtained
a lower slope value of 2.3 associated with low f44 values
(f44< 0.1). A significantly lower slope for the κOA–f44 rela-
tionship (1.04) was reported by Kuang et al. (2020a) for mea-
surements on the North China Plain during winter where the
aerosol composition was dominated by a higher contribution
of HOA and coal combustion OA (f44< 0.15). In contrast
to these values reported in the literature, the κOA–f44 rela-
tionship retrieved in our study is for higher values of f44 and
exhibits the largest slope. Our results therefore suggest that
the fit to the κOA–f44 relationship depends on the oxygena-
tion degree of the organic particles. However, some of the
variability observed among studies in the κOA–f44 relation-
ship might arise from differences in κOA calculation, such as
the value of SS used and/or whether bulk or size-resolved
measurements were available.

After applying scheme 4 to the other half of the dataset, the
CCN closure at SS= 0.4 % exhibits a similar slope and corre-
lation coefficient (1.13 and 0.93, respectively; see Fig. 8a) to
the three other OA schemes. For high f44 values (> 0.25) the
CCN closure is better (slope of 1.05), while for low f44 val-

Figure 7. Scatter plot of κOA at SS= 0.4 % with respect to f44.
The linear regression is applied to the binned data.

ues (< 0.25) the CCN predictions tend to overestimate the
CCN concentrations and exhibit higher data dispersion. This
is also observed in the median diurnal pattern of the rela-
tive bias (Fig. 8b). During the night (when high f44 val-
ues are observed), the new OA scheme can explain the ob-
servations within the ± 10 % range and improves the CCN
closure relative to the previous OA schemes. However, the
relative bias increases up to 35 % (Fig. 8b) during morn-
ing and midday hours when the aerosol is characterized by
lower f44 values associated with higher LO-OOA contribu-
tion. The sensitivity of κOA to changes in f44 is highly de-
pendent on aerosol sources and atmospheric conditions, and
significant deviations have been observed depending on the
site (Kuang et al., 2020a). Our results are comparable with
those of Zhang et al., (2016). They analyzed the impact of
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Figure 8. (a) Scatter plot of predicted CCN concentrations (NCCN pred) as a function of observed CCN concentrations (NCCN obs) using
OA scheme 4. Data points are color-coded by the corresponding f44 value. The dashed black line represents the 1 : 1 line. The linear equation
and Pearson correlation coefficient (r) are also included for all data and for filtered data in parentheses (data points with f44> 0.25). The
solid and dashed yellow lines represent the linear regression of all data and filtered data, respectively. (b) Median diurnal evolution of the
relative bias at SS= 0.4 % of OA scheme 4 (left y axis) and f44 (right y axis). The gray shaded area represents the ± 10 % relative bias. The
red shaded area represents the relative bias range for the other OA schemes shown in Fig. 6b.

aerosol oxidation level on CCN predictions at a suburban
site in northern China using the κOA–f44 relation presented
by Mei et al. (2013). They showed that, for OA mass frac-
tions higher than 0.6, theNCCN predictions are very sensitive
to f44 values, and the best CCN closures were observed for
f44> 0.15 with a slope value around 0.94 at SS= 0.39 %. As
observed in this study and in Zhang et al. (2016), accurate
NCCN predictions at OA-dominated sites using the κOA–f44
relation are challenging, since both κOA and NCCN are very
sensitive to f44 values.

To sum up, the new κOA calculation using f44 parameteri-
zation shows good agreement between CCN calculations and
observations during the night (bias ranging between 0 %–
10 % from 21:00 to 06:00 UTC); however, it results in worse
predictions during morning and midday hours at SNS. Af-
ter verifying that all OA schemes for calculating κOA yield
nearly identical results, with the most significant biases oc-
curring under conditions influenced by daytime vertical up-
slope transport of particles and/or NPF events, we conclude
that using a bulk κchem to predict NCCN consistently results
in discrepancies with observations. The clear diurnal vari-
ability in aerosol properties and atmospheric conditions may
require size-resolved chemical composition or mixing state
assumptions for the aerosol population, like externally mixed
aerosol or even a combination of aerosol populations (Kulka-
rni et al., 2023; Zhang et al., 2017; Ren et al., 2018), to im-
prove the results throughout the day. However, the analytical
methods used in this study have limitations and do not con-
sider aerosol mixing state information. For that reason, the
next section will explore a non-analytical approach with the
aim of improving the CCN prediction throughout the day.

