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Table S1. Percentage of missing data before imputation for 2007-2019.  

Variable % Missing before imputation 
Above Mixed Layer 0 

Pressure 12.76 
Radiation 0 

RH 18.269 
Sea Ice 0 

Temperature 13.07 
Wind Direction 21.60 

Wind Speed 21.49 
Snow 0 

 

Table S2. Overview of the hyperparameter optimization for the ML model.  

Hyperparameter Short name Range Optimal Value 
Number of estimators n_estimators 100-1000 550 
Maximum tree depth max_depth 3-7 5 

L1 regularization reg_alpha 0-10 8.1 
L2 regularization reg_lambda 0-10 1.8 

Minimum child weight min_child_weigh 1-10 8 
Gamma gamma 0-10 0.6 

Learning rate learning_rate 0.01-0.1 0.092 
Subsample fraction subsample 0.5-1.0 0.95 

Column sample by tree fraction colsample_bytree 0.5-1.0 0.9 
Positive Label Scalar scale_pos_weight 1-10 5 

 



 

Figure S1. Data coverage over 1996-2019 for (a) ozone and (b-e) the meteorological variables as expressed 
as a percentage of available measurements  relative to the total possible number of measurements for each 
month. Months are color-coded by season.  

  



 

Figure S2. Diurnal ODE frequency by month.  

  



 

 

Figure S3. Trend analysis of the first ODE day (defined as the first day of the year with an ozone 
measurement < 10 ppbv), the last ODE day (defined as the last day of the year with an ozone measurement 
< 10 ppbv), and the range of the ODE season (last day of the year minus the first day of the year). The black 
bars represent trends that are not significant on the 95th % confidence level. The red error bars represent the 
95th % confidence intervals of the slope.  The p values for first, last, and range of ODE days are 0.78, 0.20, 
and 0.65, respectively. 



 

Figure S4. Distribution of meteorological and air mass history variables during each spring month 
including (a) RH, (b) wind speed, (c) temperature, (d) radiation, (e) pressure, (f) time over sea ice, (g) time 
over snow, and (h) time above the mixed layer. The line in the middle of the box represents the median, the 
boxes represent the interquartile range, the medians of boxes whose notches do not overlap differ with 95% 
confidence. For a description of how the time spent over different surface types is calculated see the 
methods section. All available data for each variable collocated with ozone measurements was used, 
resulting in different years used for each variable, with the minimum number of years included was 5 for 
radiation. 



 

Figure S5. Wind roses for Non-ODEs (top row) and ODEs (bottom row) for the spring months. The mean 
wind speed and the percentage of time the wind speed is zero (or calm) is given in each panel.  

 

 

 

 

 

 

 

 



 

Figure S6. Trajectory frequency maps for trajectory steps below the mixed layer and over snow for (a-c) 
ODEs and (d-f) Non-ODEs during March, April, May at Villum (indicated by the red and white circle). 

  



Figure S7. Trajectory frequency maps for trajectory steps below the mixed layer and over sea ice for (a-c) 
ODEs and (d-f) Non-ODEs during March, April, May at Villum (indicated by the red and white circle). 

  



 

Figure S8. Comparison between observations of solar radiation and shortwave solar radiation downwelling 
from ERA5 Reanalysis, with (a) a histogram and (b) scatterplot. On the scatterplot, the spearman rank 
correlation coefficient along with its associated p-value are presented in the top left corner while the mean 
absolute error (MAE), root mean square error (RMSE), normalized mean bias (NMB), mean absolute gross 
error (MAGE), and fraction of modeled data with a factor of 2 (FAC2) of the observations are presented in 
the bottom right corner. The MAE and RMSE are given as percentages of the mean observational value.  

 

 

 



 

Figure S9. The relationships between SHAP and ambient values for (a) March, (b) April, and (c) May. 15 
equally spaced bins were calculated for each feature, the median (red line) and IQR (blue lines) of the SHAP 
values were computed for each bin. The value listed on the x-axis is the midpoint of each bin. The relative 
frequency of each histogram bin for each variable is displayed on the right axis. The bins are the same used 
in Fig. 9.  



 

 

 

Figure S10. The relationships between SHAP and ambient values for March – May combined for (a) time 
above the mixed layer, (b) pressure, (c) radiation, (d) RH, (e) time air masses spent over sea ice, (f) time 
air masses spent over snow, (g) temperature, (h) wind direction, and (i) wind speed. Fifteen equally spaced 
bins were calculated for each feature, the median (red line) and IQR (blue lines) of the SHAP values were 
computed for each bin. The value listed on the x-axis is the midpoint of each bin. The relative frequency of 
each histogram bin  for each variable  is displayed on the right axis. 

 

 



 

Figure S11. Distributions of input variables for Non-ODEs and ODEs for (a) March-May, (b) March, (c) 
April, (d) May, the thick black line represents the median and thin dashed lines represent the 25th and 75th 
percentiles. The distributions are color-coded by correct (blue) or incorrect (red) prediction by the ML 
model. All data over 2007-2019 was used to predict ODEs and was used in this analysis.  

 



 

Figure S12. Distributions of SHAP values for Non-ODEs and ODEs for (a) March-May, (b) March, (c) 
April, (d) May, the thick black line represents the median and thin dashed lines represent the 25th and 75th 
percentiles. The distributions are color-coded by correct (blue) or incorrect (red) prediction by the ML 
model. All data over 2007-2019 was used to predict ODEs and was used in this analysis.  
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