4.2.3 Non-analytical approach for CCN prediction:
neural networks

In this section, we develop a prediction scheme based on
a neural network that uses four input parameters (N80,
OA/PM1, f44, and solar global irradiance) to account for
the main features affecting the CCN concentration at SNS,
respectively: aerosol concentration in the CCN-active size
range, OA contribution to total PM1 and its oxygenation de-
gree (related to OA hygroscopicity), and insolation condi-
tions that might affect secondary processes influenced by
photochemistry. More details on the neural network archi-
tecture are given in Sect. 3.4.

Figure 9 shows the performance of the neural network
approach for CCN estimation at SS= 0.4 % (slope of 0.98
and correlation coefficient of 0.94). This neural network ap-
proach shows the best correlation with observations in this
study. Compared with the analytical approaches using bulk
chemical composition measurements, this model shows a
general underestimation of measurements (slope < 1) con-
trasting with the overestimation obtained for all OA scheme
approaches (all slopes > 1). In terms of capturing the di-
urnal variability, this new approach performs better, since
the median diurnal pattern remains within the ± 10 % range
(Fig. 9b). The neural network can describe NCCN variability
throughout the day, even during morning and midday hours,
when all four OA schemes exhibited the highest bias values.
The neural network scheme also explains the CCN variabil-
ity during the most complex aerosol conditions at SNS. The
inclusion of the solar irradiance in the neural network model
acts as a proxy of photochemical activity and secondary pro-
cess influence which helps to diminish the overestimation
peak observed for all OA schemes during the midday hours.
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Figure 9. (a) Scatter plot of predicted CCN concentrations (NCCN pred) as a function of observed CCN concentrations (NCCN obs) for
the testing sub-dataset (25 % of the whole dataset) at SS= 0.4 % using the neural network approach. The linear regression and Pearson
correlation coefficient (r) are also included. (b) Median diurnal evolution of the relative bias at SS= 0.4 % of the neural network model.
Also, the gray shaded area represents the ± 10 % relative bias.

This newly developed model is able to manage the non-
linear and time-dependent relationships between variables
during the hours when aerosol population might be an exter-
nal mixture of background particles, upslope transport parti-
cles, and/or particles produced during NPF events, suggest-
ing it is a suitable approach for CCN prediction throughout
the day. Park et al. (2023) also proposed machine learning
approaches to develop CCN predictions based on multiple
linear regression and non-negative matrix factorization tech-
niques. They concluded that these methods are robust and
capable of simulating either internal or external mixing con-
ditions. However, the CCN predictions observed in our study
are more accurate (r = 0.94) than the results observed by
Park et al. (2023) (R2 between 0.71–0.81). This might be
due to the input parameters considered in the neural network,
since Park et al. (2023) only considered aerosol size distri-
bution measurements without any consideration of chemi-
cal composition or hygroscopicity. Nair et al. (2021) used
a random forest regression model and also reported strong
agreement between CCN estimations and observations dur-
ing an aircraft campaign. They used model-simulated data of
aerosol composition, atmospheric trace gases, and meteoro-
logical variables without aerosol size information to estimate
NCCN at SS= 0.4 %, finding a Kendall correlation coefficient
of 0.76.

Our analysis, along with results in the previous literature,
indicates that machine learning approaches are very useful
for accurately predicting NCCN under different conditions in
terms of other aerosol properties. Furthermore, this suggests
that CCN coverage can be improved worldwide by using ma-
chine learning and making use of more routinely measured
parameters such as aerosol size distribution, OA properties,
and solar global irradiance. However, further studies assess-

ing the potential of these tools at multiple sites and during
long time scales are still necessary.

5 Summary and conclusions

We analyzed the influence of κOA on CCN estimations from
bulk chemical composition measurements using different
OA schemes to describe the overall aerosol hygroscopicity.
We investigated the physicochemical properties and CCN
activity of the aerosol population at a high-altitude moun-
tain site (SNS station) on the southeastern Iberian Peninsula,
where atmospheric conditions can allow cloud formation.

Our results show the important contribution of OA to the
total PM1 mass concentration at SNS, where it represents up
to the 70 % of the PM1. After applying PMF analysis, we de-
termined that MO-OOA and LO-OOA are the main factors
that control both OA and total PM1. During nighttime hours,
aerosol particles are more aged and hygroscopic, with a pre-
dominant contribution of MO-OOA and inorganic species.
During the morning (06:00–10:00 UTC), the aerosol popu-
lation starts to be affected by orographic buoyant upward
flows of aerosol from the urban area due to the mountain–
valley breeze regime and PBL influence. During this time,
LO-OOA and eBC make a higher relative contribution to
the aerosol population, resulting in a decrease in the overall
hygroscopicity. The aerosol population properties continue
to change during midday hours (11:00–16:00 UTC, highest
insolation hours), when the LO-OOA factor and nucleation
mode particles exhibit the highest concentration of the day.
This is likely caused by SOA formation through photochem-
ical reactions during NPF events, in combination with other
sources such as upslope transport.

The CCN concentration has been estimated by using dif-
ferent OA hygroscopicity schemes based on bulk chemi-
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cal composition. CCN closure for all OA schemes exhib-
ited slopes and correlation coefficients in the range between
1.08–1.40 and 0.89–0.94, respectively. We find that using a
fixed size threshold for CCN activation exhibited a very pro-
nounced diurnal pattern. All OA schemes investigated re-
sulted in similar CCN closure statistics. OA schemes per-
formed better at night (bias between−16 % and−6 %), when
the OA is more oxidized and the aerosol is more aged, than
during the day, when the OA is less oxidized and the aerosol
is more influenced by photochemical and boundary layer
processes (bias from 0 % to 20 %). We also propose a new
OA scheme based on the f44 parameter, which reflects the
oxidation degree of the OA and results in similar overall val-
ues to the other OA schemes for the closure slope and cor-
relation coefficient (1.13 and 0.93, respectively). The new
OA scheme did improve the closure results for more aged
aerosol (f44> 0.25), which is measured at night but not dur-
ing the day (bias values up to 40 %), when the aerosol is more
complex and f44 values are lower. These findings indicate
that factors beyond the bulk κOA characterization must be
considered when the aerosol is more complex.

We attribute the observed positive bias of all OA schemes
to two main causes. Firstly, the ToF-ACSM provides infor-
mation on a limited aerosol size range often dominated by
accumulation particles which is more affected by inorganic
species (Meng et al., 2014; Che et al., 2016, 2017); there-
fore, the real κchem of the whole aerosol population might
be overestimated by κchem measured with the ToF-ACSM.
In addition, we must consider the effect of the well-known
differences in the size ranges considered between the differ-
ent instruments in this field campaign: CCNc, with no size
cutoff; SMPS, with a mobility diameter range of 12–535 nm;
and ToF-ACSM, with an aerodynamic diameter range of 70–
700 nm (associated with a mobility diameter range of 58–
578 nm using an effective aerosol density of 1.47 gcm−3 and
a shape factor of 1). Secondly, when the aerosol population
consists of a complex mixture of particles, which at SNS can
be observed during PBL influence conditions, the underly-
ing assumptions for estimating CCN predictions based on
internally mixed aerosol particles can introduce an intrinsic
bias, and κOA assumptions have a secondary role. Since the
methodology used here is limited and cannot directly infer
the mixing state of the aerosol population, we are not able
to quantify this effect on the CCN predictions. Moreover,
during morning and midday hours related to more complex
conditions, the relationship between variables might change
over time and can have a non-linear nature. Therefore, the
analytical model approaches presented here cannot explain
the CCN changes throughout the day. The big takeaway is
that the complexity of the aerosol should be considered when
using bulk chemical composition measurements to predict
CCN concentrations worldwide.

For that reason, we built a neural network approach which
is able to predict CCN concentrations throughout the day.
Using four input parameters for the neural network (N80,

OA/PM1, f44, and solar global irradiance), we were able to
predict NCCN accurately in all conditions throughout the day
(within ± 10 % relative bias), revealing that this approach
was the best for CCN predictions at this complex remote
site. It is important to note that the disadvantage of predict-
ing atmospheric parameters using neural networks is that the
model is a “black box” which is trained with data of a specific
site and can only forecast in that specific site or similar loca-
tions. Despite this, it may be possible to use neural networks
to improve our understanding of global CCN coverage using
few aerosol parameters without needing to consider details
of aerosol complexity such as mixing state.
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